首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.

Purpose

In-channel sediment storage is a fundamental component of a river basin’s sediment budget. Sediment remains stored until a competent flow re-suspends and transfers it downstream. The objectives of this paper are: (1) to quantify in-channel sediment storage and its spatial and temporal dynamics in the River Isábena, a mesoscale mountainous catchment draining highly erodible areas (badlands) in the south central Pyrenees (Ebro basin) and (2) to analyse changes in storage in the mainstem channel in relation to sediment yield from the main tributaries.

Materials and methods

In-channel sediment storage was measured seasonally (from winter 2011 to winter 2012) at 14 mainstem cross-sections using a re-suspension cylinder. A minimum of three locations were sampled at each section, and two levels of agitation were applied. Samples allowed determination of the amount of sediment accumulated per unit surface area at a given point in the river; estimates of the total storage in the bed of the mainstem Isábena were derived from these data. In addition, main five tributaries were monitored for discharge and suspended sediment transport.

Results and discussion

Results show an annual sedimentary cycle, with the sediment being produced in badlands during winter, transferred to the main channel during spring, stored in the river during summer and, finally, exported out of the basin by the autumn floods. Marked spatial variability was observed; sections located immediately downstream from the main tributaries (i.e. mainly Villacarli) generally held larger amounts of sediment in the bed. Runoff and sediment inputs from the tributaries were the most important factors determining sediment storage and its spatial and temporal dynamics. The overall sediment yield of the Isábena was much higher than the in-channel sediment storage, despite the large amounts stored in the channel.

Conclusions

This finding corroborates a previous published hypothesis that fine sediment in the drainage network has a mean residence time of the order of 1 year and that the basin’s delivery ratio exceeds 90 %; both of these characteristics can be related to the high connectivity between production areas (badlands) and the river network, and to the role of baseflows allowing continuous export of sediment from the catchment.  相似文献   

2.

Purpose

The Isábena catchment (445 km2), Spain, features highly diverse spatial heterogeneity in land use, lithology and rainfall. Consequently, the relative contribution in terms of water and sediment yield varies immensely between its subcatchments, and also temporally. This study presents the synthesis of ~2.5 years of monitoring rainfall, discharge and suspended sediment concentration (SSC) in the five main subcatchments of the Isábena and its outlet.

Materials and methods

Continuous discharge at the subcatchment outlets, nine tipping bucket rainfall and automatic SSC samplers (complemented by manual samples), were collected from June 2011 until November 2013. The water stage records were converted to discharge using a rating curve derived with Bayesian regression. For reconstructing sediment yields, the data from the intermittent SSC sampling needed to be interpolated. We employed non-parametric multivariate regression (Quantile Regression Forests, QRF) using the discharge and rainfall data plus different aggregation levels of these as ancillary predictors. The subsequent Monte Carlo simulations allowed the determination of monthly sediment yields and their uncertainty.

Results and discussion

The stage–discharge rating curves showed wide credibility intervals for the higher stages, with great uncertainties associated with the discharge rates, especially during floods. The water yield of the subcatchments differed considerably. The entire catchment’s output was dominated by the northernmost subcatchment (~360 mm year?1). The smaller, southern subcatchments featured much higher variability and lower runoff rates (55–250 mm year?1). The SSCs exhibited a wide range and can exceed 100 g l?1 for the central subcatchments, where most of the badlands are located. For the reconstruction of the sedigraphs, the QRF method proved suitable with Nash–Sutcliffe indices of 0.50 to 0.84. The specific sediment yield ranges from relatively low (32 t km?2 year?1) in the highly vegetated north to high values (3,651 t km?2 year?1) in areas with many badland formations.

Conclusions

The Isábena catchment shows high erosion dynamics with great variability in space and time, with stark contrasts even between adjacent subcatchments. The natural conditions make water and sediment monitoring and instrumentation very challenging; the measurement of discharge is particularly prone to considerable uncertainties. The QRF method employed for reconstructing sedigraphs and monthly yields proved well suited for the task.  相似文献   

3.

Purpose

Knowledge of sediment sources is a prerequisite for sustainable management practices and may furthermore improve our understanding of water and sediment fluxes. Investigations have shown that a number of characteristic soil properties can be used as “fingerprints” to trace back the sources of river sediments. Spectral properties have recently been successfully used as such characteristics in fingerprinting studies. Despite being less labour-intensive than geochemical analyses, for example, spectroscopy allows measurements of small amounts of sediment material (>60 mg), thus enabling inexpensive analyses even of intra-event variability. The focus of this study is on the examination of spectral properties of fluvial sediment samples to detect changes in source contributions, both between and within individual flood events.

Materials and methods

Sediment samples from the following three different origins were collected in the Isábena catchment (445 km2) in the central Spanish Pyrenees: (1) soil samples from the main potential source areas, (2) stored fine sediment from the channel bed once each season in 2011 and (3) suspended sediment samples during four flood events in autumn 2011 and spring 2012 at the catchment outlet as well as at several subcatchment outlets. All samples were dried and measured for spectral properties in the laboratory using an ASD spectroradiometer. Colour parameters and physically based features (e.g. organic carbon, iron oxide and clay content) were calculated from the spectra. Principal component analyses (PCA) were applied to all three types of samples to determine natural clustering of samples, and a mixing model was applied to determine source contributions.

Results and discussion

We found that fine sediment stored in the river bed seems to be mainly influenced by grain size and seasonal variability, while sampling location—and thus the effect of individual tributaries or subcatchments—seem to be of minor importance. Suspended sediment sources were found to vary between, as well as within, flood events; although badlands were always the major source. Forests and grasslands contributed little (<10 %), and other sources (not further determinable) contributed up to 40 %. The analyses further suggested that sediment sources differ among the subcatchments and that subcatchments comprising relatively large proportions of badlands contributed most to the four flood events analyzed.

Conclusions

Spectral fingerprints provide a rapid and cost-efficient alternative to conventional fingerprint properties. However, a combination of spectral and conventional fingerprint properties could potentially permit discrimination of a larger number of source types.  相似文献   

4.

Purpose

The aim of this work was to develop a comprehensive fluvial suspended sediment budget for a large regulated river, the lower River Ebro (NE Spain).

Materials and methods

The sediment loads of the Ebro mainstem and its main tributaries were estimated from continuous records of water discharge and turbidity (appropriately transformed to suspended sediment concentrations). Records were obtained at ten monitoring sections during the relatively dry 2008–2011 period.

Results and discussion

The sediment load estimated for the River Ebro upstream of the Mequinenza Reservoir is remarkable (i.e. mean suspended load of 0.6?×?106?t?year?1), despite the fact that the site is already affected by a sediment deficit due to upstream reservoirs. Further downstream, and owing to their humid characteristics, the contribution of the Pyrenean tributaries (Segre and Cinca Rivers) is much larger compared with their Iberian Massif counterparts (Matarranya and Algars Rivers), with sediment loads of 0.49?×?106 and 2,260 t, respectively. The suspended sediment load trapped in the Mequinenza-Ribarroja-Flix Dam Complex for the study period was estimated at 2.3?×?106?t. Below the dams, the sediment load was reduced by 95 % but increased gradually in a downstream direction due to the erosion processes that clear water (i.e. very low sediment concentrations) flood flows exert on the river bed and banks and the episodic contribution from ephemeral tributaries.

Conclusions

Reservoirs have reduced the overall sediment load and the natural variability of flow and sediment transport in the River Ebro. In addition, the sediment budget revealed that floods were not the only drivers of the sediment dynamics in the lower Ebro. For instance, the particular location of the monitoring sections showed that episodic contributions from small tributaries alter the general sediment load of the river during certain torrential events.  相似文献   

5.

Purpose

Knowledge of the origin of suspended sediment is important for improving our understanding of sediment dynamics and thereupon support of sustainable watershed management. An direct approach to trace the origin of sediments is the fingerprinting technique. It is based on the assumption that potential sediment sources can be discriminated and that the contribution of these sources to the sediment can be determined on the basis of distinctive characteristics (fingerprints). Recent studies indicate that visible–near-infrared (VNIR) and shortwave-infrared (SWIR) reflectance characteristics of soil may be a rapid, inexpensive alternative to traditional fingerprint properties (e.g. geochemistry or mineral magnetism).

Materials and methods

To further explore the applicability of VNIR-SWIR spectral data for sediment tracing purposes, source samples were collected in the Isábena watershed, a 445 km2 dryland catchment in the central Spanish Pyrenees. Grab samples of the upper soil layer were collected from the main potential sediment source types along with in situ reflectance spectra. Samples were dried and sieved, and artificial mixtures of known proportions were produced for algorithm validation. Then, spectral readings of potential source and artificial mixture samples were taken in the laboratory. Colour coefficients and physically based parameters were calculated from in situ and laboratory-measured spectra. All parameters passing a number of prerequisite tests were subsequently applied in discriminant function analysis for source discrimination and mixing model analyses for source contribution assessment.

Results and discussion

The three source types (i.e. badlands, forest/grassland and an aggregation of other sources, including agricultural land, shrubland, unpaved roads and open slopes) could be reliably identified based on spectral parameters. Laboratory-measured spectral fingerprints permitted the quantification of source contribution to artificial mixtures, and introduction of source heterogeneity into the mixing model decreased accuracies for some source types. Aggregation of source types that could not be discriminated did not improve mixing model results. Despite providing similar discrimination accuracies as laboratory source parameters, in situ derived source information was found to be insufficient for contribution modelling.

Conclusions

The laboratory mixture experiment provides valuable insights into the capabilities and limitations of spectral fingerprint properties. From this study, we conclude that combinations of spectral properties can be used for mixing model analyses of a restricted number of source groups, whereas more straightforward in situ measured source parameters do not seem suitable. However, modelling results based on laboratory parameters also need to be interpreted with care and should not rely on the estimates of mean values only but should consider uncertainty intervals as well.  相似文献   

6.

Purpose

The aim of this work was to improve the understanding of the spatial and temporal dynamics of suspended sediment transport during flushing flows in a large regulated river, the lower River Ebro (NE Spain).

Materials and methods

Relationships between sediment and discharge (i.e. discharge (Q)–suspended sediment concentrations (SSC)) were examined during six flushing flows using continuous discharge and turbidity records obtained at six monitoring sections distributed along the lower Ebro River for the 2008–2011 period.

Results and discussion

Analyses revealed marked spatial and temporal patterns. At the spatial scale, the Q–SSC relationships were mostly influenced by the different routing velocity of discharge and sediment waves. At the upstream sections, the sediment peak usually preceded peak discharge (i.e. clockwise loop); however, flow routing through the 85-km channel length tends to increase the lag between them, modifying the hysteresis towards counter-clockwise patterns in the downstream direction. At the temporal scale, the season when the artificial releases were performed strongly influenced the sediment availability, with similar-magnitude flushing flows generating higher sediment peaks in autumn than in spring.

Conclusions

These results are of great interest in order to reinforce the flushing flows programme in the lower Ebro River, so as to help achieve the sustainability of the riverine and deltaic ecosystems.  相似文献   

7.
This paper examines the relations between rainfall, runoff and suspended sediment transport in the Isábena basin during a quasi-average hydrological year. The Isábena is a mesoscale river basin that drains a mountainous area comprising patches of highly erodible materials (badlands). The paper includes an analysis of the different hydrological and sedimentary responses of the catchment to a similar rainfall. Thirty-four floods were studied, with a very variable response observed. Runoff coefficients ranged from 0.32% to 33%. The sedimentary response was also highly variable, with maximum suspended sediment concentrations (SSC) oscillating between < 0.1 and 90 g l− 1 and flood sediment loads varying from 27 to 54,000 t per hydrological event. Most sediment load was concentrated in spring when competent floods occur frequently. Pearson correlation matrix and backward stepwise multiple regression indicate that the hydrological response of the catchment is strongly correlated with total precipitation, event duration, and rainfall of the previous days. Very low correlation was observed with rainfall intensity. The relation between rainfall and sediment transport followed the same trend. Sediment variables (e.g., total load and SSC) were significantly correlated with variables such as total rainfall and rainfall over the previous days, although the significance level was lower in comparison with the runoff related variables. There was again no correlation between sediment variables and rainfall intensity. On-going research in the area suggests that, apart from rainfall, factors such as sediment availability in the badlands and accumulation of sediment in the channels influences the river's sedimentary response. The non-linear hydrosedimentary response is reflected in the wide range of runoff coefficients and sediment loads that have been observed in response to similar amounts of precipitation.  相似文献   

8.

Purpose

Quantifying suspended sediment fluxes and dynamics across mountains, and identifying the origin of sediment in severely eroded areas, are of primary importance for the management of water resources. This contribution aims to generalise previous results from suspended sediment fingerprinting obtained during 2007?C2009 in a mesoscale Alpine catchment (the Bléone River; 905?km2) in France, and to assess variability in sediment sources throughout the second half of the twentieth century.

Materials and methods

Sediment fingerprinting, based on elemental geochemistry and radionuclide measurements, was conducted on a sediment core collected in an alluvial floodplain at the basin outlet. This technique was combined with hydro-sedimentary time-series to reconstruct the origin of suspended sediment deposited at this location over the last 50?years.

Results and discussion

Interpretation of sedimentation based on historical hydrological databases corroborates core dating obtained with 137Cs and 210Pbxs activity measurements. Black marls and (marly) limestone sources provided the main fraction of sediment throughout the sequence (40 and 22?%, respectively). However, we also found evidence for the occurrence of major floods carrying large quantities of sediment originating from Quaternary deposits and conglomerates (25 and 16?%, respectively). The variability of sediment sources throughout the sequence may reflect the spatial variability of rainfall within the catchment, which in turn reflects its origin. However, the relatively homogeneous sediment composition throughout the sequence confirms that core-derived information is representative of widespread flood events.

Conclusions

These results are consistent with those obtained in previous studies. They also outline the need to take into account the entire grain size range of fine sediment in order to provide an overall picture of sediment sources and transfers within highly erosive catchments. This study also emphasizes the importance of using archival data to validate the results of sediment fingerprinting studies conducted during short contemporary monitoring programmes, and to extend fingerprinting of sediment sources over longer time-scales which include large and widespread floods.  相似文献   

9.

Purpose

There is a growing interest in the characterization of the particle size of sediment due to its impact on particle dynamics, especially for connectivity purpose. This study determined the particle size distribution of suspended sediment in a mountainous catchment, with the aim to evaluate the variability of particle size during floods, the main controlling factors, and if indirect information from hillslopes was useful for the interpretation of particle size measured at the catchment outlet. This work involved the development of a measurement protocol.

Material and methods

Samples were collected automatically from streamwater during flood events using an ISCO 3700 sampler. Five events were analyzed for their particle size distributions using a Malvern Mastersizer 2000. Because the samples were too concentrated, two different protocols were tested to address the errors made during the subsampling step: using a pipette and a home-made device with successive dilution phases.

Results and discussion

High errors occurred when using a pipette to extract particles within a stirred sample. The maximum errors were reduced from 1,600 to 30?% using the device described within this study. Particles were found to be aggregated at various levels regardless of the discharge they were sampled at. Their size was found to be either variable or stable at the event scale, and statistical analyses revealed that discharge was the factor that best correlated with particle size. The results obtained in this study are in agreement with the few other studies in comparable environments. Some hypothesis are put forward and discussed to explain the positive relationship between particle size and discharge. Input from hillslopes seems to have a measureable effect in this headwater catchment.

Conclusions

While the need for in situ measurements has long been stressed in lowland rivers, estuaries, and coastal environments, it was shown that the use of an accurate dilution protocol could provide some physically interpretable measurements on the particle size distributions of suspended sediment transported in a mountainous catchment. It also appears that hillslope information has to be considered when studying particle size measured at the catchment outlet.  相似文献   

10.

Purpose

Almost 20 nuclear reactors are situated along the Rh?ne valley, representing Europe??s largest concentration of nuclear power plants. The fate of suspended sediments and natural and artificial particle-bound radionuclides in relation to extreme hydrological events was assessed at the lower course of the Rh?ne River, which provides the main source of water and sediment inputs to the northwestern Mediterranean Sea.

Materials and methods

We sampled water at a high frequency over the period 2001?C2008 and measured suspended particulate matter (SPM) loads and particle-bound natural and artificial radionuclide concentrations at the SORA observatory station in Arles, France. We monitored various hydrological events (either natural or anthropogenic origin) and characterize their influence on concentrations and fluxes.

Results and discussion

The relationship between SPM concentration and the very wide range of water discharges did not differ significantly from previous periods, indicating no significant shift in the average sediment delivery over the last 20?years. Unexpected hydrological events of anthropogenic origin, in particular those associated with flushing of reservoirs that are generally not captured by sampling strategies, were recorded and were shown to transfer significant additional sediment and associated contaminants towards the marine environment. Concentrations of anthropogenic radionuclides associated with sediment (i.e., 137Cs, 60Co, 54Mn, 110mAg, and Pu isotopes) varied over two to three orders of magnitude during periods of low and moderate flow due to variations in the liquid release from nuclear facilities. Except for Pu isotopes, the concentrations of the various particle-bound radionuclides generally showed a decreasing trend with increasing discharge, revealing the geochemical or anthropogenic background values, and providing a useful flood fingerprint for this large fluvial system before its entry into the marine environment.

Conclusions

Our approach produced key data on the level and fate of suspended solids and radionuclide concentrations during flood events occurring in a large river system that could be contaminated by chronic or accidental radioactive releases. These results are of fundamental importance for further interpretations of sediment dynamics at the river mouth.  相似文献   

11.

Purpose

The assessment of climate change impacts on the sediment cycle is currently a primary concern for environmental policy analysts in Mediterranean areas. Nevertheless, quantitative assessment of climate change impacts is still a complex task. The aim of this study was to implement a sediment model by taking advantage of sediment proxy information provided by reservoir bottom deposits and to use it for climate change assessment in a Mediterranean catchment.

Materials and methods

The sediment model was utilised in a catchment that drains into a large reservoir. The depositional history of the reservoir was reconstructed and used for sediment sub-model implementation. The model results were compared with gauged suspended sediment data in order to verify model robustness. Then, the model was coupled with future precipitation and temperature scenarios obtained from climate models. Climatological model outputs for two emission scenarios (A2 and B2) were simulated and the results compared with a reference scenario.

Results and discussion

Model results showed a general decrease in soil moisture and water discharge. Large floods, which are responsible for the majority of sediment mobilisation, also showed a general decrease. Sediment yield showed a clear reduction under the A2 scenario but increased under the B2 scenario. The computed specific sediment yield for the control period was 6.33 Mg ha?1 year?1, while for the A2 and B2 scenarios, it was 3.62 and 7.04 Mg ha?1 year?1, respectively. Furthermore, sediment transport showed an increase in its time compression, i.e. a stronger dependence of total sediment yield from the largest event contributions.

Conclusions

This study shows a methodology for implementing a distributed sediment model by exploiting reservoir sedimentation volumes. This methodology can be applied to a wide range of catchments, given the high availability of reservoir sedimentation data. Moreover, this study showed how such a model can be used in the framework of a climate change study, providing a measure of the impact of climate change on soil erosion and sediment yields.  相似文献   

12.

Purpose

Many Mediterranean drylands are characterized by strong erosion in headwater catchments, where connectivity processes play an important role in the redistribution of water and sediments. Sediment connectivity describes the ease with which sediment can move through a catchment. The spatial and temporal characterization of connectivity patterns in a catchment enables the estimation of sediment contribution and transfer paths. Apart from topography, vegetation cover is one of the main factors driving sediment connectivity. This is particularly true for the patchy vegetation cover typical of many dryland environments. Several connectivity measures have been developed in the last few years. At the same time, advances in remote sensing have enabled an improved catchment-wide estimation of ground cover at the subpixel level using hyperspectral imagery.

Materials and methods

The objective of this study was to assess the sediment connectivity for two adjacent subcatchments (~70 km2) of the Isábena River in the Spanish Pyrenees in contrasting seasons using a quantitative connectivity index based on fractional vegetation cover and topography data. The fractional cover of green vegetation, non-photosynthetic vegetation, bare soil and rock were derived by applying a multiple endmember spectral mixture analysis approach to the hyperspectral image data. Sediment connectivity was mapped using the index of connectivity, in which the effect of land cover on runoff and sediment fluxes is expressed by a spatially distributed weighting factor. In this study, the cover and management factor (C factor) of the Revised Universal Soil Loss Equation (RUSLE) was used as a weighting factor. Bi-temporal C factor maps were derived by linking the spatially explicit fractional ground cover and vegetation height obtained from the airborne data to the variables of the RUSLE subfactors.

Results and discussion

The resulting connectivity maps show that areas behave very differently with regard to connectivity, depending on the land cover and on the spatial distribution of vegetation abundances and topographic barriers. Most parts of the catchment show higher connectivity values in August as compared to April. The two subcatchments show a slightly different connectivity behaviour that reflects the different land cover proportions and their spatial configuration.

Conclusions

The connectivity estimation can support a better understanding of processes controlling the redistribution of water and sediments from the hillslopes to the channel network at a scale appropriate for land management. It allows hot spot areas of erosion to be identified and the effects of erosion control measures, as well as different land management scenarios, to be studied.  相似文献   

13.

Purpose

The importance of bank erosion was quantified during three periods (October 2006–April 2007, May 2007–April 2008 and May 2008–April 2009) in the 486 km2 catchment area of River Odense, Denmark. A catchment sediment budget was established including other sediment sources such as tile drains and surface runoff, in-channel and overbank sinks and storage and the resulting bed load and suspended sediment load exported from the catchment.

Material and methods

Bank erosion and sedimentation were measured using ca. 3,000 erosion pins established in 180 pin plots, each consisting of three vertical lines of pins. Thirty-six representative reaches, each with a length of 100 m, were selected by a stratified random procedure in GIS. Bed load and suspended sediment export from the catchment were measured using a bed load sampler and from continuous measurements of turbidity at the outlet gauging station.

Results and discussion

The gross sediment input from bank erosion during the three study periods amounted to 21,100–25,200 t in the River Odense catchment, which is considerably higher than the estimated input of sediment from tile drains and surface runoff, which amounted to 220–500 t and 0–100 t, respectively. The measured bed load (20–490 t) was five to 60 times lower than the suspended sediment export from the catchment (1,240–2,620 t) during the three study periods, with the largest difference occurring in the driest year. Sediment sinks and storage were of high importance for the catchment sediment budget as the measured in-channel storage of sediment on stream banks was as high as 16,200–20,100 t, and the overbank sediment sink was estimated at 360–3,100 t.

Conclusions

Bank erosion was the dominant sediment source (90–94 %) in the River Odense catchment during the three study years. In-channel and overbank sediment sinks and storage dominated the sediment budget as 79–94 % of the sediment input from all sources was not exported from the catchment during the three study years. Such a large attenuation of sediment in river channels and on floodplains is extremely important for fluvial habitats and ecology. Moreover, it has strong implications for attempts to document changes in sediment export following implementation of mitigation measures.  相似文献   

14.

Purpose

Identifying sources and fluxes of suspended matter within the catchment is vitally important for the water quality of rivers and for establishing sediment management plans. Constituents of suspended particles are of abiotic and biotic origin. In the Elbe, the biotic fraction of suspended particles is mainly composed of phytoplankton biomass. In this study, total seston and phytoplankton are analyzed for their seasonality, their interdependence and temporal trends over three or five decades, respectively.

Materials and methods

The biotic load was separated from the total suspended matter load, and time series of total suspended substances (seston) (1964 to 2015) and chlorophyll a values (1985 to 2015) were analyzed. Our analyses focused on the seasonal dynamics, long-term trends, and the correlation to hydrological events.

Results and discussion

The mean share of phytoplankton in total seston accounted for 24% in summer months (April–September), with a negative correlation between discharge and total seston, and 11% in winter months (October–March), with a weak positive correlation between discharge and total seston. The long-term trend of seston load was decreasing, while phytoplankton load did not show a significant trend.

Conclusions

Autochthonous biogenic portions should not be neglected in the budget of total suspended matter loads in the Elbe catchment. Our results indicate that land-use and industrial changes subsequent to the German reunification mainly caused the observed trend. Phytoplankton growth superimposes the seasonal dynamics of seston in summer, whereas in the long term, decreasing mineral fraction dominates the significantly decreasing trend.
  相似文献   

15.

Purpose

We employ a geochemical-fingerprinting approach to estimate the source of suspended sediments collected from tributaries entering Falls Lake, a 50-km2 drinking water reservoir on the Neuse River, North Carolina, USA. Many of the major tributaries to the lake are on North Carolina’s 303(d) list for impaired streams, and in 2008, the lake was added to that list because of high values of turbidity, likely sourced from tributary streams.

Materials and methods

Suspended sediments were collected from four streams with a time-integrated sampler during high-flow events. In addition, composite sediment samples representing potential sources were collected from stream banks, forests, pastures, construction sites, dirt and paved roads, and road cuts within tributary basins. Radiocarbon dating and magnetic susceptibility measurements were used to determine the origin of stream bank alluvial deposits. Sediment samples were analyzed for the concentrations of 55 elements and two radionuclides in order to identify tracers capable of distinguishing between potential sediment sources. The relative sediment source contributions were determined by applying a Monte Carlo simulation that parameterized the geochemical tracer data in a mixing model.

Results and discussion

Radiocarbon and magnetic susceptibility measurements confirmed the presence of “legacy” sediment in the Ellerbe and New Light Creek valley bottoms. Mixing model results demonstrate that stream bank erosion is the largest contributor to the suspended sediment load in New Light Creek (62%), Ellerbe Creek (58%), and Little Lick Creek (33%), and is the second largest contributor in Lick Creek (27%) behind construction sites (43%).

Conclusions

We find that stream bank erosion is the largest nonpoint source contributor to the suspended sediment load in three of the four catchments and is therefore a significant source of turbidity in Falls Lake. The presence of legacy sediment appears to coincide with increased contributions from stream bank erosion in Ellerbe and New Light creeks. Active construction sites and timber harvesting were also significant sources of suspended sediment. Water quality mitigation efforts need to consider nonpoint-source contributions from stream bank erosion of valley bottom sediments aggraded after European settlement.  相似文献   

16.

Purpose

Visible and near-infrared (Vis-NIR) reflectance measurements may be an alternative technique to identify suspended sediment sources in streams of headwater catchments. In this study, we examined if Vis-NIR reflectance measurements are capable of estimating sediment source contributions to sediment yield and compared this technique with a more conventional (i.e. geochemical) technique.

Materials and methods

Two headwater catchments in Ethiopia, Unta (2,052 ha) and Desera (1,657 ha), were analysed with the same techniques in order to find similarities and differences in the results obtained. The first technique used Vis-NIR spectral analysis as a fingerprint, using a partial least squares regression model. The second technique was a quantitative composite fingerprinting technique using geochemical analysis of source materials and suspended sediment samples. As a comparison, the partial least squares model was also used on the geochemical data. In August and September 2009, 30 soil samples of three different land uses (landslides, croplands, and grazing lands) and 21 suspended sediment samples at the catchment outlet were collected. Source samples were sieved to <63 μm. Geochemical analyses consisted of total element concentrations, percentage carbon, percentage nitrogen, and atom percentage 15N and δ13C. Reflectance measurements were taken on dried source samples with a spectrometer.

Results and discussion

Neither technique was able to predict the contributions of the three land use types; they could only distinguish between landslide and topsoil material. The agreement between the results of both techniques was significant for the Unta catchment (R 2?=?0.80) but not for the Desera catchment (R 2?=?0.39). The uncertainty of the technique using Vis-NIR reflectance measurements was slightly higher than with the geochemical approach. Both techniques revealed that topsoil erosion played an important role during storm runoff discharges. Using the partial least squares model for the geochemical data revealed that uncertainty can differ greatly when using other statistical techniques.

Conclusions

The quantitative composite fingerprinting technique using spectral signatures from both source and suspended sediment samples was able to quantify the contribution of two source materials (landslides and topsoil). It provided a faster and more cost effective alternative to the conventional geochemical procedure.  相似文献   

17.

Purpose

Understanding hydro-sedimentary dynamics at the catchment scale requires high temporal resolution data on suspended sediments such as their origin, in addition to the common measurements of sediment concentrations and discharges. Some rapid and low-cost fingerprinting methods based on spectroscopy have recently been developed. We investigated how visible spectra could be used to predict the proportion of various source materials in suspended sediment samples, paying particular attention to the potential alteration of spectrocolorimetric signatures between soils and suspended sediments during transport.

Materials and methods

The 22-km2 Galabre catchment, France, is composed of black marls, limestones, molasses, undifferentiated deposits and gypsum. Forty-eight source materials were sampled and 328 suspended sediment samples were collected at the outlet during 23 runoff events. Measurements were taken with a diffuse reflectance spectrophotometer on dried samples. As the erosion processes are particle size selective, five particle size fractions of source material were measured in order to assess the potential alteration of the fingerprint signatures. As the biogeochemical processes occurring in the river could also affect the signatures, source materials were immersed in the river for durations ranging from 1 to 63 days and subsequently measured. Finally, partial least-squares regression models were constructed on 81 artificial laboratory mixtures to predict the proportions of source materials.

Results and discussion

The spectrocolorimetric measurements discriminated the primary source materials but not the Quaternary deposits. As the gypsum was not conservative, only the black marls, molasses and limestones were used in the fingerprinting procedure. The construction of the partial least-squares regression models led to a median absolute error of 1.1%. This error increased to 3.9% when the models were applied to source samples with: (1) different particle sizes; (2) different durations spent in the river; or (3) different origins than those used for their construction. The effect of particle size on the fingerprinting procedure was larger than the effect of biogeochemical reactions or the spatial variability of the spectrocolorimetric signatures. Half of the 23 runoff events analysed exhibited huge variations in the source proportions from one sediment sample to another.

Conclusions

The spectrocolorimetric fingerprinting approach was able to quantify routinely the proportion of primary source materials in all suspended sediment samples collected during runoff events. The high temporal resolution of the predicted proportions revealed that only analysing three or four suspended sediment samples during a runoff event could lead to a misunderstanding of the hydro-sedimentary processes for more than half of the investigated runoff events.  相似文献   

18.

Purpose

Information on the effects of eucalyptus forests on hydrosedimentological processes is scarce, particularly at the catchment scale. Monitoring and mathematical modeling are efficient scientific tools used to address the lack of information for natural resource management and the representation and prediction of those processes. This study evaluates the effects of eucalyptus cultivation on hydrosedimentological processes in watersheds and to use the Limburg soil erosion model (LISEM) to represent and predict hydrological processes.

Material and methods

The study was conducted in two forested watersheds: the main watershed (94.46 ha) and a nested sub-watershed (38.86 ha), both cultivated with eucalyptus and residual riparian native forest, located in southern Brazil. Hydrosedimentalogical monitoring was conducted from 16th February 2011 to 31st December 2012, and LISEM model calibrations were performed on the bases of six storms events.

Results and discussion

The sediment yield for 2011 was 41.6 Mg km?2 and 38.5 Mg km?2 for the watershed and sub-watershed, respectively. An extreme event in 2012 provided greater sediment yield for the sub-watershed (99.8 Mg km?2) than that for the watershed (51.7 Mg km?2). Rainfall events with a greater maximum intensity generated rapid discharge and suspended sediment concentration responses in the sub-watershed due to the smaller drainage area and steeper landscape. In the main watershed, the accumulation of flood waves occurred for most events, with less steep hydrographs, and a later occurrence of the discharge peak after that of the sub-watershed. The LISEM adequately reproduced the peak discharge and runoff for the calibrated events; however, the peak time and the shape of the hydrograph were not adequately represented.

Conclusions

The hydrosedimentological patterns of the watershed and sub-watershed, both cultivated with eucalyptus, was characterized by sedimentographs preceding hydrographs during rainfall–runoff events where scale effects occur, with maximum discharge and specific sediment yield greater in the watershed than that in the sub-watershed. Empirical models based on hydrologic variables may be used for estimating the suspended sediment concentration and sediment yield. Therefore, LISEM may be used for the prediction of hydrological variables in these forested watersheds.  相似文献   

19.

Purpose

Sediment resuspension is among the most widely cited concerns that lead to restricted dredging timeframes. Protection of fish species is a primary concern regarding the effects of dredging operations, yet experimental data establishing thresholds for uncontaminated suspended sediment effects are largely lacking. We conducted research to determine suspended sediment effects on walleye (Sander vitreus) egg hatching success and gross morphology following exposures mimicking sediment resuspension during dredging operations.

Materials and methods

Newly spawned eggs of northern and southern walleye strains were continuously exposed for 3?days to suspended sediment concentrations of 0, 100, 250, and 500?mg?l?1, using sediment from Maumee Bay, OH, USA. These concentrations spanned the range measured in the vicinity of dredging operations in the Western Basin of Lake Erie.

Results and discussion

Northern and southern strain egg hatching rates were 53% and 39% of exposed eggs and 82% and 74% of viable eggs exposed, which are within reported ranges for this species. Data indicated no statistically significant effects of suspended sediment on hatching success. Gross morphological observations of exposed fry yielded no evidence of detrimental effects.

Conclusions

Experimental results indicated that walleye eggs are relatively tolerant to exposures likely to be encountered at dredging projects as performed in the Great Lakes region. Our results suggest that, given detailed knowledge of dredging project site-specific conditions and the mode of dredging to be used, better informed decisions can be made regarding adequate protective management practices. In many cases, flexibility could be given to the dredging contractor while maintaining a very low probability of risk to walleye spawning habitat.  相似文献   

20.

Purpose

The effects of check dams used in restoration projects have been discussed in a number of papers in recent years. This paper studies the effectiveness of retaining sediments from check dams constructed in the badlands restoration site of Tórtoles, located in the Corneja River basin (Spain), using a new topographical method.

Materials and methods

In order to assess the sediment-retaining capacity of the check dams, we measured the volume of sediment trapped by 15 of the 123 check dams built in 1965. We carried out a detailed topographical survey using a Total Station, with an accuracy of ±1 cm, to measure cross sections of the sediment trapped by each check dam. The results were then compared with those of two simplified methods which consider the volume of retained sediment as a simple geometric figure.

Results and discussion

According to our results, 258 m3 of sediment has been retained by the check dams. These results show a significant discrepancy between the topographical method and the two other methods, whose values are consistently lower (14 to 20 %). According to our survey, the mean value for the volume of sediment retained by each check dam is 17.23 m3, versus 13.86 and 14.74 m3 when applying the other methods. Although there is a strong correlation between the volume of retained sediment computed by the topographical method and the other two methods (r 2 from 0.96 to 0.94), the differences between them increase with the increasing size of the check dams. Therefore, total differences are expected to be more significant with larger check dams. The erosion rates, calculated on the basis of the retained sediment in the Tórtoles check dams, are 16–21 % lower when using the simpler methods. The bed slopes of the streams were reduced 12.44 % because of the presence of the check dams.

Conclusions

After having completed a more detailed topographical survey of the sediment trapped in the check dams, our results are more likely to estimate erosion rates and sediment yield correctly, thus leading to a better understanding of the effects of check dams on badlands restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号