首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
控释肥施用对小麦生长期N2O排放的影响   总被引:16,自引:0,他引:16  
纪洋  刘刚  马静  李小平  徐华  蔡祖聪 《土壤学报》2012,49(3):526-534
通过田间试验,采用静态箱法研究不同施氮水平下控释肥和尿素(N 0、100、200、270 kg hm-2)对麦季N2O排放的影响。结果表明,与对照相比,整个小麦生长季N2O排放量均随尿素和控释肥施用量的增加呈指数增加(32%~164%,p<0.05),但控释肥处理增加程度则较尿素处理缓和;施用控释肥可以有效抑制小麦生长季N2O排放(p<0.05),控释肥对N2O的减排量随着施氮量的增加而增加。小麦产量随尿素施用量的增加呈抛物线增加(24%~43%,p<0.05),随控释肥施用量的增加亦呈抛物线增加(30%~45%,p<0.05);与施用相同水平尿素相比,施用控释肥的小麦产量略有增加,但无显著差异(p>0.05)。单位产量N2O排放量随尿素施用量的增加而呈指数增加(31%~114%,p<0.05),随控释肥施用量的增加而呈抛物线增加(2%~50%,p<0.05);施用控释肥可以有效抑制小麦生长季单位产量N2O排放(p<0.05),控释肥对单位产量N2O的减排量随着施氮量的增加而增加。各处理N2O排放量与土壤水分存在显著正相关(p<0.05),与土壤NH4+-N、NO3--N浓度和土温不呈明显线性关系(p>0.05)。  相似文献   

2.
水稻控制灌溉对稻麦轮作农田N_2O排放的调控效应   总被引:2,自引:1,他引:1  
为了揭示水稻控制灌溉对稻麦轮作农田N2O排放的调控效应,该文对稻麦轮作农田N2O排放进行原位观测,分析稻麦轮作农田N2O排放对水稻控制灌溉水分调控的动态响应。结果表明,水稻灌溉模式对后茬冬小麦田N2O排放产生了显著的后效性影响,控制灌溉稻季农田N2O排放总量较常规灌溉稻季农田平均增加了136.9%(P0.05),而稻季采用控制灌溉的麦季农田N2O排放总量较稻季采用常规灌溉的麦季农田平均减少47.1%(P0.05);稻季采用控制灌溉的稻麦轮作农田全年N2O排放总量平均为761.50 mg/m2,较稻季采用常规灌溉的轮作农田平均减少了1.0%,差异很小(P0.05)。稻季采用控制灌溉的稻麦轮作农田N2O-N损失率为1.01%,稻季采用常规灌溉的轮作农田N2O-N损失率为0.98%。麦季N2O排放通量的峰值一般出现在施肥后伴随降雨时,降雨后7~10 d是麦季N2O剧烈排放的关键时期。水稻控制灌溉较常规灌溉没有增加稻麦轮作农田的N2O排放。研究结果为准确估算中国农田N2O排放量及制定N2O减排措施提供参考。  相似文献   

3.
不同氮水平下黄瓜-番茄日光温室栽培土壤N_2O排放特征   总被引:7,自引:3,他引:4  
为探讨日光温室黄瓜—番茄种植体系内N2O排放动态变化及其对不同氮水平的响应规律,采用密闭静态箱法,研究了常规氮量(黄瓜季1 200 kg/hm2,番茄季900 kg/hm2)、比常规氮量减25%(黄瓜季900 kg/hm2,番茄季675 kg/hm2)、减50%(黄瓜季600 kg/hm2,番茄季450 kg/hm2)以及不施氮对日光温室土壤N2O排放的影响。结果表明,温度是影响日光温室土壤N2O排放强度的重要因素,4-10月(平均气温为27.4℃)的N2O排放通量最高达818.4μg/(m2·h);而2-3月(平均气温15.1℃)以及11-12月(平均气温14.7℃)期间的N2O排放通量最高仅为464.5μg/(m2·h),比4-10月的N2O排放峰值降低了43.2%。N2O排放峰值在氮肥追施后5 d内出现,N2O排放量集中在氮肥施用后7 d内,可占整个监测期(271 d)排放量的64.7%~67.8%。施氮因增加了土壤硝态氮含量而引起N2O排放爆发式增长,0~10 cm土壤硝态氮含量与N2O排放量呈指数函数关系(P0.01)。日光温室黄瓜—番茄种植体系内的N2O排放量为0.99~9.92 kg/hm2,其中75.6%~90.0%由施氮造成。与常规氮用量相比,氮减量25%和50%处理的N2O排放量分别降低了40.4%和59.3%,总产量却增加4.9%和7.4%。综上所述,合理减少氮用量不仅可显著降低日光温室土壤N2O排放,而且不会引起产量的降低。该研究为日光温室蔬菜生产构建科学合理的施氮技术及估算中国设施农田温室气体排放量提供参考。  相似文献   

4.
硝化抑制剂影响小麦产量、N2O与NH3排放的研究   总被引:5,自引:1,他引:4       下载免费PDF全文
孙海军  闵炬  施卫明  祝介贵 《土壤》2017,49(5):876-881
通过田间小区试验研究不同施氮水平下,施用硝化抑制剂CP对小麦产量、氮素利用率、氧化亚氮(N_2O)排放与氨(NH_3)挥发的综合影响规律。结果表明:在施氮水平为140 kg/hm2与180 kg/hm2时,施用CP促使小麦产量分别显著增加17.8%和15.4%,在同一施氮水平下,施用CP促进小麦氮素利用率提高11.3%~25.2%。施用硝化抑制剂CP可以降低麦季(特别是基肥与穗肥施用时期)土壤N_2O的排放速率,并显著减少39.3%~53.7%的累积N_2O排放量。但是在两个施氮水平下,施用CP导致麦季NH_3挥发量增加1.46~1.75倍,而且此效应主要发生于基肥与穗肥观测期。本研究说明:在麦季施用硝化抑制剂CP可以提高氮素利用率,从而提高小麦产量,并且能减少N_2O排放,但同时会导致一定程度的NH_3挥发增加,需加以控制。  相似文献   

5.
稻麦轮作稻田中N_2O排放规律的研究   总被引:1,自引:0,他引:1  
通过连续3年在中国浙江杭州的大型稻田原状土柱渗漏计中开展稻麦轮作稻田中N2O排放规律的研究,探讨了不同作物生长季节、不同年份、不同氮肥用量和氮肥品种对N2O排放的影响。结果表明:稻季的N2O排放主要发生在施肥之后,呈单高峰特征;麦季N2O排放则发生在施肥和较大降水之后,呈多高峰特征,麦季排放与降水有密切相关;不施氮情况下,稻田中N2O排放通量和累计排放量都是稻季高于麦季,稻季分别为麦季的1.97倍和1.34倍;施氮情况下,稻季与麦季排放通量和累计排放量则差别不大,排放通量是稻季略高于麦季(+17%),而累计排放量则是麦季略高于稻季(+21.96%).;施加氮肥可以促进N2O的排放;尿素的排放因子大于硫铵;在麦季施N100~1000 kghm-2的条件下,尿素的排放因子值为0.75~1.31,硫铵为0.15~0.16;在稻季施N150~300 kg hm-2的条件下,硫铵的排放因子值为0.19~0.20;在中国浙江省杭州稻麦轮作稻田中,N2O本底排放量为0.12~0.25 kgN2O-Nhm-2 yr-1,施肥引起的N2O排放占总排放的33%~59%。渗漏水中的N2O/NO3比值随种植季数而增高,可用乘幂关系式表达。  相似文献   

6.
不同时期施用生物炭对稻田N_2O和CH_4排放的影响   总被引:7,自引:0,他引:7  
通过分别在水稻季(R)和小麦季(W)设置对照(RB0-N0、WB0-N0)、单施氮肥(RB0-N1、WB0-N1)、20 t hm-2生物炭与氮配施(RB1-N1、WB1-N1)、40 t hm-2生物炭与氮配施(RB2-N1、WB2-N1)等8个处理,研究稻麦轮作周年系统N2O和CH4排放规律及其引起的综合温室效应(Global warming potential,GWP)和温室气体强度(Greenhouse gas intensity,GHGI)特征。结果表明:稻季配施20 t hm-2生物炭对N2O和CH4的排放、作物产量及GWP和GHGI均都无明显影响;稻季配施40 t hm-2生物炭能显著降低8.6%的CH4的排放和9.3%的GWP,显著增加作物产量17.2%。麦季配施20 t hm-2生物炭虽然对温室气体及GWP影响不明显,但显著增加21.6%的作物产量,从而显著降低21.7%的GHGI;麦季配施40 t hm-2生物炭能显著降低20.9%和11.3%的N2O和CH4排放,显著降低15.7%和23.5%的GWP和GHGI。因此麦季配施生物炭对减少N2O和CH4的排放、增加稻麦轮作产量及降低GWP和GHGI的效果较稻季配施生物炭效果更好。  相似文献   

7.
孙海军  闵炬  施卫明  李卫正 《土壤》2015,47(3):503-508
稻麦轮作体系进行养殖肥水灌溉可能导致氮(N)素的氨挥发(NH3)和氧化亚氮(N2O)排放增加。本文通过土柱模拟试验,定量评价了稻麦轮作体系推荐施N量(稻季225 kg/hm2,麦季150 kg/hm2)下,不同N浓度养殖肥水灌溉对水稻、小麦籽粒产量以及NH3挥发和N2O排放的影响。试验处理为:1无N检出的清水灌溉(CK),2低N浓度肥水灌溉(SI-L),3中N浓度肥水灌溉(SI-M)和4高N浓度肥水灌溉(SI-H)。稻季结果表明,NH3挥发与N2O排放量随灌溉肥水N浓度的提高而增加,其决定系数(R2)可达0.895与0.998。与清水对照相比,不同N浓度的肥水灌溉使NH3挥发增加19.7%~40.8%;SI-H处理N2O排放显著增加68.8%;不同N浓度肥水灌溉没有显著增加水稻产量。麦季结果亦表明,NH3挥发与N2O排放量随灌溉肥水N浓度的提高而增加,其决定系数(R2)可达0.939与0.980。与清水对照相比,SI-H处理使NH3挥发显著增加20.2%;SI-M与SI-H处理N2O排放分别显著增加64.9%和120.3%;SI-H处理小麦产量显著提高46.7%。利用稻田生态系统消纳养殖肥水中N时,须考虑肥水灌溉导致的NH3挥发和N2O排放所造成的环境影响,合理地进行水肥调控。  相似文献   

8.
猪粪沼液施用对稻麦轮作系统土壤氧化亚氮排放的影响   总被引:1,自引:0,他引:1  
以典型的猪粪尿发酵沼液为对象,探讨了沼液施入量和管理方式对以中国东部稻麦轮作农田系统土壤N2O排放规律和排放量的影响。研究结果表明,与化学氮肥相比,沼液施用未影响稻麦轮作系统土壤N2O排放的季节变化规律,但影响其排放量的大小。稻季100%施用沼液的处理(N100%DPS)其累积排放量为0.71kg·hm-(22008年)和1.38kg·hm-(22009年),显著高于100%施用化肥的处理(N100%Ure)a,即0.68kg·hm-2和1.06kg·hm-2。麦季N100%DPS处理N2O的累积排放量分别为6.56kg·hm-(22008年)和5.05kg·hm-2(2009年),与N100%Urea处理(2008年:5.89kg·hm-2;2009年:3.93kg·hm-2)无显著差异,但均显著高于稻季各处理。随着沼液替代化学肥料用量的降低,稻田N2O排放量呈降低趋势,而沼液一次性施入和分次施入对稻田N2O排放的季节动态和累积排放量均无显著影响;但沼液不同的管理方式对麦季累积N2O排放量更为复杂。稻、麦两季N100%DPS处理中N2O排放系数(f)均最大,分别达到0.3%和1.6%,但沼液分次施入和一次性施入的处理间f值均无显著差异。  相似文献   

9.
为准确编制我国稻田温室气体排放清单及制定合理减排措施提供基础数据,选择太湖地区典型水稻种植区江苏省苏州市,研究设计了休闲水稻(对照,CK)、紫云英水稻(T1)、黑麦草水稻(T2)、小麦水稻(T3)和油菜水稻(T4)5种水旱轮作方式,采用静态箱气相色谱法,开展了不同水旱轮作方式下水稻生长季田间甲烷(CH4)和氧化亚氮(N2O)排放监测试验。试验结果表明:不同水旱轮作方式下水稻生长季CH4排放通量呈先升高后降低的变化趋势,CH4排放峰值出现在水稻生育前期,移栽至有效分蘖临界叶龄期CH4累积排放量占全生育期排放总量的比例为65%~81%,而N2O仅在水稻烤田期间有明显排放。水旱轮作方式对稻季CH4和N2O排放有极显著(P 0.01)影响,CH4季节总排放量表现为T1(283.2 kg.hm 2)CK(139.5 kg.hm 2)T3(123.4kg.hm 2)T4(114.7 kg.hm 2)T2(100.8 kg.hm 2),N2O季节总排放量顺序为T1 T4 T3 T2 CK,依次为1.06kg.hm 2、0.87 kg.hm 2、0.81 kg.hm 2、0.72 kg.hm 2和0.53 kg.hm 2。T1处理稻季排放CH4和N2O产生的增温潜势最高[7 396 kg(CO2).hm 2],显著(P 0.05)高于其他处理,比CK[3 646 kg(CO2).hm 2]增加103%,T2[2 735kg(CO2).hm 2]较CK减少25%(P 0.05)。紫云英水稻轮作方式增加了太湖地区水稻生长季的温室效应。  相似文献   

10.
利用江苏常熟田间随机区组试验,以密闭箱法采集气样,气相色谱分析N2O浓度,对稻麦轮作制下不同施氮水平的土壤N2O排放进行了观测,探讨了不同施氮水平对稻麦轮作农田氧化亚氮排放的影响。结果表明,土壤N2O排放量受施氮量的影响,稻季和麦季N2O排放量都随旌氮量的增加而增加;稻季N2O排放量最大峰值出现在烤田复水期间,其排放量大小主要受基肥和分蘖肥施用量的影响,并随施氮量的增加而增大;麦季最大峰值出现在气温回暖的第二次追肥后,排放量的最大峰值也随施氮量的增加而增大;稻麦轮作土壤N2O排放以麦季的排放为主,麦季N2O累积排放量在轮作周期中占三分之二。  相似文献   

11.
施肥方式对冬小麦季紫色土N2O排放特征的影响   总被引:8,自引:2,他引:6       下载免费PDF全文
利用紫色土养分循环长期定位施肥试验平台,通过静态箱-气相色谱法,于2012年11月至2013年5月,研究了单施氮肥(N)、猪厩肥(OM)、常规氮磷钾肥(NPK)、猪厩肥配施氮磷钾肥(OMNPK)、秸秆还田配施氮磷钾肥(CRNPK)及对照不施肥(NF)6种施肥方式下,紫色土冬小麦季土壤N2O的排放特征。结果表明,在相同施氮水平[130 kg(N)·hm-2]下,施肥方式对N2O排放量有显著影响(P0.05)。N、OM、NPK、OMNPK和CRNPK处理下,土壤N2O排放量[kg(N)·hm-2]分别为0.38、0.36、0.29、0.33和0.19,N2O排放系数分别为0.25%、0.23%、0.18%、0.21%和0.10%。NF的土壤N2O排放量为0.06 kg(N)·hm-2。土壤无机氮含量(NO3--N和NH4+-N)是N2O排放的主要影响因子,降雨能有效激发N2O排放。基于小麦产量评价不同施肥方式下的N2O排放,结果表明,N、OM、NPK、OMNPK和CRNPK单位小麦产量N2O的GWP值[yield-scaled GWP,kg(CO2 eq)·t-1]分别为132.57、45.70、49.07、48.92和26.41。CRNPK的小麦产量与6种施肥方式中获得最大产量的OM间没有显著差异,但显著高于其他处理。而且,CRNPK的yield-scaled GWP比紫色土地区冬小麦种植中常规施肥方式(NPK)显著减少46%,并显著低于其他4种施肥方式。可见,秸秆还田配施氮磷钾肥在保证小麦产量的同时,能有效减少因施肥引发的N2O排放,可作为紫色土地区推荐的最佳施肥措施。  相似文献   

12.
为了解陕西黄土高原南部旱地冬小麦季N2O排放规律,探索旱地N2O减排方法,采用密闭式静态箱法,以不同施氮处理[CK:对照,不施氮;CON:当地农民习惯施氮,施氮量220 kg·hm-2;OPT:优化施氮加秸秆还田,施氮量150 kg·hm-2;OPT+DCD:优化施氮加秸秆还田,同时施用施氮量5%的硝化抑制剂DCD;OPT(SR):优化施氮(所用肥料为包膜型缓控释肥)加秸秆还田]为基础,研究黄土高原南部旱地冬小麦农田N2O季节排放特征和减排措施。结果表明:黄土高原南部旱地冬小麦季N2O排放具有首月持续、大量排放,末月雨后瞬间排放,中期低排放的特点。各处理中,OPT+DCD和OPT(SR)在播种—返青期能显著减少N2O排放水平,而返青—成熟期,各优化处理差异不显著。从整个小麦季N2O排放总量来看,各优化处理能够减少N2O排放量,提高作物产量,降低单位产量N2O排放量。具体表现为:1与CON处理的N2O排放量相比,OPT、OPT+DCD和OPT(SR)处理分别减排29.2%(P0.01)、38.7%(P0.01)和39.3%(P0.01),但3个优化处理间差异不显著;2与CON处理的产量相比,OPT、OPT+DCD和OPT(SR)处理分别增产3.8%(P0.05)、15.2%(P0.05)和9.5%(P0.05);3与CON处理的单位产量N2O排放量相比,OPT处理单位产量N2O排放量减少31.7%(P0.05);而相对于OPT处理,OPT+DCD处理和OPT(SR)处理分别减少了单位产量排放量的22.1%(P0.05)和18.9%(P0.05)。本研究表明,减少施氮量至150 kg·hm-2,并施用秸秆是减少N2O排放的重要手段,而施用缓控释肥或一定量的DCD可提升作物产量。  相似文献   

13.
施肥方式对冬小麦—夏玉米轮作土壤N_2O排放的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
刘韵  柳文丽  朱波 《土壤学报》2016,53(3):735-745
氧化亚氮(N_2O)是一种重要的农田温室气体,本研究利用紫色土长期施肥试验平台,采用静态箱/气相色谱法对紫色土旱作农田冬小麦—夏玉米轮作系统的N_2O排放进行了定位观测(2012年11月至2013年9月),研究单施氮肥(N)、常规氮磷钾肥(NPK)、猪厩肥(OM)、猪厩肥配施氮磷钾肥(OMNPK)和秸秆还田配施氮磷钾肥(ICRNPK)等施肥方式对紫色土N_2O排放特征的影响;不施肥(NF)作为对照计算排放系数,以探寻紫色土地区可操作性强、环境友好的施肥方式。结果表明,所有施肥方式的N_2O排放均呈现双峰排放,峰值出现在施肥初期;玉米季N_2O排放峰值显著高于小麦季(p0.05)。在相同的施氮水平(小麦季130 kg hm~(~(-2)),玉米季150 kg hm~(~(-2)))下,施肥方式对N_2O排放和作物产量均有显著影响(p0.05)。N、OM、NPK、OMNPK和ICRNPK处理的土壤N_2O周年累积排放量分别为1.93、1.96、1.12、1.50和0.79 kg hm~(~(-2)),排放系数分别为0.62%、0.63%、0.33%、0.47%和0.21%,全年作物产量分别为4.35、11.95、8.39、9.77、10.93 t hm~(~(-2))。施用猪厩肥显著增加N_2O排放量,而秸秆还田在保证作物产量的同时显著降低N_2O排放量,可作为紫色土地区环境友好的施肥方式。土壤无机氮(NO_3~--N和NH_4~+-N)是N_2O排放的主要限制因子。因此,在施氮水平相同时,施肥方式对紫色土活性氮含量的影响导致N_2O排放差异显著,是土壤N_2O排放差异的根本原因。土壤孔隙充水率也是影响N_2O排放的重要环境因子,并且其对N_2O排放的影响存在阈值效应。  相似文献   

14.
Agricultural fields, including rice (Oryza sativa L.) paddy fields, constitute one of the major sources of atmospheric methane (CH4) and nitrous oxide (N2O). Organic matter application, such as straw and organic fertilizer, enhances CH4 emission from paddy fields. In addition, rice straw management after harvest regulates CH4 emissions in the growing season. The interaction of tillage times and organic fertilizer application on CH4 and N2O emissions is largely unknown. Therefore, we studied the effects of fallow-season tillage times and fertilizer types on CH4 and N2O emissions in paddy fields in Ehime, southwestern Japan. From November 2011 to October 2013, four treatments, two (autumn and spring) or one (spring) in the first year, or two (autumn and spring) or three (autumn, winter, and spring) in the second year times of tillage with chemical or organic fertilizer application, were established. Gas fluxes were measured by the closed-chamber method. Increasing the number of tillage times from one to two decreased succeeding CH4 emission and the emission factor for CH4 (EFCH4) in the rice-growing season, suggesting that the substrate for CH4 production was reduced by autumn and spring tillage in the fallow season. Higher EFCH4 [1.8–2.0 kg carbon (C) ha?1 d?1] was observed when more straw was applied (6.9–7.2 Mg ha?1) in the second year. Organic fertilizer application induced higher CH4 emission just after the application as basal and supplemental fertilizers, especially at a lower straw application rate. This indicated that EFCH4 in the organically managed fields should be determined individually. Organic fertilizer application with two tillage times induced N2O efflux during the rice-growing season in the second year, but N2O emissions were not affected by winter tillage. Although paddy fields can act as an N2O sink because of reduced soil conditions when straw application was high, application of organic C and nitrogen as fertilizer can enhance N2O production by the denitrification process during the growing season, especially in the ripening stage when soil anaerobic conditions became moderate. These results suggest that negative emission factors for N2O (EFN2O) can be applied, and EFN2O of organic fertilizer should be considered during the estimation of N2O emission in the paddy field.  相似文献   

15.
An accurate estimation of nitrous oxide (N2O) emission from 110 million ha of upland in China is essential for the adoption of effective mitigation strategies. In this study, the effects of different tillage practices combined with nitrogen (N) fertilizer applications on N2O emission in soils were considered for a winter wheat (Triticum aestivum L.) – summer maize (Zea mays L.) double cropping system. Treatments included conventional tillage plus urea in split application (CTF1), conventional tillage with urea in a single application (CTF2), no‐tillage with straw retained plus reduced urea in a split application (NTSF1) and no‐tillage with manure plus reduced urea in a split application (NTMF1). The amounts of N input in each treatment were 285 and 225 kg N/ha for wheat and maize, respectively. Both NTSF1 and NTMF1 were found to reduce chemical N fertilizer rates by 33.3% (wheat) and 20% (maize), respectively, compared to CTF1 and CTF2. N2O emissions varied between 3.2 (NTSF1) and 9.9 (CTF2) kg N2O‐N/ha during the wheat season and between 7.6 (NTFS1) and 14.0 (NTMF1) kg N2O‐N/ha during the maize season. The yield‐based emission factors ranged from 21.9 (NTSF1) to 60.9 (CTF2) g N2O‐N/kg N for wheat and 92.5 (NTSF1) to 157.4 (NTMF1) g N2O‐N/kg N for maize. No significant effect of the treatments on crop yield was found. In addition to reducing production costs involved in land preparation, NTSF1 was shown to decrease chemical fertilizer input and mitigate N2O emissions while sustaining crop yield.  相似文献   

16.
施肥对夏玉米季紫色土N2O排放及反硝化作用的影响   总被引:9,自引:0,他引:9  
采用原状土柱-乙炔抑制培养法研究了施肥对紫色土玉米生长季土壤N2O排放通量和反硝化作用的影响.结果表明:玉米季施肥显著增加土壤N2O排放和反硝化损失,同时,各施肥处理间N2O排放与反硝化损失量差异显著.猪厩肥、猪厩肥配施氮磷钾肥、氮肥、氮磷钾肥和秸秆配施氮磷钾肥等处理的土壤N,O排放量分别为3.01、2.86、2.51、2.19和1.88 kg hm-2,分别占当季氮肥施用量的1.63%、1.53%、1.30%、1.09%和0.88%,反硝化损失量分别为6.74、6.11、5.23、4.69和4.12 kg hm-2,分别占当季氮肥施用量的3.97%、3.55%、2.97%、2.61%和2.23%,不施肥土壤的N2O排放量和反硝化损失量仅为0.56和0.78 kg hm-2.施肥是紫色土玉米生长前期(2周内)土壤N2O排放和反硝化速率出现高峰的主要驱动因子,土壤铵态氮和硝态氮含量是影响土壤N2O排放、土壤硝化和反硝化作用的限制因子,土壤含水量是重要影响因子,降雨是主要促发因素.土壤N2O排放量与反硝化损失量的比值介于0.45 ~0.72之间,土壤反硝化损失量极显著高于土壤N2O排放量,说明土壤反硝化作用是紫色土玉米生长季氮肥损失的重要途径.  相似文献   

17.
施肥方式对紫色土农田生态系统N2O和NO排放的影响   总被引:1,自引:1,他引:0  
依托紫色土施肥方式与养分循环长期试验平台(2002年—),采用静态箱-气相色谱法开展紫色土冬小麦-夏玉米轮作周期(2013年10月至2014年10月)农田生态系统N_2O和NO排放的野外原位观测试验。长期施肥方式包括单施氮肥(N)、传统猪厩肥(OM)、常规氮磷钾肥(NPK)、猪厩肥配施氮磷钾肥(OMNPK)和秸秆还田配施氮磷钾肥(RSDNPK)等5种,氮肥用量相同[小麦季130 kg(N)×hm~(-2),玉米季150 kg(N)×hm~(-2)],不施肥对照(CK)用于计算排放系数,对比不同施肥方式对紫色土典型农田生态系统土壤N_2O和NO排放的影响,以期探寻紫色土农田生态系统N_2O和NO协同减排的施肥方式。结果表明,所有施肥方式下紫色土N_2O和NO排放速率波动幅度大,且均在施肥初期出现峰值;强降雨激发N_2O排放,但对NO排放无明显影响。在整个小麦-玉米轮作周期,N、OM、NPK、OMNPK和RSDNPK处理的N_2O年累积排放量分别为1.40 kg(N)×hm~(-2)、4.60 kg(N)×hm~(-2)、0.95 kg(N)×hm~(-2)、2.16kg(N)×hm~(-2)和1.41 kg(N)×hm~(-2),排放系数分别为0.41%、1.56%、0.25%、0.69%、0.42%;NO累积排放量分别为0.57 kg(N)×hm~(-2)、0.40 kg(N)×hm~(-2)、0.39 kg(N)×hm~(-2)、0.46 kg(N)×hm~(-2)和0.17 kg(N)×hm~(-2),排放系数分别为0.21%、0.15%、0.15%、0.17%、0.07%。施肥方式对紫色土N_2O和NO累积排放量具有显著影响(P0.05),与NPK处理比较,OM和OMNPK处理的N_2O排放分别增加384%和127%,同时NO排放分别增加3%和18%;RSDNPK处理的NO排放减少56%。表明长期施用猪厩肥显著增加N_2O和NO排放,而秸秆还田有效减少NO排放。研究表明,土壤温度和水分条件均显著影响小麦季N_2O和NO排放(P0.01),对玉米季N_2O和NO排放没有显著影响(P0.05),土壤无机氮含量则是在小麦-玉米轮作期N_2O和NO排放的主要限制因子(P0.01)。全量秸秆还田与化肥配合施用是紫色土农田生态系统N_2O和NO协同减排的优化施肥方式。  相似文献   

18.
探讨有机物料还田对冬小麦田温室气体排放特性的影响,对提高经济效应和环境效应有积极意义。本研究应用静态箱-气相色谱法对秸秆还田(J)、秸秆还田+牛粪(JF)和秸秆还田+菌渣(JZ)3种有机物料还田下分别施氮肥243 kg (N)·hm-2(减氮10%,N1)、216 kg (N)·hm-2(减氮20%,N2)对冬小麦农田N2O、CO2和CH4的排放通量进行监测,探讨了不同施肥措施对麦田温室气体累积排放量、增温潜势的影响。试验期间同步记录每项农事活动机械燃油量、施肥量和灌溉量,测定产量,地上部生物量,估算农田碳截留。结果表明,冬小麦农田土壤N2O和CO2是排放源,是CH4的吸收汇,氮肥施入、灌溉以及强降水促进了土壤N2O和CO2的生成,却弱化了CH4作为大气吸收汇的特征。牛粪+秸秆(JF)处理N2O和CO2排放总量最高,分别为3.5 kg (N2O-N)·hm-2和19 689.67 kg (CO2-C)·hm-2,但CH4的吸收值最大,为5.33 kg (CH4-C)·hm-2,均显著高于菌渣+秸秆(JZ)和秸秆(J)处理(P<0.05);各处理N2O和CO2的总量随施氮量的增加呈升高趋势,CH4的总量随施氮量的增加而呈降低趋势。JFN2、JN2和JZN2处理农田综合增温潜势(GWP)均为负值,表明有机物料还田且减氮20%条件下农田生态系统为大气的碳汇,麦季净截留碳1 038~2 024 kg·hm-2,其他处理GWP值均为正。JZN2处理小麦产量为8 061 kg·hm-2,显著高于JFN2处理(P<0.05)。综上所述,JZN2处理不仅能够保证小麦产量,且对环境效应最有利,为本区域冬小麦较优的施肥管理模式。  相似文献   

19.
应用静态明箱-气相色谱法对4 个施氮肥水平N0 [0 kg(N)·hm-2]、N200 [200 kg(N)·hm-2]、N400 [400kg(N)·hm-2]、N600 [600 kg(N)·hm-2]的夏玉米-冬小麦季轮作体系2008~2010 年的土壤温室气体(CH4、CO2 和N2O)排放通量进行研究, 同时观测5 cm 土层土壤温度并记录降水量。结果表明: 太行山前平原冬小麦-夏玉米轮作农田生态系统为CH4 吸收汇, CO2 和N2O 排放源。随着氮肥施入量的增加土壤对CH4 的吸收速率降低, 而CO2 和N2O 的排放速率增加。冬小麦季施氮处理土壤对CH4 的吸收速率显著低于无氮肥的N0 处理, 而N600处理土壤CO2 和N2O 排放速率显著高于N0 处理(P<0.05)。施肥和灌溉会直接导致土壤CO2 和N2O 的排放通量增加, 同时土壤对CH4 的吸收峰值减小。土壤温度升高和降水量增加以及干湿交替加剧均会造成N2O 和CO2排放速率增加。同时在持续干燥和低温条件的冬季不施氮处理观测到土壤对N2O 的吸收现象。N0、N200、N400 和N600 处理土壤CH4 年排放总量(kg·hm-2·a-1)分别为-1.42、-0.75、-0.82、-0.92(2008~2009 年)和-2.60、-1.47、-1.35、-1.76(2009~2010 年), N0、N200、N400 和N600 处理土壤CO2 年排放总量(kg·hm-2·a-1)分别为15 597.6、19 345.6、21 455.9、29 012.5(2008~2009 年)和10 317.7、11 474.0、13 983.5、20 639.3(2009~2010年), N0、N200、N400 和N600 处理土壤N2O 年排放总量(kg·hm-2·a-1)分别为1.05、2.16、5.27、6.98(2008~2009年)和1.49、2.31、4.42、5.81(2009~2010 年)。  相似文献   

20.
优化施氮下稻-麦轮作体系土壤N2O排放研究   总被引:6,自引:1,他引:5  
采用了静态箱法研究优化施氮下湖北稻-麦轮作体系农田N2O排放特征。结果表明,农田N2O排放量随施氮量增加而增加。N2O排放通量峰值大约发生在施氮后的第3~7 d。小麦季土壤N2O排放量范围为N2O 2.43~4.84 kg/hm2,肥料氮通过N2O排放的损失率为0.54%~0.74%。水稻季土壤N2O排放量为N2O 0.89~2.45 kg/hm2,肥料氮通过N2O排放的损失率为0.39%~0.47%。小麦季和水稻季施氮后0~15 d N2O排放量占当季总排放量的百分比分别为62.79%~66.72%和87.97%~93.14%。与习惯施氮相比,基于作物阶段氮素吸收增加追肥比例和施氮次数的优化施氮能有效减少土壤N2O排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号