首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Concentrated flow can induce rill and ephemeral gully erosion in contour ridging systems. To better understand the morphological features of rills, deposition characteristics in contour ridging systems and their influencing factors, rainfall simulation experiments were conducted considering four factors: field slope, row grade, ridge height and seepage discharge. The results showed that a simplified power equation that considered the maximum rill depth and length predicts the erosion volume better than an equation that only accounts for rill length, with prediction accuracies of R2 = 0.96 and R2 = 0.61, respectively. The ridge height could promote seepage and extend the maximum rill width and depth. The relationships between seepage and rill width, and seepage and soil loss could be fitted with quadratic equations. Seepage exerted a positive effect when the rill width and total soil loss were <14.3 cm and 0.7 kg, respectively, and presented a negative effect when the rill width and total soil loss were greater. Seepage had a positive effect on the maximum rill depth. Sediment deposition was divided into two types: (i) deposition downstream of the rill and (ii) no deposition on the row sideslope. Greater row grades could result in deposition up to the ridge. The simple rill volume prediction equation could help predicting the soil loss induced by rill erosion in contour ridging systems. The effect of field slope, row grade, ridge height and seepage discharge on soil loss could provide guidance for choosing appropriate ridge morphology on slopeland to reduce rill erosion.  相似文献   

2.
为揭示不同垄沟坡度对径流中溶解态氮、磷流失的影响,采用人工模拟降雨试验,设置4个垄沟坡度处理(0°,9°,18°和27°),研究了不同垄沟坡度对径流中速效磷(PO_4~(3-)—P)、硝态氮(NO_3~-—N)和铵态氮(NH_4~+—N)浓度和流失量的影响;并利用Inorganic—N/PO_4~(3-)—P、NO_3~-—N/PO_4~(3-)—P和NH_4~+—N/PO_4~(3-)—P 3种氮磷比,评价不同处理的富营养化风险。结果表明:(1)在降雨过程中,4个垄沟坡度处理径流中PO_4~(3-)—P、NO_3~-—N和NH_4~+—N浓度随时间均呈锯齿状变化;其流失量随时间变化均呈先增加后以锯齿状变化的趋势,且波动幅度大,最大值(16.60,1 020.73,48.35 mg)分别出现在垄沟坡度为0°,0°和9°处理。(2)4个垄沟坡度处理间相比较,径流中PO_4~(3-)—P和NH_4~+—N流失量均表现为0°9°27°18°,其浓度最大值(0.50,1.08 mg/L)和最小值(0.37,0.76 mg/L)均分别出现在垄沟坡度为9°和18°处理;而径流中NO_3~-—N浓度和流失量均在垄沟坡度0°处理时为最大值(30.68 mg/L和64.16 mg/m~2),18°处理时为最小值(21.78 mg/L和42.22 mg/m~2)。(3)Inorganic—N/PO_4~(3-)—P率和NH_4~+—N/PO_4~(3-)—P率表明4个垄沟坡度处理径流中均存在一定的富营养化风险。其中,垄沟坡度为0°处理的径流富营养化风险水平最高,27°处理的径流富营养化风险水平最低。研究结果可为横坡垄作的水土流失及养分流失评价、预测以及防治提供科学依据。  相似文献   

3.
A laboratory study was initiated to investigate the effects of temperature (25, 30, 35, and 40 °C) and water quality on the loss of fertilizer nitrogen (N) through volatilization out of irrigation waters collected from 10 different Arizona sources. A 300‐mL volume of each water source was placed in 450‐mL beakers open to the atmosphere in a constant‐temperature water bath with 10 mg of analytical‐grade ammonium sulfate [(NH4)2SO4] dissolved into each sample. Small aliquots were drawn at specific time intervals over a 24‐h period and then analyzed for ammonium (NH4 +)‐N and nitrate (NO3 ?)‐N concentrations. Results showed potential losses from volatilization to be highly temperature dependent. Total losses (after 24 h) ranged from 30–48% at 25 °C to more than 90% at 40 °C. Volatilization loss of fertilizer N from irrigation waters was found to be significant and should be considered when making decisions regarding fertilizer N applications for crop production in Arizona particularly when using ammonia‐based fertilizers.  相似文献   

4.
垄作方式对薄层黑土区坡面土壤侵蚀的影响   总被引:6,自引:2,他引:4  
定量评价垄作方式对坡面土壤侵蚀的影响,可为坡面土壤侵蚀防治提供理论参考。基于2012—2015年哈尔滨市野外径流小区监测资料,探讨了顺坡垄、横坡垄、无垄作(裸地休闲对照)垄作方式对坡面土壤侵蚀的影响,分析了不同垄作方式下坡面水沙关系。结果表明:不同垄作方式下径流量和侵蚀量均具有显著差异,坡面径流量和侵蚀量均表现为无垄顺坡垄横坡垄;与无垄作试验处理相比,横坡垄作使坡面径流量和侵蚀量平均减少了92.4%和98.3%,顺坡垄作使坡面径流量和侵蚀量平均减少66.4%和72.2%。当坡度由3°增加到5°时,无垄作、顺坡垄作、横坡垄作坡面侵蚀量分别增加了0.8,8.2,5.5倍。3种垄作方式下坡面水沙关系均呈现出良好的相关关系,顺坡垄作和无垄作坡面侵蚀量随径流量的增加幅度远大于横坡垄作坡面,当坡面径流量10.0mm时,二者坡面侵蚀量急剧增加。  相似文献   

5.
Consumer demand for cleaned squid generates a substantial amount of waste that must be properly disposed of, creating an economic burden on processors. A potential solution to this problem involves converting squid by-products into an organic fertilizer, for which there is growing demand. Because fertilizer application to lawns can increase the risk of nutrient contamination of groundwater, we quantified leaching of NO3–N and PO4–P from perennial ryegrass turf (Lolium perenne L.) amended with two types of fertilizer: squid-based (SQ) and synthetic (SY). Field plots were established on an Enfield silt loam, and liquid (L) and granular (G) fertilizer formulations of squid and synthetic fertilizers were applied at 0, 48, 146, and 292 kg N ha−1 year−1. Levels of NO3–N and PO4–P in soil pore water from a depth of 60 cm were determined periodically during the growing season in 2008 and 2009. Pore water NO3–N levels were not significantly different among fertilizer type or formulation within an application rate throughout the course of the study. The concentration of NO3–N remained below the maximum contaminant level (MCL) of 10 mg L−1 until midSeptember 2009, when values above the MCL were observed for SQG at all application rates, and for SYL at the high application rate. Annual mass losses of NO3–N were below the estimated inputs (10 kg N ha−1 year−1) from atmospheric deposition except for the SQG and SYL treatments applied at 292 kg N ha−1 year−1, which had losses of 13.2 and 14.9 kg N ha−1 year−1, respectively. Pore water PO4–P levels ranged from 0 to 1.5 mg P L−1 and were not significantly different among fertilizer type or formulation within an application rate. Our results indicate that N and P losses from turf amended with squid-based fertilizer do not differ from those amended with synthetic fertilizers or unfertilized turf. Although organic in nature, squid-based fertilizer does not appear to be more—or less—environmentally benign than synthetic fertilizers.  相似文献   

6.
Abstract

The relationships between nitrogen (N) and phosphorus (P) concentrations in surface flooding water and those in the leachate of various soil depths were monitored, and temporal variation of leaching losses of N and P from a paddy plot during rice cultivation was estimated under the conditions of southern Korea. Even flooded conditions nitrification in subsurface soil was identified, but nitrate concentrations in leachate were less than 10 mg/L, the standard drinking water nitrate concentration set by the World Health Organization (WHO). The NO3‐N and ortho‐P concentrations in the leachate were generally higher than those in the surface flooding water. Field data implied that leaching losses would not be accurately estimated under the flooded conditions of the paddy field when using the N and P concentrations of surface flooding water and infiltration depth. The leaching losses of NO3‐N from paddy fields were high immediately after fertilization. The study results suggested that proper fertilization and irrigation strategies are required to reduce leaching losses of NO3‐N from paddy fields.  相似文献   

7.
Conservation tillage systems, including ridge‐tillage, have become increasing popular with producers in the central Great Plains because of their effectiveness in controlling soil erosion and conserving water. A major disadvantage of the ridge system is that nutrient placement options are limited by lack of any primary tillage options. The objective of this research was to investigate the effects of method of phosphorus (P) placement and rate on irrigated grain sorghum [Sorghum bicolor (L.) Moench] grown in a ridge‐tillage system on a soil low in available P. This experiment was conducted from 1993 to 1995 on a producer's field near the North Central Kansas Experiment Field at Scandia, Kansas on a Carr sandy loam soil (course, loamy, mixed, calcareous, mesic, Typic Udifuvents). Treatments consisted of fertilizer application methods, surface broadcast, single band starter (5 cm to the side and 5 cm below seed), dual band starter (one band on each side of the row), and knifed in the center of the row middle (38 cm from each adjacent row). Each of these treatments was made at either 22 or 44 kg P2O5 ha‐1, and nitrogen (N) also was included at the rate of 13 kg ha‐1. Additional treatments were, a combination of 13 kg N and 44 kg P2O5 ha‐1 applied half broadcast and half as a single band starter, a 1:1 N:P2O5 ratio (44 kg N and 44 kg P2O5 ha‐1) applied as a single band starter, and a 3:1 ratio (134 kg N and 44 kg P2O5 ha‐1) applied as a single band starter. A no‐P check plot also was included. Broadcast and center‐of‐row middle knife applications were made approximately 1 week before planting. After planting, N was balanced on all plots to give a total of 180 kg ha‐1. Applied P treatments improved grain yield and nutrient uptake and consistently shortened the time from emergence to mid‐bloom in all 3 years of the experiment. On this low soil test P soil, treatments that subsurface banded P increased grain yield by 1.27 Mg ha‐1 compared to broadcast treatments. Placing N and P in a single starter band 5 cm to the side and 5 cm below the seed was as effective as placing a band on each side of the row. Knife applying N and P in the center of the row was not as effective as placement beside the row. Single band starter application of N and P in a 1:1 and or 3:1 N:P2O5 ratio consistently increased yields and nutrient uptake and shortened the time to mid‐bloom as compared to the single band starter treatment that provided only 13 kg N ha‐1. Over the 3 years of the study, these 1:1 and 3:1 N:P2O5 ratio starters were clearly superior to an other treatments.  相似文献   

8.
Abstract

The loss of phosphorus (P), suspended sediment (SS), ammonia (NH4 +‐N), nitrate (NO3 ?‐N), and Escherichia coli in overland flow (OF) from dairy cattle dung can impair surface water quality. However, the risk of P and N loss from grazed pastures varies with time. Current practice in southern New Zealand is to select a field, cultivate, sow in Brassica spp., and graze in winter to save remaining pasture from damage. This deposits dung when soil is wet and OF likely. Hence, we determined P, NH4 +‐N, NO3 ?‐N, and E. coli loss from dung in OF via simulated rainfall from intact grazed pasture and cropland treatments of a soil. Analysis of OF, 0, 1, 4, 11, 24, and 43 days after dung deposition at the upslope end of soil boxes indicated that total P (TP), NH4 +‐N, and SS concentrations decreased sharply from day zero and leveled out after 11 days. More particulate P and SS were lost from the cultivated than pasture treatment, whereas the reverse occurred for dissolved organic P because of greater sorption of phytase active materials. Escherichia coli losses were high (1×105 100 mL?1) in both treatments throughout. Using the equations of fit in an example field site indicated that management of dung deposition could affect up to 25–33% of TP lost in OF.  相似文献   

9.
Abstract

Nitrate leaching losses were estimated using soil core samples from three different locations in a furrow irrigated, N fertilized and sludge amended cotton field. These losses were controlled by irrigation efficiency, as well as sources and quantities of N applied. Statistical comparisons of sample locations and N treatments revealed N treatment to be less significant than the field sampling location. However, sludge amended soils had significantly higher levels of nitrates in the root zone and consequently suffered higher nitrate leaching losses. A NO3‐N profile (30–210 cm) balance indicated that about forty percent (40%) of available NO3‐N was leached below the root zone (0–150 cm) in the upper two‐thirds of the field plots during the pre‐plant irrigation. Whereas, the lower one‐third of the field did not experience significant nitrate losses below the root zone. A one‐dimensional finite difference layered model, was used to estimate the depth of moisture penetration at the field (furrow) locations following pre‐plant irritation. It was concluded that the lower one‐third of the plots received less than 50% of mean plot application (30 cm) water during pre‐plant irrigation.  相似文献   

10.
Abstract

The level of soluble tissue phosphorus (PO4‐P) may be correlated with the plant P nutritional status, but the amount extracted depends upon dry matter losses or the amount of enzymatic or heat—induced hydrolysis of organic P compounds during sample drying.

Alfalfa (Medieago sativa L) and sugarbeet (Beta vulgaris L) plant parts grown under low and high soil P conditions, were freeze‐dried or oven‐dried at 40, 56, 70, or 100 C. Total K, P, and 0.35 N acetic‐acid‐soluble P (measured as PO ‐P) were determined. Dry matter losses were 0, 6.5, 3.6, 5.5, and 4.9 percent for the respective drying methods. The total‐P values, once corrected for dry matter losses, were not affected by the drying methods. The corrected PO4‐P values were 0.15, 0.17, 0.16, 0.16, and 0.19 percent, while the (PO4‐P)/P values were 0.63, 0.69, 0.67, 0.68, and 0.78 for each of the respective drying methods.

The potential utility of extractable PO4‐P in describing the plants’ P nutritional status will depend upon rigorous sampledrying techniques. Freeze‐drying was the most satisfactory method tested, since it resulted in the least dry‐matter loss and least organic P hydrolysis.  相似文献   

11.
Abstract

A field experiment was conducted at Star City (legal location SW6‐45‐16‐W2); Saskatchewan, Canada from May 2000 to June 2000, to measure nitrogen (N) and phosphorus (P) supply rates from fertilizer bands to the seed‐row of canola crop. Ion exchange resin membrane probes (PRSTM) were used to measure N and P supply rates in four treatments [80 kg N ha?1 of urea as side‐row band, 80 kg N ha?1 of urea as mid‐row band, check/no N (side‐row)/P side‐row, check/no N (mid‐row)/seed placed P]. The treatments were arranged in a randomized complete block design with four replications. Two anion and cation exchange resin probes (PRSTM) were placed in each plot in the seed‐row immediately after seeding and fertilizing. The probes were allowed to remain in the field for 2 days and replaced with another set of probes every 4 days for a total of 14 days until canola emerged. Ammonium‐N, nitrate‐N and P supply rates were calculated based on the ion accumulated on the probes. Urea side‐row band treatments (fertilizer N 2.5 cm to side of every seed‐row) had significantly higher cumulative available N supply rates than mid‐row band placement in which fertilizer N was placed 10 cm from the seed‐row in between every second seed‐row. No significant differences were observed in P supply rates. The higher N rates (120 kg N ha?1) resulted in lower grain yield in side‐row banding than mid‐row banding possibly due to seedling damage. However, the earlier fluxes of N into the seed‐row observed with side‐row banding may be an advantage at lower N rates in N deficient soils.  相似文献   

12.
Abstract

The effect of salinity in inducing soil macro and micronutrient deficiencies that can decrease crop growth was evaluated in a corn (Zea mays L.) field located in east central Wyoming. In this study water soluble Na was found to be a better predictor of salinity than pH and other cations. Soil saturated paste extracts had electrical conductivities that were negatively correlated with soil total K, Cu, Fe, and Mn. Total N, NO3‐N, PO4‐P, Zn, pH, and water soluble Na, Ca, and Mg of the soil were positively correlated with EC. Significant positive relationships existed between soil EC and N, P, Mo, and Zn, and negative relationships with K, Cu, Fe, and Mn of corn leaves and kernels. Concentrations of nutrients in the kernels were positively correlated with corresponding nutrient concentrations in the leaves and with AB‐DTPA extractable soil nutrients. The analysis of variance of EC data indicated that soil samples possessing high salinity were higher in pH and contained significantly higher soluble Na, Ca and Mg, total N, N03‐N, PO4‐P, and Zn and significantly lower Mn compared to samples having low salinity. The kernel weight per cob and plant height were significantly reduced as salinity increased.  相似文献   

13.
In many forest ecosystems chronically large atmospheric deposition of N has caused considerable losses of inorganic N by seepage. Freezing and thawing of soil may alter the N turnover in soils and thereby the interannual variation of N seepage fluxes, which in turn makes it difficult to evaluate the N status of forest ecosystems. Here, we analyzed long‐term monitoring data of concentrations and fluxes of dissolved inorganic N (DIN) in throughfall and seepage from a Norway spruce stand at the Fichtelgebirge (SE Germany) between 1993 and 2004. Despite constant or even slightly increasing N inputs in throughfall, N losses with seepage at 90 cm declined from 15–32 kg N ha–1 y–1 in the first years of the study period (1993–1999) to 3–10 kg N ha–1 y–1 in 2000 to 2004. The large N losses in the first years coincided with extreme soil frost in the winter of 1995/96, ranging from –3.3°C to –1.0°C at 35 cm soil depth. Over the entire observation period, maximum fluxes of nitrate and ammonium were observed in the mineral soil following thawing of the soil. The elevated ammonium and nitrate fluxes resulted apparently from increased net ammonification and nitrification rates in the mineral soil, whereas mineral‐N fluxes in the O horizon were less affected by frost. Our data suggest that (1) extreme soil frost may cause substantial annual variations of nitrate losses with seepage and that (2) the assessment of the N status of forest ecosystems requires long periods of monitoring. Time series of biogeochemical data collected over the last 20–30 y include years with extreme cold winters and warm summers as well as unusual precipitation patterns. Analysis of such long‐term monitoring data should address climate extremes as a cause of variation in N outputs via leaching. The mean loss of 14.7 kg N with seepage water during 12 y of observation suggests that the forest ecosystem was saturated with N.  相似文献   

14.
The growth of sesame (Sesamum indicum L.) was studied at three root temperature regimes (25/25, 20/10 and 15/15°C day/night) factorially combined with three NO3 : NH4 + ratios (mM ratios, 10:0, 8:2, or 6:4), as a source of nitrogen (N), in the irrigation solution. The air temperature was kept constant at 30°C. Transpiration, nutrient composition, and level of root‐born cytokinins and gibberellins in the xylem exudate were monitored. The two low root temperature regimes, 15/15 and 20/10°C, restricted the growth of sesame, reduced transpiration and increased the accumulation of soluble carbohydrates in the shoot and in the roots compared to the 25/25°C regime. The NO3:NH4 + ratios had no effect on growth. Nutrient contents in the shoot at low root temperatures, particularly K+, NO3 , and H2PO4 were decreased markedly, but Na+ increased relative to it's content in the 25/25°C regime. Increasing NH4 + proportion in the irrigation solution raised total N concentration in the plant tissues at all root temperatures. The amounts of cytokinins and gibberellins in the xylem exudate decreased at the low root temperature regimes relative to the 25/25°C regime. Low root temperature reduced xylem transport of nutrients and root born‐phytohormones, most probably because of reduced water flow through the plant relative to the 25/25°C regime.  相似文献   

15.
横坡垄作是被广泛采用的保护性耕作措施之一。垄沟低洼处的积水可诱发壤中流,并可造成雨滴打击对土壤颗粒分离/搬运的增强与减弱作用并存。因此,横坡垄作坡面雨滴打击与壤中流交互作用对土壤侵蚀过程的影响有别于传统坡面。基于人工模拟降雨试验,对有/无雨滴打击作用(RI,WRI)自由入渗(FD)和壤中流(SP)2种试验处理下的产流、产沙过程进行了探究。结果表明:(1)径流量表现为SP+WRI>SP+RI>FD+RI>FD+WRI。雨滴打击作用和壤中流对径流的贡献分别为-47.09%~54.37%和41.96%~85.62%。(2)侵蚀量表现为SP+RI>SP+WRI>FD+RI>FD+WRI。雨滴打击作用和壤中流对侵蚀量的贡献分别为12.92%~94.94%和25.83%~97.28%。(3)自由入渗试验处理下,雨滴打击作用对产流过程影响不明显;土壤饱和后,雨滴打击作用和壤中流的存在均使产流、产沙过程波动幅度更大。(4)有/无雨滴打击作用,自由入渗试验处理下的侵蚀量与产流率符合幂函数关系,而壤中流试验处理下二者符合指数关系。研究结果有助于加深对横坡垄作坡面土壤侵蚀过程的认识,为横坡垄作坡面水土流失综合治理提供理论支撑。  相似文献   

16.
黑土区垄作方式对坡耕地土壤侵蚀的调控效果   总被引:1,自引:0,他引:1  
[目的]分析黑土区不同垄作方式对坡耕地土壤侵蚀的调控效果,为该区土壤侵蚀防治提供科学指导。[方法]在5°和10°坡耕地开展人工模拟降雨试验,降雨强度为50,100 mm/h,垄作方式包括:横坡垄作、垄向区田、顺垄+底部横垄和横垄+排水沟,对照处理为传统顺坡垄作。[结果]试验条件下,与顺坡垄作处理相比,横坡垄作、垄向区田、顺垄+底部横垄和横垄+排水沟处理均可有效调节径流、降低土壤侵蚀量,但不同垄作方式对径流和侵蚀的调控效果随着降雨强度和坡度的增加而减小。在5°坡耕地,横坡垄作方式对径流和侵蚀的调控效果最佳,产流率和土壤侵蚀速率分别稳定在15.0 mm/h和0.2 kg/(m~2·h)以下。在50,100 mm/h降雨强度下,与顺坡垄作处理相比,其径流量分别降低92.3%和83.9%,土壤侵蚀量分别降低96.8%和94.6%;而垄向区田方式对径流和侵蚀的调控效果略大于顺垄+底部横垄处理。在10°坡耕地,横坡垄作方式在降雨前期具有较好的蓄水保土作用,但在降雨后期垄体易损坏,造成土壤侵蚀量剧增;横垄+排水沟方式在降雨前期能够蓄水保土,在降雨后期能够较好地进行排水。[结论]在坡度平缓的坡耕地,应...  相似文献   

17.
In the framework of the European nitrate directive (91/676/EEG), losses of nitrate (NO3)– nitrogen (N) to both surface and groundwater are limited to 50 mg/l. Because the residual NO3-N in the soil profile after harvest is considered the main determinant of nitrate leaching during wintertime, the Flemish government imposed a limit value of 90 kg NO3-N ha?1 up to a soil depth of 90 cm between 1 October and 15 November. This study compared two different soil sample preparation methodologies. When samples were analyzed immediately upon arrival, no differences in NO3-N concentration were observed. However, although field-moist samples are maintained at 4 °C, nitrification is not completely stopped, as indicated by the increased NO3-N concentration in field-moist samples 10 days after storage at 4 °C . In contrast, nitrification in air-dried samples is stopped during the oven drying when 40 °C is reached. Moreover, the reproducibility was significantly greater in air-dried samples as compared to field-moist samples.  相似文献   

18.
Abstract

Successful implementation of vegetative buffers requires inclusion of plant species that facilitate rapid dissipation of deposited contaminants before they have a chance to be transported in surface runoff or to shallow groundwater. Thirty‐six field lysimeters with six different ground covers [bare ground, orchardgrass (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.), smooth bromegrass (Bromus inermis Leyss.), timothy (Phleum pratense L.), and switchgrass (Panicum virgatum L.)] were established to evaluate the ability of grasses to reduce nutrient levels in soils and shallow groundwater. Nitrate (NO3 ?) and orthophosphate (PO4 3?) were uniformly applied to each lysimeter. In addition, half of the lysimeters received an application of atrazine, and the other half received isoxaflutole (Balance?) at levels indicative of surface runoff from cropland. The leachate from each lysimeter was collected after major rainfall events during a 25‐day period, and soil was collected from each lysimeter at the end of the 25‐day period. Water samples were analyzed for NO3‐N and PO4‐P, and soil samples were analyzed for NO3‐N. Grass treatments reduced NO3‐N levels in leachate by 74.5 to 99.7% compared to the bare ground control, but timothy was significantly less effective at reducing NO3‐N leaching than the other grasses. Grass treatments reduced residual soil NO3‐N levels by 40.9 to 91.2% compared to the control, with tall fescue, smooth bromegrass, and switchgrass having the lowest residual levels. Switchgrass decreased PO4‐P leaching to the greatest extent, reducing it by 60.0 to 74.2% compared to the control. The ability of the forage grasses to reduce nutrient levels in soil or shallow groundwater were not significant between herbicide treatments. Quantification of microbial NO3 ? dissipation rates in soil suggested that denitrification was greatest in switchgrass, smooth bromegrass, and tall fescue treatments. The overall performance of these three grasses indicated that they are the most suitable for use in vegetative buffers because of their superior ability to dissipate soil NO3 ? and reduce nutrient transport to shallow groundwater.  相似文献   

19.
为探索太湖流域水网地区农田土壤氮素通过地表径流与耕层渗漏的流失特征及其影响因素,在浙江省嘉兴市、上海市的松江县和青浦县,选择稻田、种植年限短的菜地、种植年限长的菜地3种类型农田,采用原位模拟降雨,研究渗漏与地表径流方式下的农田氮素流失量、流失形态特征,以及土壤养分含量对氮素流失的影响。结果表明,3种农田在地表径流方式下农田总氮流失量差异不显著;渗漏方式下种植年限长的菜地和种植年限短的菜地总氮流失量差异也不显著。渗漏方式下总氮流失量显著高于地表径流方式。农田0—5、0—20 cm土壤硝态氮含量分别为31.24~72.9和33.21~71.1 mg/kg时,与渗漏液硝态氮、水溶性总氮、总氮的流失量、流失浓度呈极显著正相关。  相似文献   

20.
Abstract

Fertilizer N recommendations for small grains are frequently based on soil test N but data is limited for irrigated spring wheat. The relative grain yield response of irrigated spring wheat to N as affected by inorganic soil N (NO3‐N and NH4‐N), yield potential and market class was evaluated in thirteen Southern Idaho field experiments involving N rates. Experiments were conducted on silt loam soils from 1978 to 1986. Preplant soil NO3‐N and NH4‐N to a depth of 60 cm and ranging from 27 to 142 kg/ha accounted for approximately 73% of the relative yield variability. NO3‐N and NH4‐N were significantly correlated (r=.72). NH4‐N with NO3‐N did not account for more of the relative yield variability than using NO3‐N alone.

Inorganic N in the first 30 cm and the second 30 cm were significantly correlated (r=.69) but N in the first depth increment accounted for more of the relative yield variability. The linear regression coefficient relating inorganic N in the first 30 cm to relative yield of unfertilized spring wheat was almost twice as high as the coefficient for the second 30 cm increment (.50 vs .27). Results indicate that inorganic N below 30 cm should be weighted differently than N in the first 30 cm when determining the N requirements of irrigated spring wheat.

Yield potential significantly affected the relative yield response to N. The response to N was not significantly affected by spring wheat market class (hard red vs soft white).

For estimating fertilizer N requirements, the results provide little justification for the current widespread practices of (1) using the combined NH4‐N and NO3‐N inorganic soil test N values when NO3‐N alone has as much predictive value and (2) assigning equal weight to inorganic soil N at all sampling depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号