首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
采用运动图像处理检测排种器充填性能   总被引:16,自引:4,他引:12  
针对人工测量和光电检测排种器性能的弊端,提出了采用运动图像处理检测排种器充填性能的方法。研制了检测多目标高速运动物体(种子)计算机图像处理系统,分析了光照对抓拍运动物体的影响和图像的采集过程,给出了系统的拍摄区域和合理的图像处理窗口,并运用最佳熵门限法准确提取目标和背景,建立了根据种子边缘、面积及种子之间的距离检测排种器充填性能的适用算法。试验表明:采用该系统误差小,速度快  相似文献   

2.
光电传感器结合旋转编码器检测气吸式排种器吸种性能   总被引:5,自引:5,他引:0  
高速精密播种作业是大豆、玉米等作物播种的主要发展方向之一。该文针对高速精密播种作业中气吸式排种器,设计了排种器吸种状态检测系统(seed disc suction performance detection system,SDSPS),该系统采用凹形光电传感器采集排种盘吸种信息、应用光电旋转编码器采集排种轴转动角度等信息,通过对光电传感器的输出信号和光电编码器脉冲信号进行处理,得到排种盘每个吸孔的吸种情况,从而进一步获取整个排种器的工作状况。与排种器试验台常用的图像处理检测系统(seeding detecting system based on image processing,SDSIP)在6组作业条件下进行了试验台对比试验,并单独进行了检测单个吸孔吸种量可行性试验。试验通过F检验和T检验(α=0.05)得出2种系统测量值总体方差相同和均值一致。精度分析结果表明SDSPS相比于SDSIP的最大相对误差为0.31%,系统稳定性分析结果表明SDSPS与SDSIP的波动幅值比较接近,两者的最大相对偏差值都不超过1%,SDSPS检测单个吸孔吸种量的最大相对误差为16.67%。通过田间试验验证,SDSPS对于漏吸种量和多吸种量,检测系统检测值与实际值相对误差平均值分别为3.87%和8.42%。SDSPS能有效的进行排种盘吸种性能检测,对单个吸孔吸种量的检测也具有较高的可信度,可以为气吸式排种器性能检测与改进提供技术支撑。  相似文献   

3.
中草药三七气吸滚筒式精密排种器的设计与试验   总被引:15,自引:14,他引:1  
因中草药三七种植属于密集型精密种植模式,尚无满足种植要求的播种机,为解决三七机械化精密播种问题,研究设计了一种气吸滚筒式精密排种器。该文阐述了三七气吸滚筒式精密排种器的工作原理,确定了其主要结构参数,构建了充种和投种过程种力学模型。以云南文山三七种子为播种对象,采用二次旋转正交组合试验方法,对排种器进行了排种性能试验研究,并通过投种对比试验验证了零速投种的必要性。建立了负压、前进速度、吸种角度3个主要因素与合格率、漏播率、重播率的数学模型,分析了各个因素及交互作用对合格率的影响规律,并进行了参数优化与验证试验。影响排种合格率的因素主次顺序为负压、前进速度和吸种角度;确定最佳参数组合为吸种角度为20°,负压值660~720 Pa,前进速度在0.72~0.76 m/s,可获得合格率大于90.2%,漏播率小于4.9%,重播率小于5.3%。经试验验证,试验结果与优化结果基本一致,满足三七精密播种的种植要求。试验结果表明此种气吸滚筒式精密排种器对于三七种子具有很好的播种适应性。该研究为应用于田间阴棚内播种的气吸滚筒式精密排种器的设计提供了参考。  相似文献   

4.
田间育种播种机精密排种器的试验   总被引:3,自引:3,他引:0  
摘要:精密排种器是田间育种播种机的核心部件,为了测定排种器的性能,采用二次回归正交旋转对试验进行设计,运用JPS-12排种器性能检测试验台对气吸式精密排种器排种性能进行研究进行试验研究,得到粒距合格率范围为72.31%~98.17%,漏播率范围为0.51%~18.7%,重播率范围为0.91%~23.07%。对试验结果进行回归分析,得出回归方程,并用MATLAB绘制三维图,得到各个试验因素对试验指标影响的强弱,研究结果可为精密排种器的优化设计提供依据。  相似文献   

5.
基于图像处理技术的种子粒距检测方法研究   总被引:7,自引:1,他引:7  
提出一种了基于图像处理与分析技术的种子粒距检测方法,并成功地将该方法用于精密播种机性能检测。采用彩色图像3分量独立采集技术,实现了3个播种单体排种情况的并行实时采集。采用基于标记的图像匹配技术,成功地实现了长序列图像的拼接。粒距的检测误差小于2mm。  相似文献   

6.
间歇式自动取样条播排种器排种性能检测试验台研制   总被引:2,自引:2,他引:0  
针对条播作物排种器进行室内台架性能检测时,人工检测播种均匀性费时费力、自动化检测手段缺乏等问题,该文设计了一种条播排种器排种性能检测试验台,利用间歇式自动取样机构,实现定时定距自动化取样及排种均匀性检测。其工作原理是种子落入传送带上形成种子带,随传送带一起前进,当运动至取样板处时,气泵驱动取样板以均匀的速度往复运动,将特定距离的种子带推离出种带,并分散成弧形,采用数码照相机获取样本种子图像,利用Matlab图像处理技术,获取样本种子数量,判断所测试排种器的排种性能。采用单片机控制排种轴转速、取样板的启停及运动方向,并通过上位机显示。对试验台关键结构和参数进行设计,确定种带宽度为30 mm,护种板长度150 mm,与传送带之间距离控制在2~3 mm。为减少种子堆叠和黏连,保证样本种子带均匀排列,易于后期图像处理,设计了"一"、"T"和"工"字型3种结构的取样板,通过种子受力与运动规律分析,确定"T"型取样板为最优结构,取样长度L为40 mm。以外槽轮排种器播种小麦为研究对象,使用Design-Expert软件进行中心旋转组合设计试验,结果表明,传送带驱动电机转速分别为20、28.79和28.79 r/min时,样本种子堆叠率分别为100%、92.34%和75.21%;排种量6 g/s时,样本种子堆叠率最高,为40.15%。与人工定距取样检测方法的对比试验结果表明,间歇取样检测法利用图像批量处理获取样本种子数量的时间约为5 s;而人工定距测试的平均耗时为1 min,而且样本数量越多,耗时越长。试验结果表明,间歇式自动取样的条播排种器排种性能检测试验台设计合理,能够大大提高排种器排种性能检测效率,可为条播作物的排种器排种性能检测试验台的优化设计提供参考。  相似文献   

7.
新型组合吸孔式小麦精密排种器性能的试验研究   总被引:10,自引:6,他引:10  
在室内试验和田间试验的基础上,探讨了新型组合吸孔式小麦精密排种器的排种性能,分析了排种器转速、拖拉机前进速度以及投种高度等因素对其排种性能的影响。试验结果证明,新型组合吸孔式小麦精密排种器实现了单粒精密播种,粒距合格指数达到52%以上,粒距变异系数小于29%,拖拉机前进速度可以达到6 km/h,完全符合小麦精密播种的农业技术要求。  相似文献   

8.
新型气压式精密排种器的试验研究   总被引:13,自引:2,他引:13  
对最新研制的低压式精密排种器构造、工作原理和工作参数进行了理论分析,试验研究排种盘转速、种子面高度和排种气压变化对排种性能的影响。对排种性能影响的主次因素顺序为排种气压、排种盘转速和种子面高度。在正常工作范围内,种子面高度变化对排种性能综合指标的影响不大。气压式精密排种器,已应用在2BQYF-6A气压式硬茬播种机上。  相似文献   

9.
水稻气力式排种器分层充种室设计与试验   总被引:3,自引:12,他引:3  
为改善水稻种子在充种室内的流动性并提高水稻气力式精量穴播排种器的排种精度,实现超级杂交稻(1~3)粒/穴精量穴播要求,在水稻气力式精量穴播排种器与种箱间设计了一种分层充种室。以含水率为20.3%(湿基)"培杂泰丰"超级杂交稻种子为对象,采用单因素试验和正交试验的方法,研究了不同吸室负压、吹种正压下,分层充种室对排种器排种性能的影响。试验结果表明,在吸种盘转速为30 r/min、吸室负压为1.6 k Pa、送种正压为0.1 k Pa、采用分层充种室的条件下,该排种器排出(1~3)粒/穴种子的概率为95.4%,空穴率为1.53%,大于4粒/穴的概率为3.07%,其中排出1粒/穴种子的概率为17.32%,2粒/穴种子的概率为58.72%,3粒/穴种子的概率为19.36%;与前期开展的水稻气力式精量穴播排种器排种性能试验结果相比较,增设分层充种室后,排种器播种精度提高。该研究表明,减小排种器中水稻种子之间的挤压力和摩擦力,改善种子的流动性,从而使吸种盘上吸孔对种子的吸附能力增强,是提高水稻气力式精量穴播排种器的性能的重要途径。该文为水稻气力式排种器结构优化与性能提升研究提供了重要参考。  相似文献   

10.
滑片型孔轮式水稻精量排种器排种性能数值模拟与试验   总被引:6,自引:5,他引:1  
针对现有水稻旱直播机排种器适应性差和排种精度低的问题,该文设计了一种滑片型孔轮式排种器。引用球度表示水稻种子三轴尺寸,利用EDEM软件对3种球度水稻种子在6种排种轮转速下的排种器排种过程进行仿真试验,得到不同球度水稻种子在不同排种轮转速下的排种性能变化规律,分析了排种轮转速和种子球度对排种性能的影响。仿真结果表明:当排种轮转速在15~40 r/min时,冈优898种子的排种性能优于国丰一号种子和冈优3551种子的排种性能;当排种轮转速在15~30 r/min时,3种球度水稻种子的排种合格率在84.01%~87.91%之间;当排种轮转速大于30 r/min时,随着排种轮转速增加,排种合格率显著下降。在此基础上,选用不同球度的5个水稻品种种子为试验材料,选取排种轮转速和种子球度为试验因素,以排种合格率、漏播率和重播率为评价指标,采用二次回归正交旋转组合设计,进行排种器台架试验。利用Design-Expert 8.0.6软件对试验结果数据进行分析,建立排种性能指标与排种轮转速和种子球度之间的回归方程,得到响应面图,并对仿真结果进行验证。根据回归方程进行优化,得到最佳工作参数:排种轮转速为27.12 r/min、种子球度为44.61%,此时,排种合格率为83.90%、漏播率为5.43%、重播率为10.67%,排种性能最佳;排种器台架试验结果与仿真结果基本相同,排种性能随排种轮转速和种子球度的变化规律一致。田间试验结果表明,排种器对各尺寸等级水稻种子的排种性能皆满足水稻精量穴直播的播种要求。研究结果可为滑片型孔轮式精量排种器的结构优化及排种性能提升提供参考。  相似文献   

11.
气力式油菜精量排种器田间漏播检测方法   总被引:6,自引:6,他引:0  
针对气力式油菜精量排种器排种性能漏播检测的问题,提出了一种基于排种频率的检测方法。通过测频装置对不同转速、不同数量型孔堵塞的气力式排种器出口的排种频率测量试验,获得了不同转速下界定漏播严重程度的频率划分区域,即正常区、弱漏播区与严重漏播区。设计了田间漏播检测方法,即对排种器转速测量值经平滑滤波后通过插值运算得到界定漏播严重程度的频率阈值,对排种频率测量值经中值滤波后与频率阈值比较实现漏播严重程度的检测。在试验台上测试表明:排种频率法能有效实现漏播程度的检测,无漏播时检测准确率为100%,当量型孔堵塞8孔以上时判定为漏播的准确率为100%,能够有效地屏蔽因偶尔的漏播引发的频繁报警问题。  相似文献   

12.
基于机器视觉和BP神经网络的超级杂交稻穴播量检测   总被引:7,自引:6,他引:1  
为了保证秧盘上每穴超级稻种子数量一致,实现精密播种作业,需对播种性能进行准确检测,但超级杂交稻播种到秧盘中,多粒种子存在粘连、重叠、交叉等情况,传统的面积、分割算法对上述情况播种量检测精度低,因此需提高上述情况种子播种量检测精度。考虑到种子连通区域的形状特征反映种子数量,该文提出一种基于机器视觉和BP神经网络超级杂交稻穴播量检测技术。针对超级稻颜色特征,采用RGB图像中红色R和蓝色B分量组成的2×R-B分量图和固定阈值法获取二值图像;投影法定位秧盘目标检测区域和秧穴;提取连通区域10个形状特征参数,包括面积、周长、形状因子、7个不变矩,建立BP神经网络超级稻数量检测模型,检测连通区域为碎米/杂质、1、2、3、4和5粒以上6种情况;试验结果表明,6种情况的检测正确率分别为96.6%、99.8%、97.2%、92.5%、86.0%、94.3%,平均正确率为94.4%,每幅图像平均处理时间0.823s,满足精密育秧播种流水线在线检测要求;研究结果为实现精密恒量播种作业提供参考。  相似文献   

13.
水稻精量穴直播机播量监测系统研制   总被引:7,自引:6,他引:1  
播种量是水稻精量穴直播机的关键技术参数。为了实时监测水稻精量穴直播机的播种量,提高播种作业性能,该文以环形布置安装于排种管的面源式光电传感器为主要监测元件,设计了水稻精量穴直播机播量监测系统。根据型孔式排种器结构与工作原理,确定了面源式光电传感器和旋转编码器的安装方式。采用高速摄像技术建立了水稻种子流通过监测区时种子数量与脉冲宽度之间的数学模型;通过时间分割节点得到穴粒数监测时间窗口,根据监测时间窗口内的脉冲宽度信息得到每穴播种粒数。选用南粳46和象牙香占2种具有代表性的水稻品种,对水稻精量穴直播机播量监测系统进行试验,将人工统计数据与监测系统统计数据进行对比分析,台架试验结果表明:对于南粳46(短粒型品种),平均穴粒数监测误差不超过7.99%,穴数监测误差不超过6.07%;对于象牙香占(长粒型品种),平均穴粒数监测误差不超过24.07%,穴数监测误差不超过5.66%。该系统基本满足不同工作转速下不同粒型的水稻播种量实时监测要求,可为后期实现水稻精量穴直播机大田作业参数监测提供了参考。  相似文献   

14.
播种方式对稻茬小麦生长发育及产量建成的影响   总被引:12,自引:4,他引:8  
目前稻茬麦机播面积不断扩大,为研究播种方式转变对小麦播种出苗、生长发育与产量建成的影响,2009-2012年,在成都平原稻茬麦区开展撒播(免耕+人工撒种+人工覆盖稻草)与机播(免耕+稻草粉碎覆盖+2BMFDC-6型播种机播种)比较试验。结果表明,机播处理的播种效率、出苗率、麦苗均匀度,以及中前期的个体与群体质量均显著高于撒播处理。但到了生育后期,机播小麦的个体与群体质量反而不及撒播小麦,进而影响穗部性状。机播小麦开花期干物质积累量和叶面积指数的年均值较撒播小麦低1.8%、8.9%,成熟期单穗结实小穗数和穗粒数较撒播处理低4.2%、3.5%,但千粒质量较撒播高4.9%,籽粒产量则基本相当。机播小麦开花期耕层土壤的速效氮含量较撒播处理低7.8%,植株全氮含量低19.4%。增施氮肥后,机播小麦个体和群体质量得到改善,增产趋势明显。表明,2BMFDC-6型机播有利于提高稻茬小麦播种效率和质量,但需要适当提高施氮水平以提高中后期个体与群体质量,进而实现高产。研究结果可为稻茬小麦高产高效栽培技术的熟化完善提供理论和技术依据。  相似文献   

15.
磁吸式穴盘精密播种机的研制及试验   总被引:13,自引:3,他引:13  
穴盘精密播种是现代育苗技术的一个重要环节,由于蔬菜、花卉等作物种子具有体积小、重量轻、形状又不规则的特点,给其精密播种带来了困难。为了较好地实现这类种子的精密播种,在分析了国内外现有精密播种技术的基础上,提出并设计了一种新型磁吸式精密播种机。该机依靠电磁吸头精确吸取经磁粉包衣处理的种子,通过调节磁吸力的大小来控制播种量和播种精度,整机由步进电机驱动,并由单片机协调控制来自动作业。通过对小白菜、西红柿、黄瓜等作物种子的初步试验,其单粒精播率达90%,漏播率低于5%,说明该机具有较高的播种精度和对不同类型种子  相似文献   

16.
针对小麦高速播种作业过程中高频排种种子流精准检测困难的问题,该研究设计了一套薄面光折射式小麦种子流多通道并行检测装置。基于将高通量变为低通量多通道并行同步检测的思路,设计了种子流分流结构。根据小麦种子物理特性,在已有传感原理的基础上,提出了一种"LED灯珠+窄缝"产生薄面光层,结合凸透镜折射原理扩大有效检测面积的方法,通过光路分析和窄缝尺寸分析确定了凸透镜焦距、薄面LED窄缝尺寸及传感元器件关键参数。利用多通道并行检测传感原理,设计了多路信号同步采集系统。为提升检测准确率,建立检测准确率-排种频率之间的关系,通过分析检测装置的误差规律,构建了准确率补偿模型。台架试验表明:排种器转速在80~180 r/min时,田间正常排种频率范围为52.10~321.55 Hz,检测准确率均高于96.68%。田间播种试验表明:在2~9 km/h的小麦播种机作业速度下,田间排种频率为67.65~323.95 Hz,检测装置检测准确率高于95.28%。检测装置能够检测排种器的排种频率、各通道排种量、排种总量。正常田间小麦播种作业中机械振动、强光照和土壤粉尘对检测装置没有明显影响。该检测装置可为小麦高速播种作业中高频种子流精准检测、漏播检测以及补种提供有效支撑。  相似文献   

17.
振流式精密播种装置种层厚度检测及控制系统研制   总被引:4,自引:3,他引:1  
为提高振流式精密播种装置的播种合格率和播种稳定性,减少种子流动性的不同对播种合格率的影响,研制了基于超声波传感器的种层厚度检测和控制系统,对播种过程中的播种量实现全程监控和自动控制。试验表明:自动控制系统能有效检测出匀种装置筛分板上种层厚度的变化,并根据播种时种子流动性的不同,调整供种装置的振动幅度和频率,使种层厚度保持在设定的范围之内,调整时间约为4.32s;且当种子流动差异性过大时能有效报警;采用检测和控制系统后振流式精密播种装置杂交稻2~5粒/穴或取秧面积的播种合格率由80.1%提升到87.3%。该研究为杂交稻精密育秧播种装置的研究奠定了基础。  相似文献   

18.
玉米种子分级处理对气力式精量排种器播种效果的影响   总被引:9,自引:9,他引:0  
该研究的宗旨是考察玉米种子分级处理对气力式精量排种器播种效果的影响。将玉米种子按形状和大小分为4级,分别用气吹式和气吸式2种精量排种器进行试验,以考察种子分级对合格、重播、漏播等播种指标的影响。试验表明:气吹式排种器对玉米种子形状和大小变异的适应性较强;对于气吹式排种器而言,在满足播种指标要求前提下,种子分级对其播种合格指数、重播指数影响显著,对其漏播指数和变异系数影响不显著,圆形种子合格率为96%,扁平种子合格率为87.4%,优势明显;而对气吸式排种器而言,分级后对各项质量指标的影响不显著,且出现较多播种不合格情况,说明即使进行种子分级也未能明显改进其播种性能。试验条件下,气吹式精量排种器的播种质量指标优于气吸式精量排种器。  相似文献   

19.
高通量小粒径种子流检测装置设计与试验   总被引:5,自引:3,他引:2  
针对油菜播种过程中因农艺要求增大播量以及高速播种产生的排种频率过高而导致高通量种子流检测精度不足的问题,提出了一种将高通量种子流分流为多路低通量种子流并行检测的方法,设计了基于分流机制与薄面激光-硅光电池结合的高通量小粒径种子流检测装置。考虑高通量种子流分流均匀性与快速通过性,对分流结构进行设计,运用离散元仿真软件EDEM及台架试验对处于不同倾斜角度的分流结构分流均匀性进行分析,当分流结构倾角小于5°时,分流管排量一致性变异系数的仿真与试验结果分别不超过5.19%和8.58%。基于薄面激光照射范围与落种区域,确定了薄面激光发射模组角度、上导种管出种口内半径以及薄面激光距硅光电池距离三者之间的关系,并优选得到三参数最佳组合。对4路种子输入信号进行调理,经电容滤波、双级放大、半波整流、电压比较、单稳态触发处理,成为4路独立可供单片机捕捉的脉冲信号。高通量小粒径种子流检测装置台架试验表明:在排种频率61.68 Hz范围内,油菜种子检测准确率不低于96.1%。田间试验结果表明:在田间排种频率62.23Hz范围内,检测准确率不低于95.7%,且试验过程中无堵塞现象发生,田间正常光照、机具振动对装置检测精度无影响。  相似文献   

20.
针对气吸式穴播器重播和漏播,以及传统排种检测装置不适配且易受环境温湿度影响的问题,开发了一种基于叉指型电容传感器的棉花穴播取种状态监测系统:首先设计符合其结构和工作特点的传感器,以Pcap02微小电容采集模块采集电容输出值并对其处理分析,实现对正常单粒播种、重播和漏播的准确判定,并进行台架性能试验、台架模拟验证试验和台架试验。性能验证试验表明:该模块测量误差在1%以内,棉种质量预测模型的测量误差小于3%,满足使用要求。台架模拟验证试验表明:在速度为30~50 r/min范围内,正常单粒播种试验中误判率小于3%,重播试验中误判率小于4%,漏播均可以被准确判定,但由于棉种质量差异,存在正常单粒播种被误判为重漏播和重播被误判为正常单粒的情况;台架试验表明:由于振动导致系统整体监测精度下降,但均保持在93%以上;F检验分析可知:系统监测与机器视觉监测的正常播种、漏播和重播的F值<F0.05(6.39),P0.05>0.05,不存在显著差异。该系统能满足气吸式穴播器的结构和工作特点,能准确判定其取种状态,具有较好的准确性和稳定性,对棉花实现精量播种具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号