首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 362 毫秒
1.
某极度酸化的酸性硫酸盐土壤中可溶性和交换性酸的特征   总被引:4,自引:0,他引:4  
An extremely acidified acid sulfate soil(ASS) was investigated to characterise its soluble and exchangeable acidity,The results showed that soluble acidity of a sample dtermined by titration with a KOH soulution was much significantly greater than that indicated by pH measured using a pH meter,paricularly for the extremely acidic soil samples,This is because the total soluble acidity of the extremely acidic soil samples was mainly composed of various soluble Al and Fe species,possibly in forms of Al sulfate complexes(e.g.,AlSO4^ ) and feerous Fe(Fe^2 )_,It is therefore suggested not to use pH alone as an indicator of soluble acidity in ASS,particularly for extremely acidic ASS,It is also likely that AlSO4^ actively participated in cation exchange reactions.It appears that the possible involvement of this Al sulfate cation in the cation adsorption has significant effect on increasing the amount of acidity being adsorbed by the soils.  相似文献   

2.
澳大利亚东部地区一些酸性硫酸盐土壤磷的特征   总被引:1,自引:0,他引:1  
C. LIN 《土壤圈》2002,12(3):229-234
Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15 soil cores were collected from 11 locations along the New South Wales coast, Australia. There was an overall trend for the concentration of the HC1-extractable P to increase along with increasing amounts of organic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acid sulfate soils (pH < 4.5). This suggests that inorganic P in these soils probably accumulated via biological cycling and was retained by complexation with trivalent metals or their oxides and hydroxides. While there was no clear correlation between pH and the water-extractable P, the concentration of the water-extractable P tended to increase with increasing amounts of the HCl-extractable P. This disagrees with some established models which suggest that the concentration of solution P in acid soils is independent of total P and decreases with increasing acidity. The high concentration of sulfate present in acid sulfate soils appeared to affect the chemical behavior of Pin these soil systems. Comparison was made between a less disturbed wetland acid sulfate soil and a more intensively disturbed sugarcane acid sulfate soil. The results show that reclamation of wetland acid sulfate soils for sugarcane production caused a significant decrease in the HCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorus following sugarcane farming. Simulation experiment shows that addition of hydrated lime had no effects on the immobilization of retained P in an acid sulfate soil sample within a pH range 3.54.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency to increase with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poor pH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that soluble P was not clearly pH-dependent in acid sulfate soils with pH < 4.5.  相似文献   

3.
The elevated solubility of zinc(Zn) in acid sulfate paddy soils can limit rice production and pose a risk of environmental pollution.However, little attention has been paid to the ligand-controlled release of Zn in these soils. Here we quantified the rate of ligandcontrolled Zn release in Thai acid sulfate paddy soils, using ethylenediaminetetraacetic acid as the extractant. Sequential extractions were performed to obtain quantitative information on Zn fractions contributing to the ligand-controlled mechanisms. The amount of Zn released within 192 h varied significantly(8–43 mg kg~(-1)), which corresponded to 12%–40% of the total soil Zn, indicating that Zn solubility in most soils was relatively low and that Zn mainly occurred as residual phases. The kinetics of Zn release was well described by the power function model(r = 0.65–0.99, median = 0.87). The magnitude of initial Zn release(coefficient a) was significantly(P 0.05) related to the aqua regia-soluble Zn. Easily mobile Zn, organically bound Zn, and Zn associated with Fe and Mn oxides also contributed to the ligand-controlled release mechanisms to various degrees. Our results provide a systematic understanding of Zn fractions and release from acid sulfate paddy soils, the dynamics of which have a significant influence on the availability, phytoextraction, and mobility of Zn in terrestrial and engineered environments.  相似文献   

4.
胞外DNA在土壤中的固定与转化   总被引:3,自引:0,他引:3  
DNA is the genetic material of various organisms. Extracellular DNA adsorbed or bound on surface-active particles in soils has been shown to persist for long periods against nucleases degradation and still retain the ability to transform competent cells. This paper reviews some recent advances on the binding and transformation of extracellular DNA in soils,which is fundamental to understanding the nature of the soil, regulating biodiversity, and assessing the risk of releasing genetically engineered microorganisms (GEMs) as well as being helpful for development of the genetic evolutional theory of bacteria. Several influencing factors, such as soil pH, ionic strength, soil surface properties, and characteristics of the DNA polymer, are discussed. To date, the understanding of the type of molecular binding sites and the conformation of adsorbed and bound DNA to soil particles is still in its infancy.  相似文献   

5.
Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle.Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils,we assessed various extraction methods of Al,Fe,and C fractions from montane volcanic ash soils in northern Ecuador,aiming at elucidating the role of Al and Fe in stabilizing soil organic matter(SOM).We found extractions with cold sodium hydroxide,ammonium oxalate/oxalic acid,sodium pyrophosphate,and sodium tetraborate to be particularly useful.Combination of these methods yielded information about the role of the mineral phase in stabilizing organic matter and the differences in type and degree of complexation of organic matter with Al and Fe in the various horizons and soil profiles.Sodium tetraborate extraction proved the only soft extraction method that yielded simultaneous information about the Al,Fe,and C fractions extracted.It also appeared to differentiate between SOM fractions of different stability.The fractions of copper chloride-and potassium chloride-extractable Al were useful in assessing the total reactive and toxic Al fractions,respectively.The classical subdivision of organic matter into humic acids,fulvic acids,and humin added little useful information.The use of fulvic acids as a proxy for mobile organic matter as done in several model-based approaches seems invalid in the soils studied.  相似文献   

6.
For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils,the changes in pH after the addition of different amounts of HNO3 or H2SO4 to representative soils of China were measured .A difference between pH changes caused by the two kinds of acids was observed only for variable charge soils and kaolinite,but not for constant charge soils and bentonite,The larger the proportion of H2SO4 in the HNO3-H2SO4 mixture,the lower the calculated H^ ion activities remained in the suspension.The difference in H^ ion activities between H2SO4 systems and HNO3 systems was larger for soils with a low base-saturation(BS) percentage than those with a high BS percentage.The removal of free iron oxides from the soil led to a decrease in the difference,while the coating of Fe2O3 on a bentonite resulted in a remarkable appearance of the difference.The effect of ligand exchange on the acidity status of the soil varied with the soil type.Surface soils with a high organic matter content showed a less pronounced effect of ligand exchange than subsoils did.It was estimated that when acid rain chiefly containing H2SO4 was deposited on variable charge soils the acidification rate might be slower by 20%-40% than that when the acid rain chiefly contained HNO3 for soils with a high organic matter content,and that the rate might be half of that caused by HNO3 for soils with a low organic matter content,especially for latosols.  相似文献   

7.
A glasshouse experiment was conducted to evaluate the agronomic potential of four partially acidulated rock phosphates(PARP) in three representative solis sampled from subtripical China.The PARPs were manufactured by attacking a moderately reactive phosphate rock either with sulfuric acid alone or with combination of sulfuric and phosphoric acids at 30 or 60 percent of acidulation.Shoot dry weight and P accumulation of six successive cuttings of ryegrass were used to compare the agronomic potential of these fertilizers with that of the raw rock phosphate(RP) and monocalcium phosphate (MCP).Results indicated that the effectiveness of various phosphates was determined both by the solubility of the phosphates and by the acidity and P-fixing capacity of the soils.The higher the watersoluble P contained,the better the effectiveness of the fertilizer was.Although plant P accumulation of PARP treatments was constantly lower than that of MCP treatment,some PARPs could still get a dry matter production similar to that of MCP treatment.PARP SP60,which was acidulated with a mixture of sulfuric acid and phosphoric acid at 60 percent of acidulation and contained the highest soluble,P,was as effective as MCP in terms of dry matter production on all the soils.S60 and C1 which were both acidulated with sulfuric acid with the former at 60 percent of acidulation and the latter at 30 percent but with a further addition of monoammonium phosphate,were more than 80 percent as efective as MCP,Raw RP also showed a reasonable effectiveness which increased with soil acidity.It was suggested from the study that some of these APRPs could be expected to have a comparable field performance as soluble P fertilizers in the acid soil regions.  相似文献   

8.
The degradation of soil fertility and quality due to rapid industrialization and human activities has stimulated interest in the rehabilitation of low-fertility soils to sustainably improve crop yield. In this regard, biochar has emerged as an effective multi-beneficial additive that can be used as a medium for the amelioration of soil properties and plant growth. The current review highlights the methods and conditions for biochar production and the effects of pyrolysis temperature, feedstock type, and retention time on the physicochemical properties of biochar. We also discuss the impact of biochar as a soil amendment with respect to enhancing soil physical (e.g., surface area, porosity, ion exchange, and water-holding capacity) and chemical (e.g., pH, nutrient exchange,functional groups, and carbon sequestration) properties, improving the soil microbiome for increased plant nutrient uptake and growth, reducing greenhouse gas emissions, minimizing infectious diseases in plants, and facilitating the remediation of heavy metal-contaminated soils. The possible mechanisms for biochar-induced amelioration of soil and plant characteristics are also described, and we consider the challenges associated with biochar utilization. The findings discussed in this review support the feasibility of expending the application of biochar to improve degraded soils in industrial and saline-alkali regions, thereby increasing the usable amount of cultivated soil. Future research should include long-term field experiments and studies on biochar production and environmental risk management to optimize biochar performance for specific soil remediation purposes.  相似文献   

9.
Oxalic acid plays an important role in improving the bioavailability of soil nutrients. Batch experiments were employed to examine the influences of oxalic acid on extraction and release kinetics of potassium (K) from soils and minerals along with the adsorption and desorption of soil K^+. The soils and minerals used were three typical Chinese soils, black soil (Mollisol), red soil (Ultisol), and calcareous alluvial soil (Entisol), and four K-bearing minerals, biotite, phlogopite, muscovite, and microcline. The results showed that soil K extracted using 0.2 mol L^-1 oxalic acid was similar to that using 1 mol L^-1 boiling HNO3. The relation between K release (y) and concentrations of oxalic acid (c) could be best described logarithmically as y = a + blogc, while the best-fit kinetic equation of K release was y = a + b√t, where a and b are the constants and t is the elapsed time. The K release for minerals was ranked as biotite 〉 phlogopite 〉〉 muscovite 〉 microcline and for soils it was in the order: black soil 〉 calcareous alluvial soil 〉 red soil. An oxalic acid solution with low pH was able to release more K from weathered minerals and alkaline soils. Oxalic acid decreased the soil K^+ adsorption and increased the soil K^+ desorption, the effect of which tended to be greater at lower solution pH, especially in the red soil.  相似文献   

10.
The controls of soluble Al concentration were examined in three situations of acid sulfate conditions:1) experimental acid sulfate conditions by addition of varying amounts of Al(OH)3(gibbsite) into a sequence of H2SO4 solutions;2)experimental acid sulfate conditions by addition of the same sequence of H2SO4 solutions into two non-cid sulfacte soil samples with known amounts of acid oxalate extractable Al; and 3) actual acid sulfate soil conditions.The experiment using gibbsite as an Al-bearing mineral showed that increase in the concentration of H2SO4 solution increased the soluble Al concentration,accompanied by a decrease i the solution pH, Increasing amount of gibbsite added to the H2SO4 solutions also increased soluble Al concentration,but resulted in an increase in solution pH.Within the H2SO4 concentration range of 0.0005-0.5mol L^-1 and the Al(OH)3 range of 0.01-0.5g(in 25 mL of H2SO4 solutions),the input of H2SO4 had the major control on soluble Al Concentration and pH .The availability of Al(OH)3,however,was responsible for the spread fo the various sample points,with a tendency that the samples containing more gibbsite had a higher soluble Al concentration than those containing less gibbsite at equivalent pH levels.The experimental results from treatment of soil samples with H2SO4 solutions and the analytical results of acid sulfate soils also showed the similar trend.  相似文献   

11.
我国滨海酸性硫酸盐土壤中几种不同形态的酸   总被引:9,自引:1,他引:9  
刘兆辉  王遵亲 《土壤学报》1992,29(4):401-407
本研究结果表明,我国滨海酸性硫酸盐土壤中含有大量的黄铁矿,它是一种潜在性酸,氧化后产生硫酸,是这种土壤的主要致酸原因.酸性硫酸盐土壤的pH值很低,一般在3.2至5.5,交换性酸和水解性酸的量很大,一般在0.2至10.5cmol/kg和5.0至31.0cmol/kg.几种形态的酸处于动态平衡,相互制约.随酸性硫酸盐土的剖面发育,黄铁矿的最高含量层、pH值最低层、以及交换性酸和水解性酸的最高含量层都不断向下移动.  相似文献   

12.
我国酸性硫酸盐土壤中铁锰形态转化及迁移   总被引:7,自引:0,他引:7  
刘兆辉  王遵亲 《土壤学报》1994,31(4):376-384
酸性硫酸盐土壤酸性很强,有机质含量高,造成了这种土壤所特有的铁锰淋洗、转化和迁移规律。研究结果表明:在酸性硫酸盐土壤中全铁含量较低,一般在35-50g/kg(以Fe2O3计),全锰含量也低,一般在0.25-0.55g/kg(以MnO计),一般滩涂中全铁大于60g/kg,全锰大于1g/kg。酸性硫酸盐土壤中,铁的游离度较小,一般在37-70%,铁的活化度较大,一般在8-20%,而滩涂中铁的游离度一般  相似文献   

13.
The soil microbial biomass is important such as pool of plant nutrients and is also driving force of the cycling of C, N, P and S in soil. However, the microbial biomass in acid soil has not been fully investigated due to the limitation of methods, i.e. chloroform-fumigation incubation or substrate-induced respiration because of decreased basal mineralization in chloroform-fumigated soil under acid conditions. This paper reviews improvement and application of these methods and vertical distribution of microbial biomass in two kinds of acid soils; namely, Andisols as dominant upland soils in Japan and tropical peat soils as potentially important lowland soils for agriculture, and also discuss on C and N turnover of microbial biomass in Andisols. Microbial succession in acid soil has also not been investigated so much, but, some studies in another important acid soil, i.e. acid sulfate soil, were also reviewed briefly.  相似文献   

14.
The soil microbial biomass is important such as pool of plant nutrients and is also driving force of the cycling of C, N, P and S in soil. However, the microbial biomass in acid soil has not been fully investigated due to the limitation of methods, i.e. chloroform-fumigation incubation or substrate-induced respiration because of decreased basal mineralization in chloroform-fumigated soil under acid conditions. This paper reviews improvement and application of these methods and vertical distribution of microbial biomass in two kinds of acid soils; namely, Andisols as dominant upland soils in Japan and tropical peat soils as potentially important lowland soils for agriculture, and also discuss on C and N turnover of microbial biomass in Andisols. Microbial succession in acid soil has also not been investigated so much, but, some studies in another important acid soil, i.e. acid sulfate soil, were also reviewed briefly.  相似文献   

15.
[目的]探讨盐渍化对土壤酸度的可能影响,为了解设施栽培土壤的酸化过程提供依据。[方法]采集了不同酸化特征的设施栽培土壤、露天栽培土壤和自然酸性土壤等3类表层土壤和剖面分层土壤样品,通过化学分析和室内添加肥料盐及土壤洗盐模拟试验,比较研究设施栽培土壤、露天栽培土壤与自然酸性土壤中活性酸、潜性酸、盐基饱和度之间关系差异及其受土壤盐分积累的影响。[结果]与自然酸性土壤相比,设施栽培土壤的酸是人为输入式,其酸化主要发生在表层,土壤剖面呈自上而下下降。在相同交换性酸水平的条件下,设施栽培土壤的pH值最低,其次为露天栽培土壤,而自然酸性土壤的pH值相对较高。在相同土壤pH值的情况下,自然酸性土壤的盐基饱和度明显低于设施栽培土壤和露天栽培土壤,而设施栽培土壤的盐基饱和度高于露天栽培土壤;设施栽培土壤的交换性酸中活性酸组成比例高于自然酸性土壤。增加中盐的积累可显著降低设施栽培土壤pH值;设施栽培土壤的盐分淋洗过程在降低土壤盐分的同时也降低了土壤的活性酸(提高了土壤的pH值)。[结论]盐分的积累增强了设施栽培土壤中潜性酸向活性酸的转化,高量施用化肥不仅可直接通过酸性物质的输入促进土壤pH值的下降,同时由此引起的盐分也可在一定程度上进一步降低土壤的pH值。  相似文献   

16.
【目的】酸性硫酸盐土(ASS)酸含量极高,Fe、 Al、 Mn、 As等有毒金属移动性强。许多开发利用方式不仅影响其成土母质黄铁矿的氧化程度并可能带来生态风险,稻作利用被认为是生态风险较低的方式。本研究开展水田和荒地两种利用条件下ASS中酸含量调查研究,探讨稻作利用方式对ASS酸含量的影响。【方法】于2013年8月,在广东省台山市发育于珠江三角洲滨海ASS的水稻田和严重酸化的长期撂荒地采集土壤样品,从土表向下0—300 cm范围内采用宽45 mm的土钻每20 cm采集1个样品,每个剖面共采集15个样品。比较两种利用方式下ASS各土层土壤pH值、 水溶性酸、 交换性酸、 吸持性酸含量,探讨稻作利用方式对ASS酸分布及运移的影响。【结果】珠江三角洲平原ASS的酸含量极高,在0—80 cm深度范围内,总存在酸含量随着土层深度加深而提高,土层深度每下降20 cm,总存在酸含量就平均提高61.62%; 80 cm以下土层总存在酸含量随着土层深度下降逐渐降低,其中80—180 cm深度范围内的降幅较大,土层深度每下降20 cm,总存在酸含量就平均降低61.62%; 当土层深度下降至220 cm时,pH值上升到6.0,酸含量非常低。稻作利用方式显著影响ASS的酸含量及其在土壤剖面的迁移情况。与荒地比较,稻田0—80 cm土层的总存在酸含量显著降低,其中水溶性酸、 交换性酸和吸持性酸含量平均降幅分别为77.01%、 36.75%、 27.74%,水溶性酸和交换性酸的差异达到显著水平,吸持性酸仅在0—20 cm 和60—80 cm土层的差异达到显著水平; 100—120 cm深度范围内稻田的总存在酸含量显著高于荒地,其中水溶性酸、 交换性酸和吸持性酸含量的增幅分别为128.19%、 54.87%、 154.96%,120—240 cm土层中,稻田的交换性酸和吸持性酸含量稍高于荒地,但差异不显著; 240—300 cm土层中,稻田的酸含量与荒地基本相同。总体上,稻作方式改变了ASS中酸在土壤剖面的分布,其中0—80 cm土层中酸含量显著降低,而100—120 cm土层的酸含量显著提高,并以吸持性酸为主要形式固定累积下来。稻田在0—80 cm深度范围内的水溶性硫含量显著低于荒地; 而稻田100—120 cm土层的水溶性硫含量则显著高于荒地,其他土层的差异不显著。水溶性硫与水溶性酸、 交换性酸和吸持性酸均显著正相关,表明稻作利用方式可能通过影响硫酸盐矿物的转化过程而改变ASS的酸分布及迁移。【结论】稻作利用方式显著降低上层土壤酸含量,并加强了酸淋洗下移作用,使100—120 cm土层中的酸含量大幅提高,并以黄钾铁矾等羟基硫酸盐次生矿物暂时吸持固定下来。因此,稻作利用方式有效降低ASS酸含量水平,降低ASS对实地作物的危害作用,但因其强淋溶作用可能加大了对地下水体污染的风险。  相似文献   

17.
广东省酸性硫酸盐水稻土作物产量的主要限制因子分析   总被引:2,自引:0,他引:2  
【目的】酸性硫酸盐水稻土(ASPS,简称反酸田)因强酸严重限制水稻生长,其产量远低于全国平均水平,是我国南方典型中低产田。为了进一步提高反酸田的水稻产量,需要对反酸田土壤的主要限制因子进行分析,以更好地对症下药,有效合理地改良土壤。本研究调查了不同产量水平下酸性硫酸盐水稻田的理化性状,探讨限制水稻生长的关键土壤化学因子,为反酸田的改良提供理论依据。【方法】 根据前期调查结果,选择3种产量水平(4500、 3000、 1500 kg/hm2)的代表性反酸田为研究对象,并以因强酸而撂荒的水稻田作为对照,于2013年6月28日在不同采样点各采集8个耕作层土壤样品,测定其有机质, 酸度, 氮、 磷、 钾养分以及微量元素含量等化学性状指标,比较不同田块间各种化学性状的差异,并通过相关分析、 主成分分析探讨影响反酸田水稻生长的关键土壤化学因子。【结果】反酸田的酸度水平极高,其pH值在3.0~4.0之间,水溶性酸、 交换性酸和吸持性酸含量分别达到0.6~5.6、 2.7~6.3和1.3~14.1 cmol/kg; 不同调查田块的酸度水平差异显著,高产田块的各种形态酸含量均显著低于低产田块,尤以水溶性酸和吸持性酸的差异更明显。随产量水平的降低,反酸田的有效磷、 速效钾含量显著降低,而水溶性硫、 交换性硫、 交换性锰、 交换性铝含量显著提高,交换性钙、 交换性锌、 交换性铜含量差异不显著,反映出缺磷、 缺钾、 硫酸盐含量过高、 铝毒、 锰毒显著限制了反酸田的水稻产量。相关分析表明,土壤有效磷、 速效钾与各种形态酸含量和硫酸盐含量显著负相关,而交换性钙、 锰、 铜、 锌、 铝与各种形态酸含量和硫酸盐含量显著正相关,表明反酸田水稻产量的主要限制化学因子受土壤酸含量及硫酸盐含量的水平影响。主成分分析表明,水溶性硫、 交换性硫、 交换性铝、 交换性酸、 交换性锰、 水溶性酸、 吸持性酸、 pH值、 有效磷、 速效钾等组成一个相对均质的变量群组,概括了64.99%的不同产量水平下反酸田理化性状的总变异度,为影响反酸田产量的主要土壤化学因子。其中水溶性硫、 交换性硫、 交换性铝、 交换性酸、 交换性锰、 水溶性酸、 吸持性酸为影响反酸田产量水平的负效应变量,而pH值、 有效磷、 速效钾为影响反酸田产量水平的正效应变量。【结论】硫酸根含量过高、 铝毒、 锰毒、 酸毒、 缺磷、 缺钾是限制反酸田产量的主要土壤化学因子。酸、 硫酸盐是反酸田的发育产物,是影响广东省反酸田水稻生长的原生及根本性障碍因素,而铝毒、 锰毒、 缺磷、 缺钾等是因土壤中酸、 硫酸盐含量较高时引起的次生障碍因素。因此,在反酸田的改良过程中需以减缓黄铁矿氧化、 促进黄钾铁矾水解,降低耕层土壤酸、 硫酸盐含量为主要目标。  相似文献   

18.
On the coastal plains of Finland there are approximately 3,000 km2 of acid sulfate soils developed as a result of intensive agricultural drainage of waterlogged sulfide-bearing sediments. The runoff from these soils contains very high amounts of acidity and metals that have severely deteriorated the aquaculture in several downstream rivers and estuaries. Therefore, there is an urgent need to develop and test more environmental friendly ways of draining landscapes underlain with these nasty soils. In this study, over a 3-year monitoring period the effect of excess surface liming, controlled drainage and lime filter drainage of acid sulfate soils on runoff water quality (pH, sulfate, metals) was determined and assessed. The results showed that (1) the liming measures had not prevented severely acidic and metal-rich waters from forming and discharging from the soils, (2) the controlled drainage system might have reduced discharge peaks but its potential effects on the discharged water quality were nondetectable due to its small effect on the groundwater level and naturally inherited heterogeneities, and (3) the spatial and temporal variations identified for the various hydrochemical determinants were not caused by the kind of treatment applied. Therefore, on acid sulfate soil fields, like the one studied here, the short-term hydrochemical effects of the treatments tested are minor (or nonexistent) at least as long as the controlled drainage systems are not technically improved or better maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号