首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The origin, diversity and distribution of hexaploid wheat still remain somewhat unclear. In this study we examined the patterns of genetic diversity and phylogenetic relationships of seven hexaploid wheat species using integration site polymorphism of the LTR retrotransposons. Forty-eight accessions (most of them aboriginal) of seven wheat species from different geographical regions were studied using sequence-specific amplification polymorphisms. Phylogenetic relationships among species were constructed with SplitsTree 4.10 based on Dice’s matrices. Genetic distances between the accessions clustered with PAST software were estimated by principal component analysis. All the accessions differentiated into two main groups, one including European spelt and the other combining common, club and Indian dwarf (shot) wheat with the Asian spelt. The spelt species T. macha, T. vavilovii and spelt spike (speltoid) free-threshing T. petropavlovskyi were intermediate between the two groups. The separation of these spelt species from all other accessions was determined by differences in the A genome. European spelt was subdivided into Central European and Spanish branches. As different genetic pools were characteristic of European and Asian spelt, European spelt could not originate directly from the Asian one. Supposedly, the A genome mostly harbors the species-forming or taxonomically important genes that distinguish spelt species from free-threshing ones, which group together with Asian spelt. Grouping of Asian spelt with free-threshing wheat suggests their close relatedness and confirms the hypothesis that free-threshing hexaploid wheats originated from the Asian spelt ancestor.  相似文献   

2.
A previous study indicated decreased DNA content of chromosome 4A in the wheat (Triticum aestivum L. cv. Tähti) compared to cvs. Chinese Spring and Rennan. Here we show that the lower 4A DNA content is associated with a specific haplotype in the distal part of 4AL. In 41 cultivars of bread wheat (T. aestivum L.), including cv. Tähti, a common haplotype was identified in the linkage disequilibrium region on the long arm of chromosome 4A (4AL). The haplotype (haplotype A) is characterized by 7 SSR and 5 EST marker alleles, including five zero-alleles. Haplotype A was found in 46 % of the Swedish/Finnish/Estonian spring wheat genotypes, while only one of the modern wheat accessions from Germany carried the same haplotype. Fluorescent cytometry analysis linked haplotype A to diminished DNA content of chromosome 4A. The haplotype was introduced into the Canadian and US breeding programs at the beginning of the twentieth century (cvs. Marquis, Thatcher, Ruby) from the common progenitor, the Polish landrace Fife, and it is still found in modern wheat germplasm in these countries. Zero-alleles characteristic for haplotype A were also detected in several accessions of European spelt (Triticum spelta L.), and in two accessions of tetraploid Triticum timopheevii Zhuk. The presence of haplotype A in European spelt indicates the considerable antiquity of the haplotype, as it must have been inherited from the hexaploid or tetraploid parent of spelt in at least one hybridization event.  相似文献   

3.
Starch was extracted and cleaned from 99 accessions of 20 species of Aegilops and also from 200 accessions of hexaploid wheat. Amylose content was determined by iodine staining and absorbance at 535 and 620 nm. Particle‐size distribution was determined by laser scattering. The amylose content of the Aegilops accessions did not exceed the extremes found in domesticated wheat. Aegilops species, on the whole, had a lower content of small particles than the hexaploid wheats. There was no correlation between amylose content and particle‐size distribution. Some species of Aegilops may be useful sources of low‐starch B‐type granules for hexaploid wheat, if the trait can be transferred, but they are unlikely to contribute to further variation in amylose content.  相似文献   

4.
A small increase in amylose content may impact end‐product quality of wheat. The effect of elevated amylose content in durum wheat is not known. We surveyed 255 durum wheat accessions and found two genotypes that lacked the SGP‐A1 protein. These genotypes were crossed to Mountrail, an adapted durum genotype, to create populations segregating for the SSIIa‐Ab null allele. Our goal was to determine the influence of allelic variation at the SSIIa‐A locus on semolina properties and end‐product quality with noodles as a test product. Amylose content increased 3% and cooked noodle firmness increased 2.8 g·cm for the SSIIa‐Ab class compared with the SSIIa‐Aa class for the PI 330546 source, but no change in either trait was detected between classes for the IG 86304 source. The SSIIa‐Ab class had a 10% reduction in flour swelling compared with the SSIIa‐Aa class for both crosses. Grain protein and semolina yield did not differ between SSIIa‐A classes. The relationship between flour swelling power and noodle firmness did not differ between SSIIa‐A allelic classes within a cross. The different results for amylose content and noodle firmness between these sources may be because the two sources of the SSIIa‐Ab null mutation contributed different linkages to the segregating populations. Results show that the SSIIa‐Ab allele could be used to produce durum‐based products that are slightly more firm in texture. However, the effect of the SSIIa‐Ab allele may depend on the source.  相似文献   

5.
Gliadin composition has been analysed in 403 accessions of spelt wheat (Triticum aestivum ssp. spelta); 61 different patterns were found for the -gliadins, 44 for the -gliadins, 19 for the -gliadins and 15 for the -gliadins. A subset of 333 accessions belonging to fifty populations from Asturias, North of Spain, showed high levels of genetic variation (A = 3.89, P = 0.88, Ne = 3.35 and He = 0.553), indicating that 82.5% of the genetic variation was within populations, and only 18.5% among populations. Thirty-five of these populations presented more of five accessions, in this new subset the values of genetic variation were higher that those of fifty populations (A = 4.49, P = 0.91, Ne = 3.80 and He = 0.595). The genetic variation within populations was 59.7% of the total, and 40.3% among populations, which could be associated to fixation effects of some alleles by genetic drift.  相似文献   

6.
The cultivation of Triticum spelta (spelt) has no tradition in Hungary. In recent years the interest towards this old species renewed in many countries. This high‐nutritional cereal, which has a high ash and fibre content, can be used in many health‐oriented grain‐based food products. Therefore, field experiments have been conducted for some years to test the performance of this species under home growing conditions. Here we report the results of analyses for some important quality parameters of grain samples from the 1996/97 season in comparison with those of older and new home‐grown bread wheat cultivars. Three common wheat cultivars and one advanced spelt line were grown on small plots fertilised with an NPK dose necessary to reach the highest yield and quality. Spikes were sampled weekly from the time of 70–77% grain moisture to full ripening. The grains were analysed for ash, N, P and K content and amino acid composition. Concentrations of 16 other macro + micro elements and in the ripe grains, baking quality parameters were also assessed. The grain development of spelt showed a remarkable time‐lag compared to that of the common wheat cultivars. However, the highest thousand‐grain‐masses, ash, N, and P concentrations were measured in this cultivar after milk ripening. The grains of spelt contained the macro‐nutrient Mg and four micro‐nutrients (Zn, Mn, Fe, Cu) in higher concentrations compared to those of the common wheat varieties. The total and essential amino acid concentrations measured in the ripe grains of spelt were also remarkably higher.

Although its wet gluten content (47.5%) was considerably higher than that of the bread wheat cultivars, its breadmaking quality was poor.  相似文献   

7.
Maize starches of the endosperm mutants waxy (wx), dull:waxy (duwx), and amylose‐extender:dull:waxy (aeduwx) from inbred line Ia453 lack amylose. However, in addition to high molecular weight (HMW) amylopectin, the duwx and aeduwx starches contained 40 and 80%, respectively, intermediate branched material of low molecular weight (LMW). As gelatinized, the amylopectin of the wx starch was easily hydrolyzed into small dextrins by the α‐amylase of B. amyloliquefaciens, but components of duwx and aeduwx possessed partial resistance to amylolytic attack. Residual material of intermediate size obtained by a 4‐hr α‐amylolysis could not be separated from LMW dextrins by fractional precipitation in methanol. It is suggested that this material possessed a more regularly branched structure, in which the d ‐glucosyl chain segments were too short to allow α‐amylase action. The granular starches of duwx and aeduwx genotypes were initially considerably more resistant than the wx sample to α‐amylase attack. This was possibly due to an altered structure in the amylopectin component or the high content of intermediate material in the former granules.  相似文献   

8.
Starch samples isolated from wheat flour that represented four possible waxy states (0, 1, 2, and 3‐gene waxy) were subjected to crushing loads under both dry and wet conditions. Calibrated loads of 0.5–20 kg were applied to the starch samples and the percentage of damaged granules was visually determined. Under dry crushing conditions, starches containing amylose (0, 1, and 2‐gene waxy) had between 1% (5‐kg load) to 3% (15‐ and 20‐kg load) damaged granules, whereas waxy starch (3‐ gene waxy; <1% amylose) began rupturing at 0.5‐kg load (3.5% damaged granules) and had 13% damaged granules when ≥10‐kg load was applied. Under wet crushing conditions, normal and partial waxy starch (0, 1, and 2‐gene waxy) showed little difference in percentage of damaged granules when compared to the results of dry crushing. Waxy starch (3‐gene waxy), however, showed substantially increased numbers of damaged granules: 12% damaged granules at 0.5‐kg load, rising to 55% damaged granules at 15‐kg load. The results indicate that waxy starch granules are less resistant to mechanical damage than normal starch granules. Furthermore, blends of normal and waxy wheats or wheat flours intended to have a particular amylose‐amylopectin ratio will be a complex system with unique processing and formulation considerations and opportunities.  相似文献   

9.
Interest in so‐called ancient wheats (einkorn, emmer, oriental wheat, and spelt) has increased steadily in the last few decades. Oriental wheat (Triticum turgidum L. subsp. turanicum (Jakubz.) (A. Lőve & D. Lőve) is a neglected and underutilized tetraploid species that has survived over the centuries in some areas of the Near East and central Asia. Very little attention has been devoted by researchers to the evaluation and characterization of the oriental wheat germplasm. Knowledge of the variation of seed storage proteins within a germplasm collection is very useful for breeders interested in increasing the genetic bases of modern wheat cultivars. In this study, capillary zone electrophoresis (CZE) was used to analyze the gliadin and albumin extracts relative to 74 accessions belonging to the oriental wheat collection maintained at the USDA gene bank. Fourteen gliadin patterns were observed. Among the six most frequent patterns, one was widely predominant, being observed in 29 accessions, whereas eight were single types. Two profiles showing similar frequencies within the collection together with six single types were recognized for the albumins. The combination of the observed gliadin and albumin profiles gave rise to 25 combinations. In general, accessions collected in the same country shared the same combinations. This suggests that some accessions could be duplicates of the same genetic stock. Accessions collected in Iran and Turkey, which are indicated as the countries in which oriental wheat originated, were characterized by a higher degree of polymorphism.  相似文献   

10.
Reduced amylose wheat (Triticum æstivum L.) produces better quality noodles and bread less prone to going stale, while little is known about the relationships between amylose content and the quality of soft wheat baking products such as sugar snap cookies (SSC) and Japanese sponge cakes (JSC). Near‐isogenic lines developed from wheat cultivar Norin 61, differing in their level of granule‐bound starch synthase (Wx protein) activity, were used to produce wheat grains and ultimately flours of different amylose contents. These were tested with regard to their effect on soft wheat baking quality and solvent retention capacities (SRC). Amylose content was strongly correlated to cookie diameter (r = 0.969, P < 0.001) and cake volume (r = 0.976, P < 0.001), indicating that the soft wheat baking quality associated with SSC diameter and JSC volume were improved by an incremental increases in amylose content. Among the four kinds of SRC tests (water, sodium carbonate, sucrose and lactic acid), the water SRC test showed the highest correlation with amylose content, SSC diameter, and JSC volume. When the regression analysis was conducted between the nonwaxy and partial waxy isogenic lines that are available in commercial markets, only water SRC was significantly correlated to amylose content (r = –0.982, P < 0.001) among of four SRC tests. This suggests that, unlike udon noodle quality, high‐amylose content is indispensable in improving soft wheat baking quality, a process requiring less water retention capacity.  相似文献   

11.
Twenty‐two lines of emmer (T. dicoccon Schrank) and 10 of spelt (T. spelta L.) were analyzed using capillary electrophoresis for their gliadins. These proteins were separated on an uncoated fused‐silica capillary (30 cm long, 22 cm to detector, 50 μm i.d.) using the isoelectric buffer 40 mM aspartic acid, 4M urea, 0.5% (w/v) HEC, and 20% (v/v) acetonitrile. Samples were run for 20 min at 22kV and 42°C. By using these conditions, gliadins were separated into 21–30 components (peaks and shoulders). The major peaks eluted between 4.5 and 8.5 min. Electrophoregrams of tested lines showed qualitative and quantitative differences, including number of peaks, presence or absence of some major peaks, and areas of peaks. Lines belonging to the same species can be discriminated mainly on the basis of β‐ and ω‐gliadin patterns. The γ‐and ω‐gliadins seem to be more useful in the differentiation of emmer from spelt. The comparison of electrophoregrams relative to hulled and unhulled species evidenced the high similarity between species with the same genome composition (durum wheat‐emmer, and common wheat‐spelt).  相似文献   

12.
The tetraploid relatives (subspecies) of commercial durum wheat (Triticum turgidum L. subsp. turgidum conv. durum (Desf.) MacKey) offer a source of economically useful genes for the genetic improvement of durum cultivars. Tetraploid wheat subspecies show a wide diversity in grain protein composition and content, which are major factors determining the pasta-making quality of durum cultivars. In this study, the specific focus was the identification of accessions expressing one or more superior pasta-making traits. In all, 33 accessions were surveyed representing five different subspecies; var. durum (13 accessions), polonicum (7 accessions), persicum (3 accessions), turanicum (6 accessions), and turgidum (4 accessions). These accessions and the durum cultivars Wollaroi and Kamilaroi (in both years) and Yallaroi (in 1998 only) were grown at Tamworth, Australia in 1997 and 1998. Grain, semolina, and spaghetti cooking quality were evaluated using a range of tests. Several accessions were identified with larger grain size and protein content and higher semolina extraction. Although many of the accessions were weaker in dough strength, a few were equal to the commercial cultivars and produced pasta of comparable quality. The main disadvantage with these accessions was the low yellow color. These quality defects can be corrected by conventional breeding.  相似文献   

13.
Emmer wheat is hulled wheat that was wide cultivated in Spain at the past. Actually, the most of this germplasm is conserved in Germplasm Banks, and only two small populations have been found in Asturias (North of Spain) in a recent collecting mission. In this work, a collection of 31 Spanish emmer lines developed from identical number of accessions of two Germplasm Banks was analysed for morphological spike traits and seed storage protein composition. Up to seven different botanical varieties were detected, which suggest the presence of a wide diversity, although lower than the historically described 10 botanical varieties. At level of seed storage proteins, the lines showed a high diversity, although the new alleles were present with low frequency in materials with scarce agronomic interest for the farmers (var. atratum, var. lagascae or var. pycnurum). This last circumstance could translate in a lost of variability by genetic drift.  相似文献   

14.
Spelt wheat, Triticum spelta L., has been proved to be rich-sources of useful genes for tolerance to biotic and abiotic stress, and grain quality. But this crop plant has some undesirable traits including glume tenacity and brittle rachis. Free-threshing and reduced fragility of rachis are very important traits for cultivation. The objectives in the present study were to investigate genetic variation of rachis fragility in a wide range of spelt accessions, to examine its genetic segregation pattern, and to clarify if rachis fragility is associated with dosage of chromosome 5A in aneuploid lines of bread wheat. The results demonstrated that spelt germplasm contains a wide range of rachis toughness, and thus selection of spelt wheat with desirable characteristics combined with an appropriate level of tough rachis would be possible. Spike morphology in the F2 plants was segregated into the three types, square-headed, speltoid, and compactoid. The F2 plants with compactoid spikes had the most brittle rachis, followed by the speltoid and square-headed spike F2 plants. Rachis fragility in bread wheat also had genetic variation and was associated with dosage of chromosome 5A.  相似文献   

15.
Granule Bound Starch Synthase I, or waxy protein, is the sole enzyme responsible for the accumulation of amylose during the development of starch granules in wheat. The full coding region of the waxy (Wx) gene was sequenced in Triticum urartu, (a wild diploid species) and is related to the A genome of polyploid wheats. The Wx gene of T. urartu (Wx-A u 1) showed a homology of ~88.0?% with Wx-A1 from polyploid wheats. A greater homology was found with Wx-A m 1 from the diploid cultivated wheat einkorn. Most of the differences were found in introns although several changes were also detected in exons that led to amino acid changes in the transit peptide and mature protein. These results show the potential of T. urartu as a source of new alleles that could be used in the breeding of durum and common wheat in order to synthesize starches with different properties.  相似文献   

16.
The polymorphisms in two -gliadin genes GAG56D and GAG56B on the D- and B-genomes of polyploid wheat, respectively, were investigated by sequencing PCR products and by PCR-RFLP. Of GAG56D, two alleles fo and ok were previously known to occur in hexaploid wheat. Here, we found that 16 sequenced fragments of GAG56D from six recognized subspecies of Triticum aestivum, including 13 contributed by this study, were identical to either the fo or the ok allele. Considering published evidence, it was concluded that the investigated alleles of GAG56D stemmed from two different Aegilops tauschii plants and thus two independent origins of hexaploid wheat. Compared to GAG56D-sequences obtained from 10 accessions of Ae. tauschii, the fo and ok alleles clustered with fragments from three accessions collected in the Caspian region. By sequencing fragments of GAG56B, four distinct allelic groups were found among cultivated wheats, typical of bread wheat (p-aes), durum wheat of gliadin 45-type (a), durum wheat of gliadin 42-type (p-dur) and Timopheev's wheat (p-tim), respectively. Interestingly, the a allele found in gliadin 45-type durum wheat was shared by European spelt cultivars, which strongly supported the hypothesis that European spelt originated from a hybridization event between a tetra- and hexaploid wheat. The data also suggested that emmer might have been domesticated more than once. Phylogenetic analysis of GAG56-fragments obtained from putative B/G-genome donors excluded all candidate species as immediate donors of the B/G-genome, but instead indicated a monophyletic origin of all GAG56B alleles found in polyploid wheat, i.e. including T. timopheevii.  相似文献   

17.
The aim of this study was to determine the content of selected elements and metabolites produced by fungi of the genus Fusarium in spelt (Triticum spelta L.) grain and husks and common wheat (T. aestivum L.) grain. Concentrations of trichothecenes, a volatile metabolite trichodiene (TRICH), as well as ergosterol (ERG) and adenosine 5′‐triphosphate (ATP) (a total microbial biomass indicator), were assessed. Toxin concentrations in spelt grain and husks harvested in 2003 and 2004 were comparable. Average deoxynivalenol concentrations reached 450 and 523 μg/kg in grain and 2,162 and 855 μg/kg in husks, respectively. Spelt grain, in comparison with common wheat grain, contained significantly higher concentrations of P, S, Mg, Zn, and Cu and a lower concentration of Al, whereas the concentrations of Ca, Fe, and Pb were significantly higher in the husks than in the grain of this cereal. A comparison of concentrations of Fusarium spp. metabolites in the grain of spelt and common wheat showed that the total concentration of mycotoxins and TRICH was slightly lower in T. spelta, whereas common wheat grain contained lower concentrations of ERG and ATP. The obtained results indicate that spelt husks contain considerable concentrations of trichothecenes.  相似文献   

18.
An automated sorting system was developed that nondestructively measured quality characteristics of individual kernels using near‐infrared (NIR) spectra. This single‐kernel NIR system was applied to sorting wheat (Triticum aestivum L.) kernels by protein content and hardness, and proso millet (Panicum miliaceum L.) into amylose‐bearing and amylose‐free fractions. Single wheat kernels with high protein content could be sorted from pure lines so that the high‐protein content portion was 3.1 percentage points higher than the portion with the low‐protein kernels. Likewise, single wheat kernels with specific hardness indices could be removed from pure lines such that the hardness index in the sorted samples was 29.4 hardness units higher than the soft kernels. The system was able to increase the waxy, or amylose‐free, millet kernels in segregating samples from 94% in the unsorted samples to 98% in the sorted samples. The portion of waxy millet kernels in segregating samples was increased from 32% in the unsorted samples to 55% after sorting. Thus, this technology can be used to enrich the desirable class within segregating populations in breeding programs, to increase the purity of heterogeneous advanced or released lines, or to measure the distribution of quality within samples during the marketing process.  相似文献   

19.
The nutritional value of breadmaking cereal spelt (Triticum aestivum ssp. spelta) is said to be higher than that of common wheat (Triticum aestivum ssp. vulgare), but this traditional view is not substantiated by scientific evidence. In an attempt to clarify this issue, wholemeal and milling fractions (sieved flour, fine bran, and coarse bran) from nine dehulled spelt and five soft winter wheat samples were compared with regard to their lipid, fatty acid, and mineral contents. In addition, tocopherol (a biochemical marker of germ) was measured in all wholemeals, whereas phytic acid and phosphorus levels were determined in fine bran and coarse bran samples after 1 month of storage. Results showed that, on average, spelt wholemeals and milling fractions were higher in lipids and unsaturated fatty acids as compared to wheat, whereas tocopherol content was lower in spelt, suggesting that the higher lipid content of spelt may not be related to a higher germ proportion. Although milling fractionation produced similar proportions of flour and brans in spelt and wheat, it was found that ash, copper, iron, zinc, magnesium, and phosphorus contents were higher in spelt samples, especially in aleurone-rich fine bran and in coarse bran. Even though phosphorus content was higher in spelt than in wheat brans, phytic acid content showed the opposite trend and was 40% lower in spelt versus wheat fine bran, which may suggest that spelt has either a higher endogenous phytase activity or a lower phytic acid content than wheat. The results of this study give important indications on the real nutritional value of spelt compared to wheat. Moreover, they show that the Ca/Fe ratio, combined with that of oleate/palmitate, provides a highly discriminating tool to authenticate spelt from wheat flours and to face the growing issue of spelt flour adulteration. Finally, they suggest that aleurone differences, the nature of which still needs to be investigated, may account for the differential nutrient composition of spelt and wheat.  相似文献   

20.
Flours from five spelt cultivars grown over three years were evaluated as to their breadbaking quality and isolated starch properties. The starch properties included amylose contents, gelatinization temperatures (differential scanning calorimetry), granule size distributions, and pasting properties. Milled flour showed highly variable protein content and was higher than hard winter wheat, with short dough‐mix times indicating weak gluten. High protein cultivars gave good crumb scores, some of which surpassed the HRW baking control. Loaf volume was correlated to protein and all spelt cultivars were at least 9–51% lower than the HRW control. Isolated starch properties revealed an increase in amylose in the spelt starches of 2–21% over the hard red winter wheat (HRW) control. Negative correlations were observed for the large A‐type granules to bread crumb score, amylose level, and final pasting viscosity for cultivars grown in year 1999 and to pasting temperature in 1998 samples. Positive correlations were found for the small B‐ and C‐type granules relative to crumb score, loaf volume, amylose, and RVA final pasting viscosity for cultivars grown in 1999, and to RVA pasting temperature for samples grown in 1998. The environmental impact on spelt properties seemed to have a greater effect than genetic control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号