首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Failure to take into account the ecological complexity of landrace populations of crop plants limits our ability to conserve their genetic resources in situ. Soil seed banks are a central feature of the ecology of landrace populations of cassava; their existence has consequences for conservation. Seedlings recruited from seed banks are incorporated by farmers into their stocks of clones of this vegetatively propagated crop, transforming pure clonality into a mixed clonal/sexual reproductive system. Soil seed banks, and farmers’ responses to them, play an important role in maintaining diversity in populations of cassava landraces. In a study combining genetic and ethnobiological approaches, we showed the following: (i) Recruitment from soil seed banks increased diversity of populations at the local scale. At the level of a field, the presence of plants issued from seeds resulted in significantly greater diversity of genotypes and phenotypes than if only individuals planted by farmers had been present. (ii) Farmers’ use of seed banks has enabled indirect ‘exchange’ of locally adapted cassava germplasm between cultural groups, without requiring that groups actually encountered one another and engaged in social exchange of cultivars. (iii) Farmers have responded to catastrophic crop failure by using seed banks to regenerate stocks of clones. This use of seed banks should enable cassava populations to respond to disasters by an increase of genetic diversity, rather than by a narrowing of the genetic base, often feared in such situations.  相似文献   

2.
European native plant diversity is currently suffering erosion and extinction and thus, it is crucial to improve conservation strategies to maintain this essential resource. If unchecked, this genetic erosion and species extinction will cause unnecessary and irreversible harm to the economy and social well being of Europe. Much plant biodiversity is undoubtedly found in the existing 9654 European protected areas that cover 1,066,358 km2, but clearly targeted and active conservation of priority plant species is required within these protected areas. To help ensure more efficient long-term sustainable conservation, a novel approach to the in situ conservation of European plants, notably crop wild relatives, is suggested. The purpose of this approach is to know what plant genetic resources (PGR) we have, where they are located and to assess whether the current network of protected areas includes a representative sample of European PGR diversity. The generation of in situ conservation and management plans for PGR populations in existing protected areas can significantly improve the present conservation status. Additionally, the identification of gaps of certain PGR in current protected areas can provide the basis for the designation of new complementary PGR in situ reserves.  相似文献   

3.
Effective conservation strategies aimed to protect crop genetic resources require multiple sources of information. We used a combination of AFLP genotyping and farmer surveys to understand the extent, distribution and management of tartary buckwheat (Fagopyrum tataricum Gaertn.) diversity in its center of origin in Yunnan Province, China. We found genetic evidence of gene flow in tartary buckwheat throughout the study area, with small but statistically significant regional and village-level components. We also found genetic differentiation by seed color. Although most farmers reported exchanging seed in localized kinship networks, our results imply homogenizing gene flow is occurring. Yi ethnic farmers tend to plant more buckwheat than non-Yi farmers, and we found that in some communities, Yi farmers serve as seed sources for farmers of other ethnicities. Different tartary buckwheat varieties did not have different end uses; rather farmers maintained varietal diversity in order to protect crop yield and quality. Individual farmers’ seed exchange practices reflect their ideas about components of seed quality, as well as priorities in protecting buckwheat yield. From the standpoint of genetic resources conservation, the presence of a culturally rich farmer exchange network and hierarchical structuring of tartary buckwheat genetic diversity demonstrates the importance of maintaining an interlinked community of tartary buckwheat farmers in Yunnan.  相似文献   

4.
Maize (Zea mays L.) landraces have the highest genetic variation and adaptation to the natural and anthropological environment where they have evolved. Surveying both qualitative and quantitative morphological traits of existing landraces may be useful in maintaining their genetic diversity and preserving them from genetic erosion. Our research deals with the morpho-phenological and agronomic characterization of a flint maize landrace, named 'Nostrano di Storo', still grown in an inland hilly environment in the low valley of Chiese River in Trentino, North-Eastern Italy. The majority of plants from twenty field populations proved to belong, with few exceptions (NSt2, NSt9, NSt11), to a single population. It means that the plant material long grown in this area and maintained by local farmers through yearly selection forms a single landrace within which some populations (i.e. NSt1, NSt3, NSt4, NSt7, NSt10, NSt18, NSt19, NSt20) could be considered as most representative and taken as 'core'. This is supported by the fact that the genetic variability was much higher within than between field populations: half of the plant and ear traits investigated did not show any significant difference between populations whereas all traits but two showed highly significant differences within populations. Selection carried out over the years by each farmer according to his own criteria produced little genetic differentiation within the original population. Gene flow among farmer populations, most likely occurred through both pollen dispersion to neighboring cultivated fields and seed exchange among farmers, may help to explain the low genetic differentiation. This information is useful for both planning conservation and recognizing the landrace as a unique germplasm source of specific geographic origin.  相似文献   

5.
Hulless barley (Hordeum vulgare L. s. l.) is the staple food crop of Tibetan communities in the Qinghai-Tibet Plateau, covering Tibet, Qinghai, Gansu, Sichuan and Yunnan provinces in China. Participatory Rural Appraisal methodolgies were employed in twenty-seven villages that were randomly selected in Shangri-la region, or Diqing Prefecture of Yunnan Province to document the ethnobotanical and indigenous knowledge related to the production, diversity, use and conservation of hulless barley. For Tibetans in Shangri-la, the crop has a high socio-cultural value. The genetic diversity of landraces managed by the farmers in Shangri-la is an extremely important germplasm resource. We recorded a total of 54 landraces that are primarily described by farmers based on their cooking quality, growth cycle, color and size of the grains. The ethnobotanical and indigenous knowledge recorded in this study contributes to the understanding of the genetic diversity of hulless barley in Shangri-la and even in the Qinghai-Tibet Plateau, and in defining appropriate strategies for its conservation on farm.  相似文献   

6.
7.
The diversity, genetic structure, and genetic flow of wild populations of Phaseolus vulgaris L. within its Mesoamerican area of domestication, were analyzed by means of morphological and inter-simple sequence repeat molecular markers. Overall, 89% of the loci studied were polymorphic, 35% in the least diverse population and 65% in the most diverse. Genetic diversity in the populations was high, between h = 0.14 and 0.29, as was the maximum distance between populations (D = 0.3). Between 40% and 45% of the diversity was explained by the differences among populations, indicating that a large number of populations is necessary to represent the wild gene pool in the germplasm collections. We found uniformity in allele frequencies among the populations, suggesting presence of outcrossing. We did not find correlation between genetic and geographic distances, but the dendrogram topology suggests geographical isolation due to the mountainous topography. Negative correlations were observed between the coefficient of variation of seed size and the distance between wild populations and fields . We obtained a highly negative correlation between percentage of polymorphic loci and distance to the nearest crop field, which also suggests gene flow from the domesticated populations. These observations suggest that genetic flow is taking place from domesticated toward wild populations and that the farmer, through his agricultural activities, could be influencing the magnitude and the characteristics of the gene flow, and along with this, the differentiation of wild populations. New approaches should be established for conservation in situ and maintaining bio-safety, given the risk of introducing genotypes from the Andes and transgenic varieties and causing genetic assimilation.  相似文献   

8.
No single conservation technique can adequately conserve the full range of genetic diversity of a target species or genepool. To optimize the efficiency of germplasm conservation, a range of conservation techniques needs to be applied simultaneously. In this paper we review the progress made in the application of both in situ and ex situ complementary conservation strategies and techniques to the conservation of the genus Coffea and identify areas where more research work is required. Traditionally, Coffea species have been conserved ex situ as living plants in field genebanks due to their intermediate seed storage behaviour. However, progress made in the field of biotechnology in recent years have made it possible to envisage the use of in vitro, slow growth and cryopreservation for medium- and long-term conservation of Coffea germplasm, respectively. In situ conservation is also an important option for long-term conservation, but there are no genetic reserves specifically set up for conserving Coffea. Protected areas and managed reserves offer the best opportunities for conserving Coffea. A case study for Mascarene Coffea in Mauritius is presented and a strategy for their conservation is discussed.  相似文献   

9.
The concept of centres of crop diversity and/or origin of agriculture is briefly reviewed. The conservation status of crop genetic resources, either ex situ or in situ, cultivated or wild, has been assessed for species of the Central American and Mexican centre, demonstrating that that region is indeed one of the important centres of crop diversity for human kind. Furthermore, biotechnological developments with regard to the creation and spread of genetically modified crops have been analyzed. The likelihood of unintentional introgression of genetically modified traits into conventional seed lots, crops as well as into germplasm collections have been assessed. Related biosafety measures as well as the possible implications of intellectual property rights on transgenic crops and/or genes are being discussed vis-a-vis the possible implications they might have for germplasm management. The Central American crop genetic resources situation has been used as a “case study” to illustrate the potential impact of the spreading of GM varieties on the genetic diversity in genebanks and farmers’ fields and the need for effective and efficient conservation efforts. Conservation management strategies and practices are being proposed of mitigate the potential negative impact of GM crops on the conservation efforts.  相似文献   

10.
Clonal propagation and sexual reproduction have diametrically opposite effects on the genetic diversity of crops, permitting, respectively, the conservation of existing genotypes or the creation of new diversity. Oxalis tuberosa Mol. (“oca”) exhibits a heteromorphic self-incompatibility system and is traditionally propagated clonally but is capable of sexual reproduction. In this study we investigated the influence of sexual reproduction on the in situ genetic diversity of a vegetatively propagated crop, taking oca as a model plant. The occurrence of sexual reproduction in natural conditions and its use by farmers were studied through surveys and interviews, while the effect of sexual reproduction on the in situ genetic diversity was evaluated using microsatellite analysis. Plantlets issuing from sexual reproduction were encountered in five of the nine visited communities. The interviews indicated that six out of the nine interviewed farmers were likely, albeit unconsciously, incorporating clonal lineages issuing from sexual reproduction into their varieties. The microsatellite analysis indicated a strong effect of such incorporations on the genetic diversity of the plant varieties. Assignment tests confirmed the allogamy of oca. “Complex varieties”, made up of individuals exhibiting genetically differentiated genotypes, were most likely the result of recent crossing. Unconscious incorporation of new genotypes into the cultivated oca germplasm is therefore highly likely, raising the question of its potential occurrence in other vegetatively propagated crops. These findings could have an important effect on the adaptive potential of oca, especially in light of the genetic erosion that threatens the crop.  相似文献   

11.
Rice genetic resources conservation and evaluation is crucial to ensure germplasm sources for further crop breeding. We conducted a wide collection of Oryza species in Niger and characterize its diversity with microsatellites (or simple sequence repeats, SSR). The aims of this research were to get a better understanding of the extent of genetic diversity, its structure and partition within rice eco-geographical zones of Niger. There were 264 accessions found in farmers’ and other fields: 173 O. sativa (Asia’s rice), 65 O. glaberrima (Africa’s rice), 25 O. barthii, and 1 O. longistaminata (weedy perennial rice), which were genotyped with 18 SSR. A total of 178 alleles were detected, with a mean of 9.89 alleles per locus. The polymorphism information content was 0.65 and heterozygosity was estimated as 0.14. Two main well-differentiate genotypic groups, which correspond to Asian and African rice species, were identified. The SSR set divided the Asia’s rice group (solely indica) into irrigated and floating rice, with rainfed lowland rice in between. The African rice species group was composed of O. glaberrima, O. longistaminata and O. barthii accessions, but without any clear genetic differentiation among them likely due admixtures within the samples of O. barthii. Five accessions that could be natural interspecific hybrids were too admixed for assigning them to any of the two well-differentiated groups. The partitioning of the overall diversity showed that maximum variation was within genotypic groups and subgroups or cropping ecologies, rather than between eco-geographical zones. The eco-geographical distribution of the diversity suggests germplasm exchange in Niger. Next-steps for conserving rice and crop wild relatives in Niger could be taken using the findings of this research.  相似文献   

12.
Jute mallow rich in proteins, vitamins and essential amino acids is an important leafy vegetable in Africa. Ethno-botanical knowledge on the crop in Ghana has been only incompletely documented and little is known about variation and diversity of local accessions. In order to document available ethnobotanical knowledge and investigate diversity of local accessions, 4000 farmers in twenty districts were surveyed using participatory rapid appraisal tools and techniques. 50 accessions of local germplasm were collected from these districts. Using randomized complete block design with three replications, the 50 accessions collected were characterized based on 12 quantitative and 6 qualitative traits. Results of the survey recorded several vernacular names of the crop and their meaning referring to the slimy nature of the leaves. Some local cultivars which were known in the past are no longer cultivated in farmers’ field suggesting genetic erosion of jute mallow in Ghana. Apart from food, respondents use jute mallow to treat fever, waist pain, stomach problems and loss of appetite indicating nutraceutical potential of the crop. Hierarchical cluster analysis grouped the accessions into four distinct clusters and individuals from the same geographical origin were separately classified. Quantitative traits such as leaf length, number of branches per plant, and number of leaves/plant defined the first principal component. Accessions Cagric 26, Cagric 28, Cagric 41, Cagric 08 and Cagric 01 recorded high yields. These accessions could serve as parents for breeding of improved cultivars.  相似文献   

13.
Farming communities in traditional agroecosystems have been playing an important role in conserving agricultural diversity. They are not only the custodians but also managers of the crop diversity and maintain the dynamic processes of crop evolution and adaptation, the key elements of sustainable agricultural productions. The Himalayan highlands are important centres of crop plant diversity due to high ecological heterogeneity and high local socio-cultural integrations. The crop genetic diversity of Kumaon Himalaya in Uttarachal State of India has been documented in the present study. Existing crop genetic diversity at inter- and intra-species level was assessed and factors for changes in crop compositions and farming systems during the recent past were studied. Farmer management of rice landrace populations were studied in greater detail. Various benefit enhancing options for farmers from local crop diversity were scrutinized based on farmer perceptions and priorities for efficient management of local crop diversity on-farm and its sustainable utilization for agricultural production.  相似文献   

14.
Natural populations of wild rice, Oryza rufipogon Griff., are now threatened with the disturbance of their natural habitats by various human activities. To obtain basic information on genetic erosion or loss of genetic diversity in wild rice, we investigated how environmental changes of habitat affected the genetic structure of its natural population at a study site in the central plain of Thailand. During 10 years from 1985 to 1994, the wild-rice population at this site was seriously destroyed and fragmented. Using two sets of seed sample collected in 1985 and 1994 from the same population, allozyme variability at 17 loci of 11 enzymes were examined. Isozyme genotypes of mother plants of seed samples were estimated by the segregation in each progeny, and we calculated genetic parameters for the population. Gene diversity severely decreased in the 1994 sample compared with the 1985 sample. It is supposed that declining and fragmentation of the wild rice population, which happened during the 10 years, caused loss of genetic variability and forced the habitually outbreeding plants to inbreed, accelerating a reduction in gene variability. Pgi1-1 allele which was common in Indica rice cultivars of this region was found in the wild rice plants growing at the side of rice fields. Probably, introgression has occurred between wild and cultivated rice plants, and consequently the intrinsic nature of wild rice was gradually blurred by cultivar genes. We must realize that the genetic erosion of wild rice is rapidly proceeding and that an action for their conservation in natural environment, so called in situ conservation, is urgently needed.  相似文献   

15.
Collections of plant genetic resources managed by genebanks function to conserve the range of genetic diversity present in crop genepools. They can facilitate access to valuable allelic variation for both plant breeders and researchers who are able to request germplasm for use in crop improvement and both basic and applied scientific research. The direct impact of genebank collections is often unclear as downstream uses of germplasm samples may not be reported back to the genebank of origin. This study aims to systematically review scientific use of germplasm using the UK Vegetable Genebank (UKVGB) as a model. Between the years of 1980–2016, a total of 271 publications were identified as using UKVGB material. The frequency of publications and the international nature of use increased significantly over the time period studied. Accessions directly sourced from the UKVGB made up the majority of material used by researchers, but material from research-derived resources such as differential sets and core collections or diversity sets have also been used. Resistance to pests and diseases and genetic diversity were the main topics of study although germplasm was used to address a wide range of other research questions. Genebanks such as UKVGB provide an essential resource of allelic diversity in crop genepools which supports a diverse range of research projects. The utilisation of these plant genetic resources has increased over time, contributing to a substantial number of publications. Developments in sequencing technologies have no doubt played a part as larger numbers of accessions can be utilized in a single experiment, but the increase also no doubt reflects a greater interest in the use of allelic diversity to overcome challenges in crop improvement and research.  相似文献   

16.
Squash (Cucurbita spp.) is a common component in traditional cropping systems in Mexico, mainly in the agroecosystem known as the “milpa”, in which squash is cultivated in association with maize (Zea mays), the main crop. Using a questionnaire, 80 farmers were interviewed about crop production and selection practices in order to understand how these factors affect genetic diversity of local squash populations. We found that the most of the farmers who cultivate squash were elderly 59.8 ± 14.5 (mean ± SD; n = 78) years old. Squash varieties in the area were exclusively locally adapted landraces, and had not been replaced by modern squash cultivars. Two cultivated squash species, C. argyrosperma ssp. argyrosperma and C. moschata, had been grown intercropped with maize by 97.5% of the interviewed farmers, but only 50.0% were still producing squash at the time of the study. Farmers recognize typical characteristics of particular varieties within each of the local cultivated squash species, and selection is directed to maintain their identity. Nearly two thirds of the farmers (62.0%) had exchanged seeds of squash for planting, a practice that serves to increase genetic variability in the populations. All of the interviewed farmers were conscious of the possible hybridization between the wild gourd (C. argyrosperma ssp. sororia) and their cultivated squash. Despite various natural and human managed factors identified as contributing to enhancement of genetic diversity in these populations, results of the study show that genetic erosion of Cucurbita is likely in the region in the near future.  相似文献   

17.
In situ population studies of wild relatives of crops are crucial for the conservation of plant genetic resources, especially in regions with high genetic diversity and a risk of local extinction. Ethiopia is the center of origin for sorghum, yet little is known about the genetic structure of extant wild populations. Using 9 Simple Sequence Repeat loci, we characterized 19 wild populations from five regions, 8 local cultivar populations from three regions, and 10 wild sorghum accessions from several African countries. To our knowledge, this is the most comprehensive study to date of in situ wild sorghum populations in Africa. Genetic diversity corrected for sample size was significantly greater in the wild populations in situ than in local cultivars or the accessions. Approximately 41 % of the genetic variation in the wild plants was partitioned among populations, indicating a high degree of differentiation and potential value for germplasm conservation, and the average number of migrants (Nm) per generation was 0.43. Cluster analyses showed that some wild populations were grouped by geographic region, whereas others were not, presumably due to long-distance seed movement. Four wild populations from disjunct regions formed a unique cluster with an Ethiopian accession of subsp. drummondii and probably represent a weedy race. STRUCTURE and other analyses detected evidence for crop-wild hybridization, consistent with previous molecular marker studies in Kenya, Mali, and Cameroon. In summary, in situ wild sorghum populations in Ethiopia harbor substantial genetic diversity and differentiation, despite their close proximity to conspecific cultivars in this crop/wild/weedy complex.  相似文献   

18.
On-farm conservation is recognized as a key component of a comprehensive strategy to conserve crop genetic resources. A fundamental problem faced by any on-farm conservation project is the identification of crop populations on which efforts should be focused. This paper describes a method to identify a subset of landraces for further conservation efforts from a larger collection representing the diversity found in the Central Valleys of Oaxaca, Mexico. Mexico is a center of origin and diversity for maize (Zea mays L.). The 17 landraces selected from an initial collection of 152 satisfy two criteria. First, they represent the diversity present in the larger collection. Second, they appear to serve the interests of farmers in the region. Data for applying the method were elicited through participatory as well as conventional techniques. They incorporate the complementary perspectives of both men and women members of farm households, and of plant breeders and social scientists.  相似文献   

19.
Towards the selection of taxa for plant genetic conservation   总被引:1,自引:1,他引:1  
The signing and ratification of the Convention on Biological Diversity has resulted in increased scientific and public interest in the conservation and utilisation of biological diversity. This has in turn triggered the need to develop more effective methodologies to conserve biological diversity for the benefit of all humanity. One of the first factors to be considered when conserving botanical diversity is the efficient and effective selection of the target taxa. The aim of this paper is not to set detailed priorities for the genetic conservation of the plant genetic resources of any particular crop or species complex, but to draw attention to the factors that should be considered when formulating priorities. The factors that are considered important when selecting plant genetic resource targets are: current conservation status; potential economic use; threat of genetic erosion; genetic distinctiveness; ecogeographic distribution; biological importance; cultural importance; cost, feasibility and sustainability; legislation; ethical and aesthetic considerations; and priorities of the conservation agency undertaking the conservation. Each of these factors is discussed in turn. Although it is not possible to provide a single methodology for the selection of plant genetic resource targets at this time, it is hoped that the consideration the factors discussed will make the selection of target taxa more object, make better use of the limited conservation resources and thus enhance the process of genetic conservation as a whole.  相似文献   

20.
Ex situ collections in botanic gardens have great potential in contributing to the conservation of rare plants. However, little is known about the effects of cultivation on the genetic diversity and fitness of garden populations, about genetic changes due to unconscious selection and potential adaptation to the artificial conditions. We compared the genetic variability and fitness of the rare, short-lived perennial Cynoglossum officinale from 12 botanic gardens and five natural populations in Germany. Genetic variability was assessed with eight nuclear microsatellites. Plants were grown in a common garden and performance was measured over 2 years. Mean genetic diversity was very similar in botanic garden and natural populations. However, four of the garden populations exhibited no genetic variability at all. Moreover, the genetic diversity of garden populations decreased with increasing duration of cultivation, indicating genetic drift. Plant performance from natural and garden populations in terms of growth, flowering and seed production was similar and in garden populations only seed mass was strongly related to genetic diversity. Several lines of evidence indicated genetic changes in garden populations in response to cultivation. Seed dormancy was strongly reduced in garden populations, and in response to nutrient addition garden plants increased the size of their main inflorescence, while wild plants increased the number of inflorescences. These changes could be maladaptive in nature and reduce the suitability of garden populations as a source for reintroductions. We suggest that botanic gardens should pay more attention to the problem of potential genetic changes in their plant collections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号