首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The use of indicator taxa for conservation planning is common, despite inconsistent evidence regarding their effectiveness. These inconsistencies may be the result of differences among species and taxonomic groups studied, geographic location, or scale of analysis. The scale of analysis can be defined by grain and extent, which are often confounded. Grain is the size of each observational unit and extent is the size of the entire study area. Using species occurrence records compiled by NatureServe from survey data, range maps, and expert opinion, we examined correlations in species richness between each of seven taxa (amphibians, birds, butterflies, freshwater fish, mammals, freshwater mussels, and reptiles) and total richness of the remaining six taxa at varying grains and extents in two regions of the US (Mid-Atlantic and Pacific Northwest). We examined four different spatial units of interest: hexagon (∼649 km2), subecoregion (3800-34,000 km2), ecoregion (8300-79,000 km2), and geographic region (315,000-426,000 km2). We analyzed the correlations with varying extent of analysis (grain held constant at the hexagon) and varying grain (extent held constant at the region). The strength of correlation among taxa was context dependent, varying widely with grain, extent, region, and taxon. This suggests that (1) taxon, grain, extent, and study location explain, in part, inconsistent results of previous studies; (2) planning based on indicator relationships developed at other grains or extents should be undertaken cautiously; and (3) planning based on indicator relationships developed in other geographic locations is risky, even if planning occurs at an equivalent grain and extent.  相似文献   

2.
Biodiversity in Africa, Madagascar and smaller surrounding islands is both globally extraordinary and increasingly threatened. However, to date no analyses have effectively integrated species values (e.g., richness, endemism) ‘non-species’ values (e.g., migrations, intact assemblages), and threats into a single assessment of conservation priorities. We present such an analysis for the 119 ecoregions of Africa, Madagascar and smaller islands. Biodiversity is not evenly distributed across Africa and patterns vary somewhat among taxonomic groups. Analyses of most vertebrates (i.e., birds, mammals, amphibians) tend to identify one set of priority ecoregions, while plants, reptiles, and invertebrates highlight additional areas. ‘Non-species’ biological values are not correlated with species measures and thus indicate another set of ecoregions. Combining species and non-species values is therefore crucial for assembling a comprehensive portfolio of conservation priorities across Africa. Threats to biodiversity are also unevenly distributed across Africa. We calculate a synthetic threat index using remaining habitat, habitat block size, degree of habitat fragmentation, coverage within protected areas, human population density, and the extinction risk of species. This threat index is positively correlated with all three measures of biological value (i.e., richness, endemism, non-species values), indicating that threats tend to be focused on the region’s most important areas for biodiversity. Integrating biological values with threats allows identification of two distinct sets of ecoregion priority. First, highly imperilled ecoregions with many narrow endemic species that require focused actions to prevent the loss of further habitat leading to the extinction of narrowly distributed endemics. Second, less threatened ecoregions that require maintenance of large and well-connected habitats that will support large-scale habitat processes and associated area-demanding species. By bringing these data together we can be much more confident that our set of conservation recommendations serves the needs of biodiversity across Africa, and that the contribution of different agencies to achieving African conservation can be firmly measured against these priorities.  相似文献   

3.
Ecological regionalizations, such as ecoregions or environmental clusters, are often used as coarse filters for conservation. To be effective biodiversity surrogates, regionalizations should contain distinct species assemblages. This condition is not frequently evaluated and regionalizations are rarely assessed comparatively. We used a national dataset of Canadian butterfly collections to evaluate four regionalizations (ecoregions, land cover and productivity regime classifications, and a spatial grid) at two thematic resolutions using analysis of similarity (ANOSIM) and species indicator values. Overall, the spatially constrained schemes (ecoregions and grids) best captured patterns of butterfly community composition and species affinities, indicating that butterfly communities are strongly structured by space at the continent scale. In contrast, when comparing regions only within spatial or environmental neighbourhoods (i.e., comparing between regions that are adjacent along geographic or environmental gradients), all regionalizations performed similarly. Adjacency in environmental space is thus as important as physical adjacency at determining community dissimilarity. Productivity regimes and land cover will be useful biodiversity surrogates when considered in conjunction with space or within a spatially constrained area. This finding was confirmed with two ecoregional case studies (of the Algonquin-Lake Nipissing and Thompson–Okanagan Plateau ecoregions), which also revealed that the relative performance of regionalizations depends upon the context of the study area. We conclude that including species data can improve the efficiency of environmental surrogates for systematic conservation planning.  相似文献   

4.
Madagascar is a global biodiversity hotspot threatened by forest loss, degradation and fragmentation, all of which are detrimental to the future survival of forest-dwelling organisms. For conservation purposes it is essential to determine how species respond to habitat disturbance, specifically deforestation. In this study we investigated the impacts of deforestation on three vertebrate communities, lizards, small mammals and birds, in an area of spiny forest subjected to anthropogenic forest clearance. Spiny forest has high levels of endemism, but conservation in this unique ecosystem is hindered by the lack of research. We undertook standardised trapping, time-constrained and timed species searches to assess species richness, species abundance and community composition of lizards, small mammals and birds in six areas of ‘forest’ and six ‘cleared’ areas. From surveys and opportunistic sightings we recorded a total of 70 species of birds, 14 species of mammals and 38 species of reptiles and amphibians. We found forest clearing to have a negative effect on species richness and community structure of all groups and identified loss of canopy cover as a driving factor behind this. However, the response and sensitivity to clearing varied between groups and species. Lizards (50%) and small mammals (40%) had the greatest decline in species richness in response to clearing as compared to birds (26%), although birds showed the greatest shift in community structure. The community in cleared areas contained more generalist and introduced species that have wider geographic ranges and habitat preferences, than those unique to the spiny forest. We found the first suite of species to suffer from forest clearance were those of high conservation priority due to their restricted geographic range. Our findings are discussed in relation to future spiny forest conservation and management.  相似文献   

5.
Understanding spatial and temporal patterns of species is a prerequisite for successful species and habitat conservation. Spatial variation in breeding sites of four gull species was studied in southern Finland in an oligo-mesotrophic lake complex covering almost 50 km2 of water areas and 290 km of shoreline in three census periods in 1986-2004. Two of the species have declined and are regarded as red-listed in Finland (black-headed gull ridibundus and lesser black-backed gull L. f. fuscus) and two have increased (common gull L. canus and herring gull L. argentatus) in numbers during the past decades. The numbers of breeding pairs and the percentage similarity in the spatial distribution of pairs of each species in grid squares were compared between different census periods at resolutions of 0.25, 1 and 4 km2. The common gull showed very high percentage similarity between the different census periods and consequently low spatial turnover in nesting sites, whereas the red-listed species, particularly the black-headed gull, had much higher spatial turnover. The spatiotemporal dynamics of gull species should thus be taken into account in conservation planning. If site protection is based only on information of breeding gulls in one year, a large or even major proportion of the breeding red-listed gulls might be outside the protected areas after a few decades. Due to the large spatiotemporal variation of red-listed gulls, areas to be protected should cover a rather large proportion of a boreal lake, not only individual islets or islands.  相似文献   

6.
Analysis of the spatial distribution of all species of conservation importance within a region is necessary to augment reserve selection strategies and habitat management in biodiversity conservation. In this study, we analyzed the spatial aggregation, spatial association, and vegetation types of point occurrence data collected from museum and herbaria records for rare, special concern, threatened, and endangered species of plants, reptiles, mammals, and birds in western Riverside County in southern California, USA. All taxa showed clumped distributions, with aggregation evident below 14 km for plants, 12 km for reptiles, 2 km for mammals, and 10 km for birds. In addition, all combinations of the different species groups showed high positive spatial association. The Santa Rosa Plateau exhibited the highest number of rare, special concern, threatened, and endangered species, and shrubland (coastal sage and chaparral) was the vegetation type inhabited by the most species. Local land use planning, zoning and reserve design should consider the spatial aggregation within and between species to determine the appropriate scale for conservation planning. The higher spatial association between species groups in this study may indicate interdependence between different species groups or shared habitat requirements. It is important to maintain diverse communities due to potential interdependence. The results of the study indicate that concentrating preservation efforts on areas with the highest number of species of concern and the restoration of native shrublands are the most appropriate actions for multiple species habitat conservation in this area.  相似文献   

7.
Live retention trees are expected to support the recovery of epiphytes in regenerating stands by retaining a part of the populations in cutover sites and receiving propagules from adjacent forests. So far, the research has been focused on immediate post-harvesting mortality caused by microclimatic stress while a broader perspective on epiphyte community dynamics is lacking. We studied lichen and bryophyte communities on the trunks of retention trees and adjacent forest trees in Estonia, where significant desiccation (particularly of bryophytes) had been documented within 2-3 years after timber harvesting. The resampling 5-6 years after harvesting indicated that, during the 3 years passed, (1) lichen species richness per surviving tree increased and bryophyte species richness stabilised, (2) there were no clear successional changes in the composition of the communities and (3) retention trees were more frequently colonised than forest trees. Most epiphyte extinctions between the sampling years were related to the death of trees (particularly in the forests because of harvesting) and stochastic disappearances of the smallest populations. Also, retention trees were very rarely colonised by species of conservation concern. We conclude that, in addition to addressing the microclimatic stress in the first post-harvesting years, crucial elements in sustaining epiphytic bryophyte and lichen populations in green-tree retention systems include careful selection of the retention trees and a supportive reserve network. The selection of the trees should assure representativity and long-term survival of local populations, while reserves should host the most demanding species and be stable colonisation sources in general.  相似文献   

8.
Widespread degradation of the sagebrush ecosystem in the western United States, including the invasion of cheatgrass, has prompted resource managers to consider a variety of approaches to restore and conserve habitats for sagebrush-associated species. One such approach involves the use of greater sage-grouse, a species of prominent conservation interest, as an umbrella species. This shortcut approach assumes that managing habitats to conserve sage-grouse will simultaneously benefit other species of conservation concern. The efficacy of using sage-grouse as an umbrella species for conservation management, however, has not been fully evaluated. We tested that concept by comparing: (1) commonality in land-cover associations, and (2) spatial overlap in habitats between sage-grouse and 39 other sagebrush-associated vertebrate species of conservation concern in the Great Basin ecoregion. Overlap in species’ land-cover associations with those of sage-grouse, based on the ? (phi) correlation coefficient, was substantially greater for sagebrush obligates than non-obligates . Spatial overlap between habitats of target species and those associated with sage-grouse was low (mean ? = 0.23), but somewhat greater for habitats at high risk of displacement by cheatgrass (mean ? = 0.33). Based on our criteria, management of sage-grouse habitats likely would offer relatively high conservation coverage for sagebrush obligates such as pygmy rabbit (mean ? = 0.84), but far less for other species we addressed, such as lark sparrow (mean ? = 0.09), largely due to lack of commonality in land-cover affinity and geographic ranges of these species and sage-grouse.  相似文献   

9.
Urbanization changes bird community structure during the breeding season but little is known about its effects on migrating birds. We examined patterns of habitat use by birds at the local and landscape level during 2002 spring migration at 71 riparian plots along an urban gradient in Cincinnati, Ohio, USA. Using linear regression, we examined variation in relative density, species richness, and evenness of four migratory guilds associated with natural land covers and building area at four scales (50, 100, 250, 500 m radial buffers). We also examined the influence of local vegetation using multiple regression models. As building area increased, riparian forests tended to be narrower and have fewer native trees and shrubs. In general, native birds were positively associated with tree cover (within 250-500 m of stream) and native vegetation, and negatively with building area (within 250 m); exotic species responded inversely to these measures. Short-distance migrants and permanent residents displayed the weakest responses to landscape and vegetation measures. Neotropical migrants responded strongest to landscape and vegetation measures and were positively correlated with areas of wide riparian forests and less development (>250 m). Resident Neotropical migrants increased with wider riparian forests (>500 m) without buildings, while en-route migrants utilized areas having a wide buffer of tree cover (250-500 m) regardless of buildings; both were positively associated with native vegetation composition and mature trees. Consequently, developed areas incorporating high native tree cover are important for conserving Neotropical migrants during stopover.  相似文献   

10.
Due to human population growth and migration, there will be nearly 2 billion new urban residents by 2030, yet the consequences of both current and future urbanization for biodiversity conservation are poorly known. Here we show that urban growth will have impacts on ecoregions, rare species, and protected areas that are localized but cumulatively significant. Currently, 29 of the world’s 825 ecoregions have over one-third of their area urbanized, and these 29 ecoregions are the only home of 213 endemic terrestrial vertebrate species. Our analyses suggest that 8% of terrestrial vertebrate species on the IUCN Red List are imperiled largely because of urban development. By 2030, 15 additional ecoregions are expected to lose more than 5% of their remaining undeveloped area, and they contain 118 vertebrate species found nowhere else. Of the 779 rare species with only one known population globally, 24 are expected to be impacted by urban growth. In addition, the distance between protected areas and cities is predicted to shrink dramatically in some regions: for example, the median distance from a protected area to a city in Eastern Asia is predicted to fall from 43 km to 23 km by 2030. Most protected areas likely to be impacted by new urban growth (88%) are in countries of low to moderate income, potentially limiting institutional capacity to adapt to new anthropogenic stresses on protected areas. In short, trends in global ecoregions, rare species, and protected areas suggest localized but significant biodiversity degradation associated with current and upcoming urbanization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号