首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
砂性层状土柱蒸发过程实验与数值模拟   总被引:1,自引:0,他引:1  
任利东  黄明斌 《土壤学报》2014,51(6):1282-1289
为了了解不同类型层状土柱蒸发特性,利用砂土和砂黄土2种土壤,设置3种不同厚度分层土柱(11.25、22.5、45 cm)和2种均质对照土柱,测定了土柱蒸发过程中累积蒸发量、相对蒸发速率和剖面含水量的变化;同时利用2种均质土柱排水过程优化的土壤水力参数和Hydrus-1D模型对2种均质土柱和3种不同类型层状土柱蒸发过程进行模拟分析。结果表明,均质砂黄土蒸发第一阶段持续长达34 d,累积蒸发量显著高于均质砂土和其他3种不同类型分层土柱,土柱剖面含水量变化进一步证明表层覆盖砂土可显著抑制土壤蒸发。利用排水过程优化的水力参数,HYDRUS-1D可以较好地模拟层状土柱蒸发过程。研究结果对干旱半干旱区土壤水分管理具有指导意义。  相似文献   

2.
柑橘地土壤溶质优先运移研究   总被引:2,自引:0,他引:2  
通过室内原状土柱与重塑土柱对比实验,应用溶质穿透曲线研究柑橘地土壤优先流及溶质优先运移的特征。结果表明:柑橘地原状土柱土壤穿透曲线表现出了上升阶段的拐点现象,是优先流与基质流共同作用的结果。原状土柱土体穿透曲线下降初期较陡,并表现出了较长的拖尾特征,重塑土柱下降趋势相对稳定。存在优先路径的土体出流速率稳定性较差,变异系数较大,其平均出流速率是重塑土柱出流速率的3.5倍。优先流作用使溶质相对浓度到达峰值的时间缩短了37.7%,此时造成的溶质运移量却是平衡基质流所造成的溶质运移量的2.5倍,因此优先流能够导致土壤溶质的快速大量迁移。  相似文献   

3.
饱和非均质土壤中溶质大尺度运移的两区模型模拟   总被引:4,自引:0,他引:4       下载免费PDF全文
目前,用于模拟土壤中溶质运移过程的两区模型(TRM)的研究均集中在实验室的短土柱上,涉及的尺度较小。本研究分别应用两区模型(TRM)、对流-弥散方程(CDE)和分数微分对流-弥散方程(FADE)对1 250 cm长一维非均质土柱中NaCl的运移过程进行模拟,并分析了TRM模型参数的变化特征。结果表明:实验土柱中存在一定的不动水体,与CDE和FADE相比,TRM能更好地描述土柱中不同位置处溶质穿透曲线的提前穿透和拖尾特征,表明TRM对较大尺度条件下非均质土壤中溶质运移的模拟具有更高的精度;应用TRM研究长土柱中溶质的运移问题依然存在弥散系数的尺度效应问题,但TRM的弥散尺度效应小于CDE;TRM中的可动水体含量可以由土壤的有效孔隙率与总孔隙率的比值来确定;而质量交换系数则与对流时间(x/vm)之间存在幂函数的相关关系。  相似文献   

4.
磺胺嘧啶在原状土柱中的运移特征及模拟   总被引:2,自引:0,他引:2  
张步迪  林青  徐绍辉 《土壤学报》2018,55(4):879-888
以磺胺嘧啶(Sulfadiazine,SDZ)为研究对象,通过室内原状土柱(0~15 cm,土柱Ⅰ和15~30 cm,土柱Ⅱ)出流试验探讨了其在不同剖面深度处的迁移特征,运用Hydrus-1D软件对试验结果进行模拟,并对不同流速下磺胺嘧啶在0~200 cm土壤中的迁移行为做了预测。结果表明:SDZ在原状土柱Ⅱ中的穿透曲线相较于原状土柱Ⅰ的发生左移,即较深层土壤中,SDZ的迁移速度更快,这主要是受土壤理化性质,如有机质、阳离子交换量和p H等的影响;两区模型(TRM)模拟的R~20.91,均方根误差RMSE0.061,不动水区域f0.154,其模拟效果优于单点模型(OSM)和两点模型(TSM),表明土壤的不可动区域是吸附SDZ的重要部分。预测结果显示:同一流速时,SDZ浓度峰值随着土壤剖面深度增加而减小,出流时间逐渐增大;同一深度处,当水流速度从0.017 cm min~(-1)增加到0.030 cm min~(-1)再到0.100 cm min~(-1)时,磺胺嘧啶在土壤中的迁移速度不断加快,出流浓度也越来越高,当流速为0.100 cm min~(-1)时,SDZ可快速穿过土层进入地下水,其穿透曲线不再对称,出现拖尾现象。  相似文献   

5.
北京昌平区农地土壤优先流影响硝态氮运移的试验分析   总被引:4,自引:0,他引:4  
为了探讨在优先流影响下农地土壤水分与溶质的运移规律,以昌平农地土壤为研究对象,通过原状土取样和分层填充制备实验土柱,模拟存在优先流和平衡入渗2种水分下渗过程,分析优先流对农地土壤中硝态氮运移的影响。结果表明:相较于平衡入渗,存在优先流的土壤中硝态氮运移的速率更快、数量更多,且其穿透曲线表现出拖尾现象。优先流的存在会使土壤的水分出流速率达到平衡入渗过程的1.48~2.69倍,且波动程度较大;受其影响,硝态氮运移表现出快速、大量下渗的特征,原状土柱中NO3-的穿透时间为12 h,此时的孔隙体积为0.36,相较于填充土柱分别减少了57%和27%。此外,原状土柱中以NO3-标记的优先流占水流总量的43.83%,引起的NO3-累计淋出量占总量的97.60%,这表明有限的优先流流量能够引起绝大部分的硝态氮运移。土壤优先流还使得其穿透曲线表现出拖尾现象,这可能是由于优先流和基质流之间下渗速率的不平衡造成的。  相似文献   

6.
不同类型层状土壤持水能力的研究   总被引:14,自引:3,他引:11  
为了了解不同类型层状土柱持水能力,利用砂土和砂黄土2种土壤,设置3种不同厚度分层土柱(11.25、22.5、45 cm)和2种匀质对照土柱,测定了土柱自初始饱和条件下的排水过程;同时利用匀质土柱测定结果标定2种土壤水力参数,通过Hydrus-1D模型对不同类型层状土柱排水过程进行模拟分析,获得了不同类型层状土柱的田间持水量。结果表明,层状土柱持水能力随着分层厚度的减小而增加,当分层厚度减小到一定程度时土柱持水能力不再随着分层厚度的减小而增加,该临界厚度取决于下层粗质土壤对上层细质土的吸力与上层细质土壤进气吸力之间的相对大小。本试验所用2种土壤分层临界厚度大约在5 cm左右;土柱失水主要来自下层较粗质地土壤,由饱和时的0.385 cm~3/cm~3减小到0.04 cm~3/cm~3。上层细质土壤含水量随着分层厚度的减小而增加。研究结果可为干旱半干旱地区矿区恢复和污染物填埋提供理论指导。  相似文献   

7.
降雨强度对优先流特征的影响及其数值模拟   总被引:8,自引:3,他引:5  
为了研究优先通道发育程度对不同降雨强度下优先流特征的影响,该文选取不同深度的田间原状土样,在不同降雨强度下进行土壤优先流的室内物理模拟试验,并采用双渗透介质模型Hydrus-1D对优先流发育过程进行数值模拟。结果表明:优先通道越发育,其优先流程度越高。降雨强度对优先流速率及其增加幅度的影响随土壤优先通道发育程度的增加而增加。优先通道发育的土柱,降雨强度越大时,其土柱下端初始出流时间越短,而优先通道一般发育的土柱,其土柱下端初始出流时间均随降雨强度增加呈先减小而后增加的规律。当降雨强度小于土柱最大导水能力(原状土柱表面出现积水时的导水能力)时,优先流速率随降雨强度增加而显著增加,而当降雨强度接近或大于其最大优先导水能力时,优先流速率增加缓慢或趋于稳定。土壤优先通道对降雨入渗的导水能力(即优先流速率与降雨强度之比)随降雨强度增加而变小。双渗透介质模型能较理想地模拟优先流发育过程,对土壤基质向大孔隙排水过程的模拟较差,但模型不适用于裂隙发育的土壤。各土柱的优先流程度为93.6%~99.9%。在研究降雨强度对优先流的影响规律时,该研究考虑了优先通道发育程度对此规律的影响,丰富了优先流理论,同时对农业节水、土壤污染迁移、地下水污染风险评价以及滑坡机理等研究方面具有重要的科学意义。  相似文献   

8.
在室内条件下采用垂直土柱易混置换法,研究土壤团聚体大小对非反应性溶质(Cl-)迁移的影响,并以相同直径的细砂柱作为对照,揭示土壤团聚状况对溶质迁移的影响规律。结果表明:在相同实验条件下,随着土壤团聚体直径的减小,孔隙水流速、溶液流速均减慢,在介质颗粒粒径为0.25~0.5mm时发现优势流的存在;通过分析比较土柱与砂柱的穿透曲线、运移参数,发现穿透曲线与土壤孔隙分布状况密切相关;随着土壤团聚体直径的减小,Cl-在土柱中的溶质出流推后,淋洗结束提前,水动力弥散系数(Dsh)逐渐减小,说明介质的孔隙构造是影响溶质运移的一个重要因素。  相似文献   

9.
应用^35S研究模拟酸雨硫在土壤中渗透流失规律,结果表明:酸雨硫在中性紫色土的土柱中,硫的流失量多,酸性黄壤次之,酸性紫色土的土柱中硫的流失量少。供试三种土壤的土柱随着酸雨浓度的增加,酸雨硫的流失百分率增加;随着气温升高,酸雨硫的流失百分率增加。酸雨浓度大的土柱,残留硫量多,酸雨浓度小的土柱,残留硫量少。pH5.6酸雨随土柱深度增加,残留硫量有所增加,而pH4和pH2.5酸雨土柱,随深度增加残留硫  相似文献   

10.
阿特拉津在饱和砂质壤土中非平衡运移的模拟   总被引:8,自引:4,他引:8  
任理  毛萌 《土壤学报》2003,40(6):829-837
针对农药阿特拉津在稳定流场饱和砂质壤土中的运移 ,根据平衡与非平衡假设条件下对流—弥散方程数学模型的解析解 ,基于易混合置换实验获得的阿特拉津和示踪溶质Br- 的穿透曲线及批量平衡法求得的阻滞因子 ,应用CXTFIT 2 0软件 ,通过拟合土柱实验中溶质的出流浓度变化 ,估算了模型的有关参数 ,在此基础上模拟分析了实验土柱不同埋深处阿特拉津的出流浓度和累积淋溶量动态 ,结果表明 ,化学非平衡的两点模型对本文实验条件下阿特拉津运移的仿真具有较高的精度  相似文献   

11.
《CATENA》2006,65(2-3):193-208
Winter as well as summer floods result in soil loss and sedimentation. Up to now the winter events cannot be adequately predicted. This paper focuses on the infiltration processes under frozen winter conditions in order to model soil erosion processes in winter by adapting the computer model EROSION 3D [Schmidt, J., Werner, M. v., 2000. Modeling Sediment and Heavy Metal Yields of Drinking Water Reservoirs in the Osterzgebirge Region of Saxony (Germany). In: Soil Erosion - Application of Physically Based Models, Schmidt, J.(Editor). Berlin, Heidelberg, New York., pp. 93-108.].A new snow accumulation and snow melt module has been implemented in order to estimate erosion rates during snowmelt events. Tests show that infiltration still occurs in frozen soils, however, infiltration rates are reduced compared to unfrozen soils [Weigert, A., Wenk, G., Ollesch, G., Fritz, H., 2003. Simulation of snowmelt erosion using the EROSION 3D model. Journal of Plant Nutrition and Soil Sciences, 1/2003.]. In order to improve the EROSION 3D model regarding partly frozen soils a physical based infiltration model extension has been developed and experimentally verified.Processes of infiltration into partly frozen soils are successfully quantified by a newly designed experimental set-up using a soil column (height 50 cm, diameter 21.5 cm). At the bottom of this column a negative pressure can be applied in order to establish unsaturated hydraulic conditions. The volume rate of the percolating water is constantly measured by an online balance. In addition the column is equipped with three TDR and temperature probes.The behaviour of two soil samples (sandy vs. loamy soil) are investigated under saturated, unsaturated and frozen conditions. The improved physical infiltration model based on the combination of Darcy's Law, Hagen-Poiseuille's Law, the capillary-rise equation and the van Genuchten θ(h) function determines with considerable accuracy both the unsaturated hydraulic conductivity and the effective saturated hydraulic conductivity of a partly frozen soil for rigid soil matrix conditions. This approach is compared with the Mualem concept for predicting unsaturated hydraulic conductivities. Fractures were observed due to freezing cracks in case of loamy material. For fractured soils the calibration with a skinfactor is found to be absolutely necessary to give reliable results.  相似文献   

12.
Water transport under winter conditions   总被引:1,自引:0,他引:1  
Winter as well as summer floods result in soil loss and sedimentation. Up to now the winter events cannot be adequately predicted. This paper focuses on the infiltration processes under frozen winter conditions in order to model soil erosion processes in winter by adapting the computer model EROSION 3D [Schmidt, J., Werner, M. v., 2000. Modeling Sediment and Heavy Metal Yields of Drinking Water Reservoirs in the Osterzgebirge Region of Saxony (Germany). In: Soil Erosion - Application of Physically Based Models, Schmidt, J.(Editor). Berlin, Heidelberg, New York., pp. 93-108.].A new snow accumulation and snow melt module has been implemented in order to estimate erosion rates during snowmelt events. Tests show that infiltration still occurs in frozen soils, however, infiltration rates are reduced compared to unfrozen soils [Weigert, A., Wenk, G., Ollesch, G., Fritz, H., 2003. Simulation of snowmelt erosion using the EROSION 3D model. Journal of Plant Nutrition and Soil Sciences, 1/2003.]. In order to improve the EROSION 3D model regarding partly frozen soils a physical based infiltration model extension has been developed and experimentally verified.Processes of infiltration into partly frozen soils are successfully quantified by a newly designed experimental set-up using a soil column (height 50 cm, diameter 21.5 cm). At the bottom of this column a negative pressure can be applied in order to establish unsaturated hydraulic conditions. The volume rate of the percolating water is constantly measured by an online balance. In addition the column is equipped with three TDR and temperature probes.The behaviour of two soil samples (sandy vs. loamy soil) are investigated under saturated, unsaturated and frozen conditions. The improved physical infiltration model based on the combination of Darcy's Law, Hagen-Poiseuille's Law, the capillary-rise equation and the van Genuchten θ(h) function determines with considerable accuracy both the unsaturated hydraulic conductivity and the effective saturated hydraulic conductivity of a partly frozen soil for rigid soil matrix conditions. This approach is compared with the Mualem concept for predicting unsaturated hydraulic conductivities. Fractures were observed due to freezing cracks in case of loamy material. For fractured soils the calibration with a skinfactor is found to be absolutely necessary to give reliable results.  相似文献   

13.
《Journal of plant nutrition》2013,36(7):1513-1526
Abstract

Many tropical plant species originated in areas with acidic soils and do not grow well in calcareous (high pH) soils. It is impossible to acidify soils that have high contents of calcium carbonate in south Florida. Replacing calcareous soils with acidic soils obtained from distant regions is an alternative. Unfortunately, such introduced acidic soils may eventually be neutralized by irrigation and ground water that is saturated with calcium carbonate. The objective of this investigation was to examine the acidity changes and buffering capacities of three types of acidic soils (silica sand soil, red loamy sand soil, and a mixed soil) used to establish tropical plants in a rainforest exhibition at Fairchild Tropical Garden, Miami, FL. The three areas were excavated to remove native calcareous soil, limestone bedrock, and filled with acidic soils. Various rainforest plants were planted. Soil samples were collected in contiguous 10 cm‐deep segments from the soil surface to the bedrock shortly after deposition of the soils and one year later. Soil pH, EC, particle distribution, buffering capacity were determined. Results showed that both silica sand and mixed soils had been neutralized and the soil pH values had risen over 7 in all soil depths after one year. However, less than 10 cm of the surface and bottom soil layers of red loamy sand had been neutralized and the soil pH in the middle of soil profile remained unchanged due to its higher buffering capacity. A column leaching study showed that the acidity in the red loamy sand soil would be neutralized by irrigation water and by capillary movement of groundwater with a high concentration of calcium bicarbonate. Buffering curves indicate that it is easier to maintain acidity in sandy soil than of loamy sand and mixed soils with acidified irrigation water. Indeed it is difficult to acidify the mixed soils with high organic matter content after these soils have been neutralized.  相似文献   

14.
Simple models describing nitrogen processes are required both to estimate nitrogen mineralization in field conditions and to predict nitrate leaching at large scales. We have evaluated such a model called LIXIM, which allows calculation of nitrogen mineralization and leaching from bare soils, assuming that these are the dominant processes affecting N in bare soil. LIXIM is a layered, functional model, with a 1-day time step. Input data consist of frequent measurements of water and mineral N contents in soil cores, standard meteorological data and simple soil characteristics. The nitrate transport is simulated using the ‘mixing-cells’ approach. The variations in N mineralization with temperature and moisture are accounted for, providing calculation of the ‘normalized time’. An optimization routine is used to estimate the actual evaporation and the N mineralization rates that provide the best fit between observed and simulated values of water and nitrate contents in all measured soil layers. The model was evaluated in two field experiments (on loamy and chalky soils) including treatments, lasting 9–20 months. The water and nitrate contents in soil were satisfactorily simulated in both sites, and all treatments, including a 15N tracer experiment performed in the loamy soil. In the chalky soil, the calculated water balance agreed well with drainage results obtained in lysimeters and independent estimates of evaporation. At both sites, N mineralization was reduced by the incorporation of crop residues (wheat or oilseed rape straw); the amounts of nitrogen immobilized varied between 20 and 35 kg N ha?1. In the treatments without crop residues, the mineralization rate followed first-order kinetics (against normalized time) in the loamy soil, and zero-order kinetics in the chalky soil. In the latter soil, the mineralization kinetics calculated in situ were close to the kinetics measured in laboratory conditions when both were expressed against normalized time.  相似文献   

15.
In Schleswig-Holstein, F.R.G., two typical soil associations from loamy boulder marl and loamy pleistocene sands were mapped and ecologically characterized in order to show the necessity of an adequate classification of Colluvic Cumulic Anthrosols (Colluvisols). More than 50% of the original soils have been altered by erosion. The depth of the colluvic wM horizon ranges between 10 cm and more than 100 cm. The amounts of soil organic matter and plant available nutrients are much higher in the Colluvisols than in the haplic soils. Soil classification does not deal with all these aspects with regard to mapping of colluvic soils. In the German soil classification adequate and ecologically significant definitions and instructions of the nomenclature of colluvic soils are not available. Therefore, a proposal is presented to classify colluvic soils. In addition the threshold value of 0.6% soil organic matter in sandy parent material is too low in order to distinguish a Bv from a M horizon; 1.0% would be a more acceptable value. It would be necessary to investigate yield on erodic, non-erodic and colluvic soils in order to determine the effect of erosion and accumulation on crop yield.  相似文献   

16.
冬小麦/夏玉米轮作中NO3-N在土壤剖面的累积及移动   总被引:41,自引:0,他引:41  
巨晓棠 《土壤学报》2003,40(4):538-546
通过田间试验研究了冬小麦 /夏玉米轮作中NO- 3 N在土壤剖面的累积及移动 ,结果表明 ,尿素施入旱地土壤后 ,硝化作用一般在 7d之内完成 ,NH 4 N只在施肥后的短期内保持较高浓度 ,其它时期NH 4 N含量基本在 1~ 3mgkg- 1 范围内 ,土壤剖面不同层次NH 4 N一般也低于 4mgkg- 1 ,NH 4 N的含量不能反映土壤有效氮的水平。土壤剖面中的NO- 3 N随施氮量的增加而显著升高。在低施氮量条件下 (N <12 0kghm- 2 ) ,NO- 3 N主要在 0~ 40cm土层内移动 ,但当施氮量高于N 2 40kghm- 2 时 ,冬小麦季即有相当数量的氮移出 0~ 10 0cm土体。NO- 3 N在土体中的移动存在着很大的年际变化 ,在干旱年份 ,即使夏玉米季 ,NO- 3 N向深层移动的可能性也很小。试验年份中 ,除 1999年夏玉米季发生了较严重的气体损失以外 (该季节特别干旱 ) ,其余季节损失的肥料氮主要以NO- 3 N的形式在深层土壤剖面中累积 ,这在两个试验点的结果相当一致。  相似文献   

17.
Abstract

Porous plates or cups are commonly used to collect soil solution samples in field studies or from intact soil columns. Some commonly used materials for porous plates may adsorb soil solution constituents such as phosphorus (P). An alternative to using a porous plate is to use a membrane filter with a known pore size and bubble point. The objective of this study was to evaluate the utility of polyethersulfone membranes (pore size 0.45 µm and bubble point >200 kPa) to extract soil solution from in situ soils and intact soil columns for phosphate analysis. In situ soil solution samplers were constructed from modified reusable polysulfone membrane filter holders equipped with polyethersulfone membranes (47 mm diameter). A ?10 kPa vacuum was maintained in the samplers, which enabled soil solution collection at soil water potentials of 0 to ?4 kPa in loamy sand, 0 to ?10 kPa in sandy loam, and 0 to ?12 kPa in sandy clay loam soils. In a laboratory study, soil solution samplers continued to hold a vacuum to ?77 kPa soil water potential. Soil solution samplers were further evaluated in a field study at 45‐, 90‐, and 135‐cm depths in two soils. Samplers operated with relatively few difficulties for the first 12 months of field evaluation. Membranes apparently dried during periods of low soil water potential but increases in soil moisture were sufficient to rewet the membrane. Sampler failures in the field increased during 13–18 months because aged vacuum tubing and root interferences with samplers at 45 cm. Improvements in sampler design may improve the durability for implementation in long‐term field experiments. Membrane filters worked near flawlessly to maintain unsaturated conditions in intact soil columns. The filter units facilitated easy collection of soil water from the intact soil columns without altering the chemical composition of the percolate.  相似文献   

18.
The adsorption of herbicides on soil colloids is a major factor determining their mobility, persistence, and activity in soils. Solvent extraction could be a viable option for removing sorbed contaminants in soils. This study evaluated the extractability of three herbicides: 2,4 dichlorophenoxy-acetic acid (2,4-D), 4-chloro-2-methylphenoxypropanoic acid (mecoprop acid or MCPP), and 3,6-dichloro-2-methoxybenzoic acid (dicamba). Three solvents (water, methanol, and iso-propanol) and three methods of extraction (column, batch, and soxhlet) were compared for their efficiencies in removing the herbicides from three soils (loamy sand, silt loam, and silty clay). Both linear and non-linear Freundlich isotherms were used to predict sorption intensity of herbicides on soils subjected to various extraction methods and conditions. High Kdand Kfr, and low N values were obtained for all herbicides in silty clay soil by batch extraction. Methanol was the best solvent removing approximately 97% of all added herbicides from the loamy sand either by column or soxhlet extraction method. Isopropanol ranked second by removing over 90% of all herbicides by soxhelet extraction from all three soils. However, water was ineffective in removing herbicides from any of the soils using any of the three extracting procedures used in this study. In general, the extent of herbicide removal depended on soil type, herbicide concentration, extraction procedure, solvent type and amount, and extraction time.  相似文献   

19.
阿特拉津在饱和砂质壤土中非平衡运移的模拟   总被引:3,自引:0,他引:3  
任理  毛萌 《土壤学报》2003,40(4):529-537
针对农药阿特拉津在稳定流场饱和砂质壤土中的运移 ,根据平衡与非平衡假设条件下对流—弥散方程数学模型的解析解 ,基于易混合置换实验获得的阿特拉津和示踪溶质Br- 的穿透曲线及批量平衡法求得的阻滞因子 ,应用CXTFIT 2 .0软件 ,通过拟合土柱实验中溶质的出流浓度变化 ,估算了模型的有关参数 ,在此基础上模拟分析了实验土柱不同埋深处阿特拉津的出流浓度和累积淋溶量动态 ,结果表明 ,化学非平衡的两点模型对本文实验条件下阿特拉津运移的仿真具有较高的精度  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号