首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
(R)-Terpinen-4-ol was mixed in an artificial diet at a concentration of 1 mg/g of diet, and the diet was fed to the last instar larvae of common cutworm (Spodoptera litura). Metabolites were recovered from frass and analyzed spectroscopically. (R)-Terpinen-4-ol was transformed mainly to (R)-p-menth-1-en-4,7-diol. Similarly, (S)-terpinen-4-ol was transformed mainly to (S)-p-menth-1-en-4,7-diol. The C-7 position (allylic methyl group) of (R)- and (S)-terpinen-4-ol was preferentially oxidized.  相似文献   

2.
A new furostanol pentaoligoside and spirostanol tetraoligoside were isolated for the first time from yam tubers (Dioscorea pseudojaponica Yamamoto) from Taiwan, together with four known yam saponins, methyl protodioscin, methyl protogracillin, dioscin, and gracillin. Their structures were characterized as 26-O-beta-D-glucopyranosyl-22alpha-methoxyl-(25R)-furost-5-en-3beta,26-diol, 3-O-alpha-L-rhamnopyranosyl-(1-->2)-O-([alpha-L-rhamnopyranosyl-(1-->4)]-O-[alpha-L-rhamnopyranosyl-(1-->4)])-beta-D-glucopyranoside, and (25R)-spirost-5-en-3beta-ol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-O-([alpha-L-rhamnopyranosyl-(1-->4)]-O-[alpha-L-rhamnopyranosyl-(1-->4)])-beta-D-glucopyranoside. The structural identification was performed using LC-MS and 1H and 13C NMR. The methanol extract of yam tubers was fractionated by XAD-2 column chromatography using a methanol/water gradient elution system to yield furostanol and spirostanol glycoside fractions. Preparative high-performance liquid chromatography, employing a C18 column and a mobile phase of methanol/water (69:31, v/v), was used to separate each furostanol glycoside, whereas a mobile phase of methanol/water (79:21, v/v) was used to resolve the individual spirostanol glycosides. The conversions from steroid saponins to diosgenin after acid hydrolysis were around 68 and 90% for furostanol and spirostanol glycosides, respectively.  相似文献   

3.
Uptake and transformation of 14C-labeled metabolites from several pesticides, 3-methyl-4-nitrophenol (1), 3,5-dichloroaniline (2), 3-phenoxybenzoic acid (3), (R,S)-2-(4-chlorophenyl)-3-methylbutanoic acid (4), and (1RS)-trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid (5), were examined by using duckweed (Lemna gibba) in Hoagland's medium. More uptake into duckweed from the exposure water at pH 7.0 was observed for non-ionized 1 and 2 than for 3-5 in an ionized form, and their hydrophobicity accounted for these differences. While carboxylic acids 4 and 5 were scarcely transformed in duckweed, 1-3 mainly underwent phase II conjugation with glucose for 1 and 2, malic acid for 3, glutamic acid for 2, and malonylglucose for 3, the chemical identities of which were confirmed by various spectrometric analyses (LC-MS, LC-MS/MS, and NMR) and/or HPLC cochromatography with reference synthetic standards.  相似文献   

4.
Analysis of a methanolic extract of marc from Boronia megastigma (Nees) using LC-MS (APCI, nominal mass) provided strong evidence for the presence of both glycosides and malonyl glycosides of methyl cucurbates, C13 norisoprenoids including megastigmanes, and monoterpene alcohols. Subsequent fractionation of an extract from the marc using XAD-2 and LH 20 chromatography followed by LC-UV/MS-SPE-NMR and accurate mass LC-MS resulted in the isolation and identification of (1R,4R,5R)-3,3,5-trimethyl-4-[(1E)-3-oxobut-1-en-1-yl]cyclohexyl β-D-glucopyranoside (3-hydroxy-5,6-dihydro-β-ionone-β-D-glucopyranoside); 3,7-dimethylocta-1,5-diene-3,7-diol-3-O-β-D-glucopyranoside; and a methyl {(1R)-3-(β-D-glucopyranosyloxy)-2-[(2Z)-pent-2-en-1-yl]cyclopentyl}acetate stereoisomer (a methyl cucurbate-β-D-glucopyranoside); and provided evidence for 3,7-dimethylocta-1,5-diene-3,7-diol-3-O-(6'-O-malonyl)-β-D-glucopyranoside in boronia flowers.  相似文献   

5.
Four new steroidal saponins from the seeds of Allium tuberosum   总被引:3,自引:0,他引:3  
Four new steroidal saponins, 26-O-beta-D-glucopyranosyl-(25S,20R)-20-O-methyl-5alpha-furost-22(23)-en-2alpha,3beta,20,26-tetraol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside (1); 26-O-beta-D-glucopyranosyl-(25S,20R)-5alpha-furost-22(23)-en-2alpha,3beta,20,26-tetraol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L- rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside (2); 26-O-beta-D-glucopyranosyl-(25S,20S)-5alpha-furost-22(23)-en-2alpha,3beta,20,26-tetraol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L- rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside (3); and 26-O-beta-D-glucopyranosyl-(25S,20S)-5alpha-furost-22(23)-en-3beta,20,26-triol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside (4), have been isolated from the seeds of Allium tuberosum. Their structures were established by spectroscopic studies such as MS, IR, NMR, and 2D-NMR and the results of acid hydrolysis and named tuberosides F, G, H, and I, respectively.  相似文献   

6.
Glycosidically bound compounds were isolated from the methanol extract of fresh rhizomes of smaller galanga (Alpinia officinarum Hance). Nine glycosides (1-9) were finally obtained by reversed-phase HPLC and their structures were elucidated by MS and NMR analyses. They were the three known glycosides, (1R,3S,4S)-trans-3-hydroxy-1,8-cineole beta-D-glucopyranoside (1), benzyl beta-D-glucopyranoside (3), and 1-O-beta-D-glucopyranosyl-4-allylbenzene (chavicol beta-D-glucopyranoside, 4); and the six novel glycosides, 3-methyl-but-2-en-1-yl beta-D-glucopyranoside (2), 1-hydroxy-2-O-beta-D-glucopyranosyl-4-allylbenzene (5), 1-O-beta-D-glucopyranosyl-2-hydroxy-4-allylbenzene (demethyleugenol beta-D-glucopyranoside, 6), 1-O-(6-O-alpha-L-rhamnopyranosyl-beta-D-glucopyranosyl)-2-hydroxy-4-allylbenzene (demethyleugenol beta-rutinoside, 7), 1-O-(6-O-alpha-L-rhamnopyranosyl-beta-D-glucopyranosyl)-4-allylbenzene (chavicol beta-rutinoside, 8), and 1,2-di-O-beta-D-glucopyranosyl-4-allylbenzene (9). Compounds 2-9 were detected for the first time as constituents of galanga rhizomes.  相似文献   

7.
A total of 19 naturally occurring bromophenols, with six new and 13 known structures, were isolated and identified from the methanolic extract of the marine red alga Rhodomela confervoides. The new compounds were identified by spectroscopic methods as 3,4-dibromo-5-((methylsulfonyl)methyl)benzene-1,2-diol (1), 3,4-dibromo-5-((2,3-dihydroxypropoxy)methyl)benzene-1,2-diol (2), 5-(aminomethyl)-3,4-dibromobenzene-1,2-diol (3), 2-(2,3-dibromo-4,5-dihydroxyphenyl)acetic acid (4), 2-methoxy-3-bromo-5-hydroxymethylphenol (5), and (E)-4-(2-bromo-4,5-dihydroxyphenyl)but-3-en-2-one (6). Each compound was evaluated for free radical scavenging activity against DPPH (α,α-diphenyl-β-dipicrylhydrazyl) and ABTS [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt] radicals. Most of them exhibited potent activities stronger than or comparable to the positive controls butylated hydroxytoluene (BHT) and ascorbic acid. The results from this study suggest that R. confervoides is an excellent source of natural antioxidants, and inclusion of these antioxidant-rich algal components would likely help prevent the oxidative deterioration of food.  相似文献   

8.
Nine phenolic compounds were isolated from the ethyl acetate and n-butanol fractions of almond (Prunus amygdalus) skins. On the basis of NMR data, MS data, and comparison with the literature, these compounds were identified as 3'-O-methylquercetin 3-O-beta-D-glucopyranoside (1); 3'-O-methylquercetin 3-O-beta-D-galactopyranoside (2); 3'-O-methylquercetin 3-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (3); kaempferol 3-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (4); naringenin 7-O-beta-D-glucopyranoside (5); catechin (6); protocatechuic acid (7); vanillic acid (8); and p-hydroxybenzoic acid (9). All of these compounds have been isolated from almond skins for the first time. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activities for compounds 1-9 were determined. Compounds 6 and 7 show very strong DPPH radical scavenging activity. Compounds 1-3, 5, 8, and 9 show strong activity, whereas compound 4 has very weak activity.  相似文献   

9.
An extensive phytochemical analysis of the polar extracts from bulbs of shallot, Allium ascalonicum Hort., led to the isolation of two new furostanol saponins, named ascalonicoside A1/A2 (1a/1b) and ascalonicoside B (4), respectively, along with compounds 2a and 2b, most likely extraction artifacts. On the basis of 2D NMR and mass spectrometry data, the structures of the novel compounds were elucidated as furost-5(6)-en-3beta,22alpha-diol 1beta-O-beta-D-galactopyranosyl 26-O-[alpha-L-rhamnopyranosyl-(1-->2)-O-beta-D-glucopyranoside] (1a), its epimer at position 22 (1b), and furost-5(6),20(22)-dien-3beta-ol 1beta-O-beta-D-galactopyranosyl 26-O-[alpha-L-rhamnopyranosyl-(1-->2)-O-beta-D-glucopyranoside] (4). This is the first report of furostanol saponins in A. ascalonicum. High concentrations of quercetin, isorhamnetin, and their glycosides were also isolated and described.  相似文献   

10.
Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates is largely unknown. Investigations are reported on the isolation of 6-[2-[[(4S)-4-amino-4-carboxybutyl]amino]-6,7-dihydroxy-6,7-dihydroimidazo[4,5-b]azepin-4(5H)-yl]-L-norleucine (10) and N-acetyl-6-[(6R,7R)-2-[[4-(acetylamino)-4-carboxybutyl]amino]-6,7,8a-trihydroxy-6,7,8,8a-tetrahydroimidazo[4,5-b]azepin-4(5H)-yl]-L-norleucine (12) formed by oxidation of the major Maillard cross-link glucosepane 1. Independent synthesis and unequivocal structural characterization are given for 10 and 12. Spiro cross-links, representing a new class of glycoxidation products, were obtained by dehydrogenation of the amino imidazolinimine compounds N6-[2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-5-[(2S,3R)-2,3,4-trihydroxybutyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysinate (DOGDIC 2) and N6-[2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-5-[(2S)-2,3-dihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysinate (DOPDIC 3). These new oxidation products were synthesized, and their unambiguous structural elucidation proved the formation of the spiro imidazolimine structures N6-[(7R,8S)-2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-8-hydroxy-7-(hydroxymethyl)-6-oxa-1,3-diazaspiro[4.4]non-1-en-4-ylidene]-L-lysinate (16), N6-(8R,9S)-2-[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-8,9-dihydroxy-6-oxa-1,3-diazaspiro[4.5]dec-1-en-4-ylidene)-L-lysinate (19), and N6-[(8S)-2-[(4-amino-4-carboxybutyl)amino]-8-hydroxy-6-oxa-1,3-diazaspiro[4.4]non-1-en-4-ylidene]-L-lysinate (18), respectively. It was shown that reaction of the imidazolinone 15 led to the formation of spiro imidazolones, structurally analogous to 16 and 19.  相似文献   

11.
Three new furostanol saponins named capsicoside E (1), capsicoside F (2), and capsicoside G (5) were obtained from the seeds of Capsicum annuum L. var. acuminatum along with known oligoglycosides (3, 4, and 6-10). On the basis of chemical and spectroscopic analyses, the structures of these new furostanol oligoglycosides were elucidated as 26-O-beta-D-glucopyranosyl-22-O-methyl-5alpha-furost-25(27)-en-2alpha,3beta,22xi,26-tetraol-3-O-beta-D-glucopyranosyl(1-->3)-beta-D-glucopyranosyl(1-->2)-[beta-D-glucopyranosyl(1-->3)]-beta-D-glucopyranosyl(1-->4)-beta-D-galactopyranoside (1), 26-O-beta-D-glucopyranosyl-(25R)-5alpha-furost-20(22)-en-2alpha,3beta,26-triol-3-O-beta-D-glucopyranosyl (1-->3)-beta-D-glucopyranosyl(1-->2)-[beta-D-glucopyranosyl(1-->3)]-beta-D-glucopyranosyl(1-->4)-beta-D-galactopyranoside (2), and 26-O-beta-D-gluco-pyranosyl-(25R)-5alpha-furosta-3beta,22xi,26-triol-3-O-beta-D-glucopyranosyl(1-->3)-beta-D-glucopyranosyl(1-->2)-[beta-D-glucopyranosyl(1-->3)]-beta-D-glucopyranosyl(1-->4)-beta-D-galactopyranoside (5). The isolated saponins showed higher antimicrobial activity against yeasts than against common fungi. Data indicated that the antiyeast activity was related to the combination of the oligosaccharide chain (S1, S2, or S3) with an O-methyl group at R(3) and the presence of a hydroxyl group at the C-2 position.  相似文献   

12.
An activity-directed fractionation and purification process was used to identify the antioxidative components of adlay hulls. Hulls of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) were extracted with methanol and then separated into water, 1-butanol, ethyl acetate, and hexane fractions. The 1-butanol-soluble fraction exhibited greater capacity to scavenge 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radicals when compared with fractions soluble in water, ethyl acetate, and hexane phases. The 1-butanol fraction was then subjected to separation and purification using Diaion HP-20 chromatography, silica gel chromatography, and HPLC. Six compounds showing strong antioxidant activity were identified by spectroscopic methods ((1)H NMR, (13)C NMR, IR, and MS) and by comparison with authentic samples to be coniferyl alcohol (1), syringic acid (2), ferulic acid (3), syringaresinol (4), 4-ketopinoresinol (5), and a new lignan, mayuenolide (6).  相似文献   

13.
Biodegradation of beta-cyfluthrin by fungi   总被引:6,自引:0,他引:6  
Five fungal species, namely, Trichoderma viride strain 5-2, T. viride strain 2211, Aspergillus niger, A. terricola, and Phanerochaete chrysoporium were screened for degradation study of beta-cyfluthrin. Each fungal species was allowed to grow in Czapek dox medium containing beta-cyfluthrin (5 mg/mL) as the major carbon source of the medium. The highest degradation of beta-cyfluthrin was observed by T. viride 5-2 (T(1/2) = 7.07 days), followed by T.viride 2211 (T(1/2) = 10.66 days). The degradation of beta-cyfluthrin followed first-order kinetics with a fast degradation rate during first 7 days of growth of the fungi. In the case of T. viride strain 5-2, five degradation products were isolated after 20 days of growth of the fungi, out of which three products were identified as alpha-cyano-4-fluorobenzyl-3- (2,2-dichlorovinyl)-2,2-dimethyl cyclopropane carboxylate, alpha-cyano-4-fluoro-3-phenoxy benzyl alcohol, and 3(2,2-dichlorovinyl)-2,2-dimethyl cyclopropanoic acid.  相似文献   

14.
Permethrin is the most popular synthetic pyrethroid insecticide in agriculture and public health. For the development of the enzyme-linked immunosorbent assay (ELISA) to evaluate human exposure to permethrin, the glycine conjugate (DCCA-glycine) of a major metabolite, cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (DCCA), of permethrin was established as the target analyte. Four different types of the cis- and trans-isomers of immunizing haptens were synthesized as follows: N-(cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carbonyl)glycine (hapten 3), N-(cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carbonyl)-4-amino-l-phenylalanine (hapten 5), N-(N-(cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carbonyl)glycine)amino-6-(2,4-dinitrophenyl)aminohexanoic acid (hapten 9), and N-(cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carbonyl)glycine-4-oxobutanoic acid (hapten 24). Sixteen polyclonal antibodies produced against each cis- or trans-hapten-thyroglobulin conjugate as immunogens were screened against numerous hapten-bovine serum albumin conjugates as coating antigens. Six ELISAs with both a heterologous hapten structure and a heterologous hapten configuration (cis/trans or trans/cis) between antibody and coating antigen showed a high sensitivity for the target analyte. The IC50 was 1.3, 2.1, and 2.2 microg/L for the trans-target analyte and 0.4, 2.3, and 2.8 microg/L for the cis-target analyte. The immunizing haptens, except for hapten 5, provided the target specific antibodies. Molecular modeling of the haptens supported the selection of reasonable immunizing haptens that best mimicked the target analyte. Hapten 5 was suitable as a coating antigen rather than as an immunogen since it had a different geometry. Very low cross-reactivities were measured to permethrin, its free metabolite (DCCA), PBA-glycine conjugate, and glycine. The ELISA will be optimized for the detection of total cis/trans-DCCA-glycine in human urine samples.  相似文献   

15.
The major in vivo metabolites of (S)-(-)-pulegone in humans using a metabolism of ingestion-correlated amounts (MICA) experiment were newly identified as 2-(2-hydroxy-1-methylethyl)-5-methylcyclohexanone (8-hydroxymenthone, M1), 3-hydroxy-3-methyl-6-(1-methylethyl)cyclohexanone (1-hydroxymenthone, M2), 3-methyl-6-(1-methylethyl)cyclohexanol (menthol), and E-2-(2-hydroxy-1-methylethylidene)-5-methylcyclohexanone (10-hydroxypulegone, M4) on the basis of mass spectrometric analysis in combination with syntheses and NMR experiments. Minor metabolites were be identified as 3-methyl-6-(1-methylethyl)-2-cyclohexenone (piperitone, M5) and alpha,alpha,4-trimethyl-1-cyclohexene-1-methanol (3-p-menthen-8-ol, M6). Menthofuran was not a major metabolite of pulegone and is most probably an artifact formed during workup from known (M4) and/or unknown precursors. The differences in toxicity between (S)-(-)- and (R)-(+)-pulegone can be explained by the strongly diminished ability for enzymatic reduction of the double bond in (R)-(+)-pulegone. This might lead to further oxidative metabolism of 10-hydroxypulegone (M4) and the formation of further currently undetected metabolites that might account for the observed hepatotoxic and pneumotoxic activity in humans.  相似文献   

16.
Oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) by lactoperoxidase was found to be inhibited by tyrosine-containing random amino acid copolymers but not by tyrosine. Both electrostatic effects and polymer size were found to be important by comparison of negatively and positively charged copolymers of varying lengths, with poly(Glu, Tyr)4:1 ([E 4Y 1] approximately 40) as the strongest competitive inhibitor (EC 50 approximately 20 nM). This polymer did not form dityrosine in the presence of lactoperoxidase (LPO) and peroxide. Furthermore, incubation with tert-butyl hydroperoxide, as opposed to hydrogen peroxide, resulted in a peculiar long lag phase of the reaction between the redox intermediate compound II and [E 4Y 1] approximately 40, indicating a very tight association between enzyme and inhibitor. We propose that interactions between multiple positively charged areas on the surface of LPO and the polymer are required for optimal inhibition.  相似文献   

17.
A whole plant chloroform-methanol extract of the orchid Epidendrum rigidum inhibited radicle growth of Amaranthus hypochondriacus seedlings (IC50 = 300 microg/mL). Bioassay-guided fractionation furnished four phytotoxins, namely, gigantol (1), batatasin III (2), 2,3-dimethoxy-9,10-dihydrophenathrene-4,7-diol (9), and 3,4,9-trimethoxyphenanthrene-2,5-diol (11), along with the known flavonoids apigenin, vitexin, and isovetin and the triterterpenoids 24,24-dimethyl-9,19-cyclolanostane-25-en-3beta-ol (14) and 24-methyl-9,19-cyclolanostane-25-en-3beta-ol (15). Stilbenoids 1, 2, 9, and 11 inhibited radicle growth of A. hypochondriacus with IC50 values of 0.65, 0.1, 0.12, and 5.9 microM, respectively. Foliar application of gigantol (1) at 1 microM to 4 week old seedlings of A. hypochondriacus reduced shoot elongation by 69% and fresh weight accumulation by 54%. Bibenzyls 1 and 2, as well as synthetic analogues 4'-hydroxy-3,3',5-trimethoxybibenzyl (3), 3,3',4',5-tetramethoxybibenzyl (4), 3,4'-dihydroxy-5-methoxybibenzyl (5), 3'-O-methylbatatasin III (6), 3,3',5-trihydroxybibenzyl (7), and 3,4',5-trihydroxybibenzyl (8), were tested for phytotoxicity in axenic cultures of the small aquatic plant Lemna pausicostata. All bibenzyls derivatives except 7 and 8 inhibited growth and increased cellular leakage with IC50 values of 89.9-180 and 89.9-166 microM, respectively. The natural and synthetic bibenzyls showed marginal cytotoxicity on animal cells. The results suggest that orchid bibenzyls may be good lead compounds for the development of novel herbicidal agents.  相似文献   

18.
The isolation of three new triterpene saponins 3beta-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-2-O-acetylarabinopyranosylolean-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester (2), 3beta-O-beta-D-glucopyranosyl-(1-->2)-alpha-L-O-arabinopyranosylurs-12-en-28-oic acid (3), and 3beta-O-beta-D-glucopyranosyl-(1-->2)-beta-D-O-galactopyranosylurs-12-en-28-oic acid (4) together with five known saponins and one flavonoid glycoside from the aqueous infusion of Ilex amara (Vellozo) Loes. leaves is reported. All structures were elucidated by spectroscopic methods, including the concerted application of one-dimensional (1H, TOCSY, 13C, and 13C DEPT NMR) and two-dimensional NMR techniques (DQF-COSY, HSQC, and HMBC).  相似文献   

19.
Botrytis cinerea Pers. Fr. is a plant pathogenic fungus and the causal organism of blossom blight of Easter lily (Lilium longiflorum Thunb.). Easter lily is a rich source of steroidal glycosides, compounds which may play a role in the plant-pathogen interaction of Easter lily. Five steroidal glycosides, including two steroidal glycoalkaloids and three furostanol saponins, were isolated from L. longiflorum and evaluated for fungal growth inhibition activity against B. cinerea, using an in vitro plate assay. All of the compounds showed fungal growth inhibition activity; however, the natural acetylation of C-6' of the terminal glucose in the steroidal glycoalkaloid, (22R,25R)-spirosol-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-[6-O-acetyl-β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside (2), increased antifungal activity by inhibiting the rate of metabolism of the compound by B. cinerea. Acetylation of the glycoalkaloid may be a plant defense response to the evolution of detoxifying mechanisms by the pathogen. The biotransformation of the steroidal glycoalkaloids by B. cinerea led to the isolation and characterization of several fungal metabolites. The fungal metabolites that were generated in the model system were also identified in Easter lily tissues infected with the fungus by LC-MS. In addition, a steroidal glycoalkaloid, (22R,25R)-spirosol-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (6), was identified as both a fungal metabolite of the steroidal glycoalkaloids and as a natural product in L. longiflorum for the first time.  相似文献   

20.
Selected lines of aromatic rice from American cv. A301 were cultivated in Italy, and the agronomic traits and chemical properties related to their aroma were studied. The most characteristic compound responsible for aromatic rice, 2-acetyl-1-pyrroline, was quantified in all lines. Line B5-3, characterized by high 2-acetyl-1-pyrroline content, was investigated in greater detail for its volatile components and was compared with a commercial Basmati rice. Volatiles were collected by steam-distillation. Several classes of compounds were identified and quantified in both samples, including hydrocarbons, aldehydes, alcohols, ketones, heterocyclic, terpenes, disulfides, and phenols. Hexanal was the most abundant compound in both samples, followed by pentanal, 2-acetyl-1-pyrroline, hexanol, benzaldehyde, oct-1-en-3-ol, 4-vinylguaiacol, indole, and trans-2- nonenal. 2-Acetyl-1-pyrroline was present at 570 and 2,350 ppb in Basmati and B5-3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号