首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
LI Fa-Hu  R. KEREN 《土壤圈》2009,19(4):465-475
A laboratory lysimeter experiment was conducted to investigate the effects of forage corn (Zea mays L.) stalk application on the CO2 concentration in soil air and calcareous sodic soil reclamation. The experimental treatments tested were soil exchangeable sodium percentage (ESP) levels of 1, 11, and 19, added corn stalk contents of 0 to 36 g kg-1, and incubation durations of 30 and 60 days. The experimental results indicated that corn stalk application and incubation significantly increased CO2 partial pressure in soil profile and lowered pH value in soil solution, subsequently increased native CaCO3 mineral dissolution and electrolyte concentration of soil solution, and finally significantly contributed to reduction on soil sodicity level. The reclamation effciency of calcareous sodic soils increased with the added corn stalk. When corn stalks were added at the rates of 22 and 34 g kg-1 into the soil with initial ESP of 19, its ESP value was decreased by 56% and 78%, respectively, after incubation of 60 days and the leaching of 6.5 pore volumes (about 48 L of percolation water) with distilled water. Therefore, crop stalk application and incubation could be used as a choice to reclaim moderate calcareous sodic soils or as a supplement of phytoremediation to improve reclamation effciency.  相似文献   

2.
A thermostatic incubation experiment was carried out to estimate the effects of flooding periods,stalk application and P addition of Fe transformation and P availability in calcareous soils.Submergence increased amorphous Fe,especially in the case of stalk application.The newly formed amorphous Fe with a great surface area played an important role in Psorption;and submergence also stimulated the dissolution of inorganic P,thus increasing the availability of soil P in calcareous soils.Meanwhile,a part of soluble P was absorbed and fixed again on the surface of newly formed amorphous Fe,thus resulting in a decrease of P availability.Soil rapidly available P increased after 150-day incubation.There existed significantly negative correlations between soil amorphous Fe content and soil Fe-P and rapidly available P contents.Submerged conditions promoted the transformation of inorganic P added toward Fe-P in calcareous soils,especially in the case of stalk application.  相似文献   

3.
Iron(Fe) deficiency in calcareous soils of the Loess Plateau of China is a wide spread issue and primarily affects agricultural production due to the relatively higher soil pH and carbonate content. Understanding the relationships between Fe distribution in soil fractions, Fe availability, and their responses to cropping and fertilization could provide essential information for assessing Fe availability in soils and managing soils to improve Fe availability. A long-term field experiment was established in 1984 in a split-plot design using cropping systems as main plots and fertilizer treatments as subplots on a farmland in the Loess Plateau. The cropping systems included fallow, continuous wheat cropping, continuous alfalfa cropping, continuous maize cropping, and a rotation system that included a legume. Various fertilization treatments using chemical and/or manure fertilizers were included in each cropping system. Soil samples were collected from 0–10 and 20–40 cm depths in 2012. Long-term planting of crops significantly increased the concentrations of available Fe in the soils. The largest increase was observed in the continuous alfalfa cropping system. Long-term cropping significantly increased the concentrations of Fe associated with carbonates and organic matter, but decreased the concentration of Fe associated with minerals in the soils. The effect of fertilization on the distribution of Fe in the soil fractions varied with cropping system and soil depth. The fertilization treatment with manure generally increased the concentrations of Fe associated with the soil fractions.Long-term cropping and fertilization in the highland farmland significantly affected the availability of Fe and the distribution of Fe fractions in the soil.  相似文献   

4.
This investigation was conducted by using alkaline slag and crop straw biochars to reduce acidity of an acidic Ultisol through incubation and pot experiments with lime as a comparison. The soil was amended with different liming materials: lime(1 g kg^-1),alkaline slag(2 and 4 g kg^-1), peanut straw biochar(10 and 20 g kg^-1), canola straw biochar(10 and 20 g kg^-1) and combinations of alkaline slag(2 g kg^-1) and biochars(10 g kg^-1) in the incubation study. A pot experiment was also conducted to observe the soybean growth responses to the above treatments. The results showed that all the liming materials increased soil p H and decreased soil exchangeable acidity. The higher the rates of alkaline slag, biochars, and alkaline slag combined with biochars, the greater the increase in soil p H and the reduction in soil exchangeable acidity. All the amendments increased the levels of one or more soil exchangeable base cations. The lime treatment increased soil exchangeable Ca^2+, the alkaline slag treatment increased exchangeable Ca^2+ and Mg^2+ levels, and the biochars and combined applications of alkaline slag with biochars increased soil exchangeable Ca^2+, Mg^2+ and K^+ and soil available P. The amendments enhanced the uptake of one or more nutrients of N, P, K, Ca and Mg by soybean in the pot experiment. Of the different amendments, the combined application of alkaline slag with crop straw biochars was the best choice for increasing base saturation and reducing soil acidity of the acidic Ultisol. The combined application of alkaline slag with biochars led to the greatest reduction in soil acidity, increased soil Ca, Mg, K and P levels, and enhanced the uptake of Ca, Mg, K and P by soybean plants.  相似文献   

5.
The study on the behaviour of potassium,phosphate and trace elements,Fe,Mn,Cu and Zn,in the rhizosphere of different varieties of flue-cured tobacco (Nicotiana tabacum L.)with high and low potassium application rate with rhizobag technique showed that soil available K,soil available P,and slow available K was in depletion status,whereas DTPA extractable Fe,Mn,Zn and Cu accumulated obviously in rhizosphere.The depletion and accumulation rates of mineral nutrients differed in degree with K application rate,soil type,and tobacco variety.The content of available K in both rhizosphere and bulk soil and K concentration in tobacco leaf increased significantly,and the available P in rhizosphere dropped with more K application.The DTPA-Fe content of red soil much lower in pH was higher than that of calcareous soil in bulk soil.But the DTPA-Fe content of calcareous soil was much higher than that of red soil in rhizosphere,which was considered perhaps to be mainly related to releasing of Fe phytosiderophore.Nitrate coule increase depletion of a vailable K in rhizosphere and also soil pH in comparision with ammonium.  相似文献   

6.
施用污泥后石灰性土壤中铜、锌、镉的植物有效性   总被引:2,自引:0,他引:2  
The toxicity of trace elements (TEs), such as copper (Cu), zinc (Zn), and cadmium (Cd), often restrict land application of sewage sludge (SS) and there was little information about soil-plant transfer of TEs in SS from field experiments in China. In this study pot and field experiments were carried out for 2 years to investigate the phytoavailability of TEs in calcareous soils amended with SS. The results of the pot experiment showed that the phytoavailability of Zn and Cu in the SS was equal to 53.4%-80.9% and 54.8%-91.1% of corresponding water-soluble metal salts, respectively. The results from the field experiment showed that the contents of total Zn, Cu, and Cd in the soils increased linearly with SS application rates. With increasing SS application rates, the contents of Zn and Cu in the wheat grains initially increased and then reached a plateau, while there was no significant change of Cd content in the maize grains. The bioconcentration factors of the metals in the grains of wheat and maize were found to be in the order of Zn > Cu > Cd, but for the straw the order was Cd > Cu > Zn. It was also found that wheat grains could accumulate more metals compared with maize grains. The results will be helpful in developing the critical loads of sewage sludge applied to calcareous soils.  相似文献   

7.
A pot experiment was conducted with multi-metal (Pb, Cd, Cu, and Zn) contaminated acidic soil to investigate changes in available metal burden resulting from the application of industrial wastes (fly ash and steel slag). The efficiency of amendments-induced metal stabilization was evaluated by diffusive gradients in thin films (DGT), sequential extraction, and plant uptake. The stability of remediation was assessed by an acidification test and by chemical equilibrium modeling. Addition of fly ash (20 g kg-1 ) and steel slag (3 g kg-1 ) resulted in similar increase in soil pH. Both amendments significantly decreased the concentrations of metals measured with DGT (C DGT) and the metal uptake by Oryza sativa L. Significant correlations were found between C DGT and the concentration of a combination of metal fractions (exchangeable, bound to carbonates, and bound to Fe/Mn oxides), unraveling the labile species that participate in the flux of metal resupply. The capability of metal resupply, as reflected by the R (ratio of C DGT to pore water metal concentration) values, significantly decreased in the amended soils. The C DGT correlated well with the plant uptake, suggesting that DGT is a good indicator for bioavailability. Acidification raised the extractable metal concentration in amended soil but the concentration did not return to the pre-amendment level. Equilibrium modeling indicated that the soil amendments induced the precipitation of several Fe, Al and Ca minerals, which may play a positive role in metal stabilization. Chemical stabilization with alkaline amendments could be an effective and stable soil remediation strategy for attenuating metal bioavailability and reducing plant metal uptake.  相似文献   

8.
堆肥对泥炭基质中重金属、氮、磷的影响   总被引:1,自引:0,他引:1  
A laboratory study was conducted to evaluate the effect of compost amendment on mobility and leaching potential of heavy metals, nitrogen (N) and phosphorus (P) from a peat-based commercial container medium containing 700 g kg^-1 peat, 200 g kg^-1 perlite and 100 g kg^-1 vermiculite at varying amendment rates of compost (0, 0.25, 0.50, 0.75 and 1.00 L L^-1). Increasing compost amendment significantly and linearly increased the pH (P 〈 0.01), the total concentrations of organic carbon (P 〈 0.05), copper (Cu) (P 〈 0.01), cadmium (ca) (P 〈 0.01), and lead (Pb) (P 〈 0.01), and increased the bulk density (P 〈 0.01) of the medium. The electrical conductivity (EC), and total N and P of the medium increased significantly (P 〈 0.01) and quadratically with increasing compost amendment. The relationship of the C/N ratio of the medium with the compost amendment rate was decreasing, significant (P 〈 0.01) and cubic, while that of the total Zn was increasing, significant (P 〈 0.01) and cubic. Extractable P, NO3-N, and NH4-N increased initially with an increasing compost amendment of up to 0.50 L L^-1 and then decreased with further increasing compost rate. Increasing compost rates resulted in a highly significant (P 〈 0.01) and linear increase in total Cd, Cu, and Pb, and a highly significant (P 〈 0.01) and cubic increase in total Zn in the medium. Increasing compost rates also significantly (P 〈 0.01) increased extractable Cu (linearly) and Zn (quadratically), but significantly (P 〈 0.01) decreased extractable Pb (linearly). There was no significant effect of compost amendment on the extractable Cd concentration in the medium. However, with increasing compost rates from 0.25 to 1.00 L L^-1, extractability of P, Cd, Cu, Pb and Zn (extractable concentration as a percent of total) was decreased, indicating that compost amendment could lower the leachability of these elements from the medium.  相似文献   

9.
Oxalic acid plays an important role in improving the bioavailability of soil nutrients. Batch experiments were employed to examine the influences of oxalic acid on extraction and release kinetics of potassium (K) from soils and minerals along with the adsorption and desorption of soil K^+. The soils and minerals used were three typical Chinese soils, black soil (Mollisol), red soil (Ultisol), and calcareous alluvial soil (Entisol), and four K-bearing minerals, biotite, phlogopite, muscovite, and microcline. The results showed that soil K extracted using 0.2 mol L^-1 oxalic acid was similar to that using 1 mol L^-1 boiling HNO3. The relation between K release (y) and concentrations of oxalic acid (c) could be best described logarithmically as y = a + blogc, while the best-fit kinetic equation of K release was y = a + b√t, where a and b are the constants and t is the elapsed time. The K release for minerals was ranked as biotite 〉 phlogopite 〉〉 muscovite 〉 microcline and for soils it was in the order: black soil 〉 calcareous alluvial soil 〉 red soil. An oxalic acid solution with low pH was able to release more K from weathered minerals and alkaline soils. Oxalic acid decreased the soil K^+ adsorption and increased the soil K^+ desorption, the effect of which tended to be greater at lower solution pH, especially in the red soil.  相似文献   

10.
施肥推进了玉米生长及N缺乏的定量研究   总被引:2,自引:0,他引:2  
Evidence that nitrogen (N) fertilization tends to accelerate maturation as well as increase rates of growth has received little attention when diagnosing N deficiencies in corn (Zea mays L.). Such a tendency could be a potential source of errors when the diagnosis is solely based on comparing plants with different rates of growth. Whether N fertilization could accelerate rates of growth and maturation was tested in a field study with 12 paired plots representing relatively large variability in soil properties and landscape positions. The plots were located under conditions where preplant N fertilization reduced or avoided temporary N shortages for some plants but did not reduce for other plants early in the season. We measured corn heights to the youngest leaf collar, stages of growth and chlorophyll meter readings (CMRs). The added N advanced growth stages as well as increased corn heights and CMRs at any given time. Fertilization effects on corn heights, growth stages and ear weights were statistically significant (P 〈 0.05) despite substantial variability associated with landscape. Reductions in growth due to a temporary shortage of N within a growth stage might be partially offset by longer periods of growth within that stage to physiological maturity. Temporary shortages of N, therefore, may produce symptoms of N deficiency in situations where subsequent additions of N should not be expected to increase yields. Recognition of these two somewhat different effects (i.e., increase growth rates and advance growth stages) on corn growth could help to define N deficiency more precisely and to improve the accuracy of diagnosing N status in production agriculture.  相似文献   

11.
Iron (Fe) deficiency is a serious agricultural problem, especially in calcareous soils, which are distributed worldwide. Poplar trees are an important biomass plant, and overcoming Fe deficiency in poplars will increase biomass productivity worldwide. The poplar Fe-deficiency response and the genes involved in poplar Fe homeostasis remain largely unknown. To identify these genes and processes, we cultivated poplar plants under Fe-deficient conditions, both in calcareous soil and hydroponically, and analyzed their growth rates, leaf Soil and Plant Analyzer Development (SPAD) values, and metal concentrations. The data clearly showed that poplars have notable growth defects in both calcareous soil and a Fe-deficient hydroponic culture. They exhibited serious chlorosis of young leaves after 3 weeks of Fe-deficient hydroponic culture. The Fe concentrations in old leaves with high SPAD values were markedly lower in Fe-deficient poplars, suggesting that poplars may have good translocation capability from old to new leaves. The Zn concentration in new leaves increased in Fe-deficient poplars. The pH of the hydroponic solution decreased in the Fe-deficient culture compared to the Fe-sufficient culture. This finding shows that poplars may be able to adjust the pH of a culture solution to better take up Fe. We also analyzed the expression of Fe homeostasis-related genes in the roots and leaves of Fe-sufficient and Fe-deficient poplars. Our results demonstrate that PtIRT1, PtNAS2, PtFRO2, PtFRO5, and PtFIT were induced in Fe-deficient roots. PtYSL2 and PtNAS4 were induced in Fe-deficient leaves. PtYSL3 was induced in both Fe-deficient leaves and roots. These genes may be involved in the Fe uptake and/or translocation mechanisms in poplars under Fe-deficient conditions. Our results will increase a better understanding of the Fe-deficiency response of poplars and hence improve the breeding of Fe-deficiency-tolerant poplars for improved biomass production, the greening of high pH soils, and combatting global warming.  相似文献   

12.
小麦与花生间作改善花生铁营养的效应研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用砂-土联合培养根箱试验装置,模拟田间试验研究石灰性土壤小麦与花生间作改善花生Fe营养的效应结果表明,石灰性土壤高pH和高CaCO3是导致花生缺Fe黄化的主要原因。叶片已发生黄化的花生与小麦间作可明显改善花生缺Fe症状,间作16d后花生根际土壤有效铁含量、花生新叶叶绿素和活性Fe含量均显著提高。小麦与花生间作对改善花生Fe营养的效应可能与缺Fe小麦根分泌的Fe载体对土壤中Fe活化有关。  相似文献   

13.
Two Fe chlorosis‐inducing calcareous soils were incubated for up to 5 months, at room temperature and field capacity, with Fe‐EDDHA, Fe‐DTPA, FeSO4, an amino acid chelate “Fe‐Metalosate”;, an oxide “Micronized‐Iron”;, and a precipitated Fe‐S compound “Iron‐Sul”;. Other treatments included DTPA chelate alone, elemental S and H2SO4 at comparable rates. Both water‐soluble, and DTPA‐extractable Fe fractions were measured periodically from each sample. All water‐soluble sources decreased with time. Soluble Fe was highest after Fe‐EDDHA addition but was not detectable after “Fe‐Metalosate”; and FeSO4. Acidification to neutralize CaCO3 significantly increased DTPA‐extractable Fe, which remained high with increasing incubation time. “Micronized‐Iron”; and S had only a slight effect on DTPA‐ extractable Fe. Though Fe‐EDDHA is the most efficient Fe material, pelleted acidified Fe sources, i.e., “Iron‐Sul”;, may be more economical for some crops in the long term.  相似文献   

14.
Six inorganic industrial‐waste materials (coal fly ash, bauxite‐processing mud, steel slag, two samples of air‐cooled blast furnace [BF] slag, and one sample of water‐cooled BF slag), along with wollastonite, were evaluated as fertilizer‐Si sources. Evaluation was carried out by analyzing total and extractable Si fractions in the materials, by incubating them at two rates with a Si‐deficient soil and measuring potentially available extractable Si and by measuring yield and Si uptake by two successive rice crops grown in the fertilized soils. Of the waste materials used, fly ash had the highest total Si content (29%) but a negligible quantity was present in extractable forms. Steel slag and bauxite‐processing mud had only 5%–7% Si content while BF slags contained 14%–18% Si. All materials, other than fly ash, increased the amount of extractable Si present in the soil. Additions of steel slag and bauxite‐processing mud caused greater increases in Si extractability than the air‐cooled BF slags while water‐cooled BF slag–treated soils contained notably high acid‐extractable Si. Because of the alkaline nature of the materials, and their reaction products, there was a positive relationship between extractable soil Si and soil pH. However, an equilibration experiment using NaSiO3 as the Si source confirmed that Si solubility in the soil decreased with increasing pH. Dry‐matter yields of rice, at the lower rate of Si addition, were increased by all treatments other than fly ash. The higher rates of steel slag and bauxite‐processing mud caused yield depressions. Total Si uptake by rice was increased by all treatments, other than fly ash, and was greater at the higher rate of Si addition. It was concluded that the BF slags are the most effective waste materials as fertilizer‐Si sources and that, in slag‐amended soils, CaCl2 and NH4 acetate are the most reliable soil‐test extractants.  相似文献   

15.
An attempt was made to study the effects of sulfuric acid additions to iron (Fe)‐ and phosphorus (P)‐deficient calcareous soils. Several greenhouse experiments were conducted with sorghum (Sorghum bicolor L.) grown in two calcareous soils. Addition of sulfuric acid to soils increased soil acidity, salinity, DTPA‐extractable Fe, available P (NaHCO3‐extractable), and crop yield. The change in soil pH is the primary cause of increased nutrient availability and thus crop yield. Leaching after acid application is highly beneficial in decreasing salinity during germination and seedling stages and therefore has a direct impact on the yield. The beneficial effects of acid carried over for at least two greenhouse cropping seasons (approximately 4.5 months).  相似文献   

16.
The steel-making slag (SMS), a by-product of steel manufacturing process with an alkaline pH (11–12) and high amount of iron (Fe) and calcium (Ca) oxides, was used to reduce arsenic (As) phytoextractability. The by-product was selected as an alternative to commercial Fe oxides, which can decrease plant uptake, but they are expensive if used as amendments of contaminated arable soils. SMS was applied at rates 0, 2, 4, and 8 Mg ha−1 to an As (1 N HCl-extractable As 25 mg kg−1) contaminated soil prepared by mixing non-contaminated soil and mine tailings and cropped to radish (Raphanus sativa L.) seeding. Calcium hydroxide (Ca(OH)2), a common liming material in Korea, was applied at the same rates for comparison. Steel-making slag more effectively suppressed radish As uptake and increased yield than Ca(OH)2 due to stronger As immobilization because it significantly increased extractable Fe concentration and decreased extractable As. The SMS-treated soil showed an apparent increase in As chemisorbed by Fe and Al oxides and hydroxides of surface soil, As associated at the Fe and Al oxides and hydroxides of internal surfaces of soil aggregates, and Ca-associated As. The steel-making slag can be a good soil amendment to suppress As phytoextractability and improve nutrient balance in As-contaminated soil.  相似文献   

17.
《Journal of plant nutrition》2013,36(10):2205-2228
ABSTRACT

Chlorosis in crops grown on calcareous soil is mainly due to iron (Fe) deficiency and can be alleviated by leaf application of soluble Fe2+ or diluted acids. Whether chlorosis in indigenous plants forced to grow on a calcareous soil is also caused by Fe deficiency has, however, not been demonstrated. Veronica officinalis, a widespread calcifuge plant in Central and Northern Europe, was cultivated in two experiments on acid and calcareous soils. As phosphorus (P) deficiency is one of the major causes of the inability of many calcifuges to grow on calcareous soil we added phosphate to half of the soils. Leaves in pots with the unfertilized and the P-fertilized soil, respectively, were either sprayed with FeSO4 solution or left unsprayed. Total Fe, P, and manganese (Mn) in leaves and roots and N remaining in the soil after the experiment were determined. In a second experiment, no P was added. Leaves were either sprayed with FeSO4 or with H2SO4 of the same pH as the FeSO4 solution. Degree of chlorosis and Fe content in leaves were determined. Calcareous soil grown plants suffered from chlorosis, which was even more pronounced in the soils supplied with P. Newly produced leaves were green with Fe spray but leaves that were chlorotic before the onset of spraying did not totally recover. H2SO4 spray even increased chlorosis. This demonstrated that chlorosis was due to Fe deficiency. As total leaf Fe was similar on acid and calcareous soil, it was a physiological Fe deficiency, caused by leaf tissue immobilization in a form that was not metabolically “active”. Iron in the leaves was also extracted by 1,10-phenanthroline, an Fe chelator. In both experiments, significant differences between leaves from acid and calcareous soil were found in 1,10-phenanthroline extractable Fe but not in total leaf Fe, when calculated on a dry weight basis. Differences in 1,10-phenanthroline extractable Fe were more pronounced when calculated per unit dry weight than calculated per leaf area, whereas the opposite condition was valid for total leaf Fe.  相似文献   

18.
Abstract

Iron chlorosis is a serious crop production problem in many calcareous soils of Southern Spain. The objective of this study was to determine which indigenous soil properties (i.e., those which are essentially permanent) were related to Fe chlorosis. Experiments, using two chickpea (Cicer ariethinum L.) cultivars and a sunflower (Helianthus annuuus L.) cultivar, were carried out in a growth chamber with 25 calcareous soils representing widespread Xerofluvents, Xerorthents, Xerochrepts, Haploxeralfs, Rodoxeralfs, Chromoxererts, and Pelloxererts of Southern Spain. The average chlorophyll contents for the three cultivars were significantly correlated with several properties of the carbonate and Fe oxide phases, such as calcium carbonate equivalent (r = 0.69***), “active lime”; (r = 0.58**), acid NH4‐oxalate extractable Fe (r = 0.68***), Tiron‐extractable Fe (r = 0.61**), and DTPA‐extractable Fe (r = 0.55**). The present and other studies indicate that the soil property most consistently related to Fe chlorosis is acid NH4‐oxalate extractable Fe (Feo). The Feo critical level separating soils with a high probability from those with a low probability of responding to Fe fertilization was 0.63 g/kg soil, a value similar to those found in other studies. This further supports the use of Feo as a key property to predicting the appearance of Fe chlorosis.  相似文献   

19.
Iron (Fe)-deficiency chlorosis causes considerable yield losses in chickpea (Cicer arietinum L.) when susceptible genotypes are grown in calcareous soils with high pH. The most feasible method for alleviating Fe deficiency is the selection of suitable cultivars resistant to Fe deficiency chlorosis. ICC 6119 (desi type), which is Fe-deficient chlorosis, was crossed with CA 2969 and Sierra (kabuli types), resistant to Fe deficiency chlorosis. Inheritance of resistance to Fe deficiency in chickpea revealed that the resistance was controlled by a single dominant gene in these genotypes crossed. A negative selection for resistance to Fe deficiency chlorosis will be effective after segregating generations.  相似文献   

20.
In greenhouse studies, corn (Zea mays L.) growth increased with Zn fertilization of two alkaline calcareous soils. Zinc concentration and total uptake increased with Zn application. Very high correlations were recorded between plant tissue Zn concentration, total Zn uptake and soil Zn levels determined by DTPA and AB-DTPA soil tests. Correlation between Zn concentration in plants and relative yield was poor. However, close relationships were revealed between extractable soil Zn and relative yield. Near maximum dry matter yield of corn was associated with a fertilizer rate of 2 mg Zn/kg soil. Plant tissue Zn-requirement was 27 mg/kg in 15 days old plants and 32 mg/kg in corn shoots of 40 day age. Critical soil test Zn level was 1.2 mg/kg by DTPA and 1.7 mg/kg by AB-DTPA method. Use of AB-DTPA soil test is suggested for evaluating Zn status of calcareous soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号