首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Antimutagenic activity of polymethoxyflavonoids from Citrus aurantium   总被引:2,自引:0,他引:2  
The methanol extract from Citrus aurantium showed a suppressive effect on umu gene expression of SOS response in Salmonella typhimurium TA1535/pSK1002 against the mutagen 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide). The methanol extract from C. aurantium was successively re-extracted with hexane, dichloromethane, butanol, and water. A dichloromethane fraction showed a suppressive effect. The suppressive compounds in the dichloromethane fraction were isolated by SiO(2) column chromatography and identified as tetra-O-methylscutellarein (1), sinensetin (2), and nobiletin (3) by EI-MS and (1)H- and (13)C NMR spectroscopy. These compounds suppressed the furylfuramide-induced SOS response in the umu test. Gene expression was suppressed 67%, 45%, and 25% at a concentration of 0.6 micromol/mL, respectively. The ID(50) value (50% inhibition dose) of compound 1 was 0. 19 micromol/mL. These compounds were assayed with other mutagens, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), which requires liver metabolizing enzymes, activated Trp-P-1, and UV irradiation. These compounds showed of all mutagen-induced SOS response in the umu test. In addition, compounds 1-3 exhibited antimutagenic activity in the S. typhimurium TA100 Ames test.  相似文献   

2.
A methanol extract from clove (Syzygium aromaticum) showed a suppressive effect of the SOS-inducing activity on the mutagen 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) in the Salmonella typhimurium TA1535/pSK1002 umu test. The methanol extract was re-extracted with hexane, dichloromethane, ethyl acetate, butanol, and water. The hexane fraction showed a suppressive effect. Suppressive compounds in the hexane fraction were isolated by silica gel column chromatography and identified as trans-isoeugenol (1) and eugenol (2) by GC, GC-MS, IR, and (1)H and (13)C NMR spectroscopy. Compounds 1 and 2 suppressed the furylfuramide-induced SOS response in the umu test. Compounds 1 and 2 suppressed 42.3 and 29.9% of the SOS-inducing activity at a concentration of 0.60 micromol/mL. These compounds were assayed with other mutagens, 4-nitroquinolin 1-oxide (4NQO) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In addition, compounds 1 and 2 were assayed with aflatoxin B(1) (AfB(1)) and 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), which require liver metabolizing enzymes. These compounds showed suppressive effects of the SOS-inducing activity against furylfuramide, 4NQO, AfB(1), and Trp-P-1. To research the structure-activity relationship, methyl esters of 1 and 2 (1Me and 2Me) and o-eugenol (3), as compounds similar to 2, were also assayed with all mutagens. Compounds 1Me, 2Me, and 3 showed weak suppressive effects of the SOS-inducing activity against furylfuramide.  相似文献   

3.
Antimutagenic activity of flavonoids from Pogostemon cablin   总被引:8,自引:0,他引:8  
A methanol extract from Pogostemon cablin showed a suppressive effect on umu gene expression of SOS response in Salmonella typhimurium TA1535/pSK1002 against the mutagen 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide). The methanol extract was re-extracted with hexane, dichloromethane, butanol, and water. A dichloromethane fraction showed a suppressive effect. Suppressive compounds against furylfuramide in the dichloromethane fraction were isolated by SiO(2) column chromatography and identified as 7,4'-di-O-methyleriodictyol (1), 7, 3',4'-tri-O-methyleriodictyol (2), and 3,7,4'-tri-O-methylkaempferol (3). In addition, three flavonoids, ombuine (4), pachypodol (5), and kumatakenin (6), were isolated and identified from the dichrolomethane fraction. Compounds 1 and 3 suppressed >50% of the SOS-inducing activity at <0.6 micromol/mL, and the ID(50) values of both compounds were 0.25 micromol/mL. Compound 2 showed a weakly suppressive effect (17%) at a concentration of 0.6 micromol/mL, and compounds 4-6 did not. These compounds were also assayed with 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), which requires liver metabolizing enzymes. Compounds 3-6 suppressed >80% of the SOS-inducing activity of Trp-P-1 at <0.06 micromol/mL, and compounds 1 and 2 suppressed 87 and 63% at a concentration of 0.3 micromol/mL. In addition, these compounds were assayed with activated Trp-P-1, and the suppressed effects of these compounds were further decreased when compared to Trp-P-1. The antimutagenic activities of these compounds against furylfuramide, Trp-P-1, and activated Trp-P-1 were assayed by the Ames test using S. typhimurium TA100.  相似文献   

4.
Two isoflavones, daidzein (1) and genistein (2), were isolated from soybean hypocotyls. Daidzein and genistein showed a suppressive effect on umu gene expression of the SOS response in Salmonellatyphimurium TA1535/pSK1002 against the mutagen 3-amino-1, 4-dimethyl-5H-pyrido[4,3b]indole (Trp-P-1), which requires liver metabolizing enzymes. Compound 1 suppressed 73% of the SOS-inducing activity at concentrations <0.74 micromol/mL, and the ID(50) value was 0.37 micromol/mL. Compound 2 suppressed 95% of the SOS-inducing activity at concentrations <0.74 micromol/mL, and the ID(50) value was 0.17 micromol/mL. Compounds 1 and 2 were also assayed with the mutagen 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) and activated Trp-P-1. In addition to the antimutagenic activities of daidzein and genistein against Trp-P-1, frylfuramide and activated Trp-P-1 were assayed by an Ames test using S. typhimurium TA100.  相似文献   

5.
Phenylpropanoids that possess antimutagenic activity were isolated from the buds of clove (Syzygium aromaticum). The isolated compounds suppressed the expression of the umu gene following the induction of SOS response in the Salmonella typhimurium TA1535/pSK1002 that have been treated with various mutagens. The suppressive compounds were mainly localized in the ethyl acetate extract fraction of the processed clove. This ethyl acetate fraction was further fractionated by silica gel column chromatography, which resulted in the purification and subsequent identification of the suppressive compounds. Electron impact mass spectrometry, IR, and (1)H and (13)C NMR spectroscopy were then used to delineate the structures of the compounds that confer the observed antimutagenic activity. The secondary suppressive compounds were identified as dehydrodieugenol (1) and trans-coniferyl aldehyde (2). When using 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) as the mutagen, compound 1 suppressed 58% of the umu gene expression as compared to the controls at a concentration of 0.60 micromol/mL, with an ID(50) (50% inhibitory dose) value of 0.48 micromol/mL, and compound 2 suppressed 63% of the umu gene expression as compared to the controls at a concentration of 1.20 micromol/mL, with an ID(50) value of 0.76 micromol/mL. Additionally, compounds 1 and 2 were tested for their ability to suppress the mutagenic activity of other well-known mutagens such as 4-nitroquinolin 1-oxide (4NQO) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), which do not require liver metabolizing enzymes, and aflatoxin B(1) (AfB(1)) and 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), which require liver metabolizing enzymes and activated Trp-P-1 and UV irradiation. Compounds 1 and 2 showed dramatic reductions in their mutagenic potential of all of the aforementioned chemicals or treatment. For the search of the structure-activity relationship, the derivatives of 1 and 2 (1a and 2a-c) were also assayed with all mutagens. Finally, the antimutagenic activities of compounds 1, 1a, 2, and 2a-c against furylfuramide, Trp-P-1, and activated Trp-P-1 were assayed by the Ames test using the S. typhimurium TA100 strain.  相似文献   

6.
The methanol extract from Uncaria sinensis showed a suppressive effect on umu gene expression of the SOS response in Salmonella typhimurium TA1535/pSK1002 against the mutagen 3-amino-1,4-dimethyl-5H-pyrido[4,3b]indole (Trp-P-1), which requires liver metabolizing enzymes. The methanol extract from U. sinensis was re-extracted with hexane, CH2Cl2, BuOH, and water, respectively. CH2Cl2 extract showed a suppressive effect. A suppressive compound 1 in CH2Cl2 extract was isolated by SiO2 column chromatography. Compound 1 was identified as ursolic acid by IR, electron ionization EI-MS, and NMR spectroscopy. Suppressive effects of ursolic acid (1) and its derivatives, methyl ursolate (1M), acetylursolic acid (1A), and methyl acetylursolate (1MA), were determined in the umu test. These compounds suppressed 61.3, 37.7, 71.5, and 37.8% of the Trp-P-1-induced SOS response at a concentration of 0.4 micromol/mL, respectively. The ID50 values of compounds 1 and 1A were 0.17 and 0.20 micromol/mL. In addition, these compounds were assayed with the activated Trp-P-1. Suppressive effects on activated Trp-P-1 were decreased as compared with those of Trp-P-1.  相似文献   

7.
A bibenzyl compound that possesses antimutagenic activity was isolated from the storage stem of Dendrobium nobile. The isolated compound suppressed the expression of the umu gene following the induction of SOS response in Salmonella typhimurium TA1535/pSK1002 that have been treated with various mutagens. The suppressive compound was mainly localized in the n-hexane extract fraction of the processed D. nobile. This n-hexane fraction was further fractionated by silica gel column chromatography, which resulted in the purification and subsequent identification of the suppressive compound. EI-MS and (1)H and (13)C NMR spectroscopy were then used to delineate the structure of the compound that confers the observed antimutagenic activity. Comparison of the obtained spectrum with that found in the literature indicated that moscatilin is the secondary suppressive compound. When using 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) as the mutagen, moscatilin suppressed 85% of the umu gene expression compared to the controls at <0.73 micromol/mL, with an ID(50) value of 0.41 micromol/mL. Additionally, moscatilin was tested for its ability to suppress the mutagenic activity of other well-known mutagens such as 4-nitroquinoline-1-oxide (4NQO), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), UV irradiation, 3-amino-1,4-dimethyl-5H-pyrido[4,3b]indole (Trp-P-1), benzo[a]pyrene (B[a]P), and aflatoxin B(1) (AFB(1)). With all of the aforementioned chemicals or treatments, moscatilin showed a dramatic reduction in their mutagenic potential. Interestingly, moscatilin almost completely suppressed (97%) the AFB(1)-induced SOS response at concentrations <0.73 micromol/mL, with an ID(50) of 0.08 micromol/mL. Finally, the antimutagenic activities of moscatilin against furylfuramide and Trp-P-1 were assayed by the Ames test using the S. typhimurium TA100 strain. The results those experiments indicated that moscatilin demonstrated a dramatic suppression of the mutagenicity of only Trp-P-1 but not furylfuramide.  相似文献   

8.
The recently isolated paeonol (2-hydroxy-4-methoxyacetophenone), as one of the antimutagenic compounds from Discorea japonica, was used as a lead compound for detailed structure-activity relationship studies. Nine acetophenones (2-hydroxy-4-methoxy, 2-hydroxy-5-methoxy, 2-hydroxy-6-methoxy, 4-hydroxy-3-methoxy, o-methoxy, m-methoxy, p-methoxy, and 2,5-dimethoxyacetophenone and acetophenone) were investigated for their ability of suppression of furylfuramide-induced SOS response using Salmonella typhimurium TA1535/pSK1002 in the umu test, against the mutagen, 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide). The results showed that 2-hydroxy-6-methoxyacetophenone displayed the strongest activity (EC(50) = 0.6 micromol/mL), and a hydroxyl group at C-2 is necessary feature for acetophenone derivatives to show the suppressive effects of furylfuramide-induced SOS response.  相似文献   

9.
Suppression of the furylfuramide-induced SOS response by 25 kinds monoterpenoids (hydrocarbons, alcohols, ketones, and aldehydes) with a p-menthane skeleton was studied. Suppression of the SOS-inducing activity by monoterpenoids was determined in the umu test using Salmonella typhimurium TA1535/pSK1002. The terpene alcohols, ketones, and aldehydes had potent suppressive effects, but the hydrocarbons did not. Especially, (+)-menthol, (+)-pulegone, piperitenone, and cuminaldehyde were shown to have the most potent suppressive effects, and the ID(50) (dose for 50% inhibition) was 0.52 micromol/mL.  相似文献   

10.
Antimutagens from gaiyou (Artemisia argyi Levl. et Vant., Compositae) were examined. The methanol extract prepared from aerial parts of this plant strongly reduced the mutagenicity of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), when Salmonella typhimurium TA98 was used in the presence of the rat liver microsomal fraction. The antimutagens were purified chromatographically while monitoring the antimutagenic activity against Trp-P-2 with a modified Ames test employing a plate method. This purification resulted in the isolation of four strong antimutagens, 5,7-dihydroxy-6,3',4'-trimethoxyflavone (eupatilin), 5, 7,4'-trihydroxy-6,3'-dimethoxyflavone (jaceosidin), 5,7, 4'-trihydroxyflavone (apigenin) and 5,7, 4'-trihydroxy-3'-methoxyflavone (chrysoeriol) from the methanol extract. These antimutagenic flavones exhibited strong antimutagenic activity against not only Trp-P-2 but also against other heterocyclic amines, such as 3-amino-1,4-dimethyl-5H-pyrido[4, 3-b]indole (Trp-P-1), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3, 8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeA(alpha)C) in S. typhimurium TA98. In contrast, they did not exhibit antimutagenic activity against benzo[a]pyrene (B[a]P), 4-nitroquinoline-1-oxide (4-NQO), 2-aminofluorene (2-AF), 2-nitrofluorene (2-NF) or furylfuramide (AF-2) in S. typhimurium TA98, or B[a]P, 4-NQO, 2-NF, AF-2, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or sodium azide (SA) in Salmonella typhimurium TA100, whereas they decreased the mutagenicity caused by aflatoxin B(1) (AFB(1)) and 2-aminoanthracene (2-AA) in both of these tester strains. Regarding the structure-activity relationship, the tested flavones had distinct differences in the intensities of their antimutagenic activities according to the differences of their substitution patterns. Namely, the intensity of antimutagenic activities against Trp-P-2 decreased in the order of: 5,7,3',4'-tetrasubstituted flavones (IC(50): <0.1 mmol/plate), 5,7,4'-trisubstituted flavones (IC(50): 0.120-0.260 mmol/plate), 5,6,7,3',4'-pentasubstituted flavones (IC(50): 0.440-0. 772 mmol/plate). The four isolated flavones were also studied regarding their antimutagenic mechanisms with preincubation methods of the modified Ames test and emission spectroscopic analysis. The results suggested that all isolated flavones were desmutagens which directly inactivated Trp-P-2 or inhibited its metabolic activation.  相似文献   

11.
Seven kinds of alpha-methylene-gamma-lactones with an alkyl group at the C-4 position were synthesized according to a previously described method, with yields of 28-34%. These alpha-methylene-gamma-lactones had characteristic and unique odors. All alpha-methylene-gamma-lactones added a roast-like odor to materials. The antimicrobial effects of alpha-methylene-gamma-lactones were investigated by using a paper disk diffusion method. The results showed the alpha-methylene-gamma-lactones inhibited the growth of three bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescens) and two fungi (Saccharomyces cerevisiae and Aspergillus niger). In particular, alpha-methylene-gamma-undecalactone and alpha-methylene-gamma-dodecalactone exhibited potent inhibition of the growth of these microorganisms compared to butyl p-hydroxybenzoate as standard antibiotic. The umu test revealed that the alpha-methylene-gamma-lactones suppressed the SOS-inducing activity of three mutagens, furylfuramide, UV irradiation, and Trp-P-1, respectively. The antimicrobial effects and the suppressive effects of SOS induction by alpha-methylene-gamma-lactones had a tendency to intensify as the number of carbons in the side chain increased.  相似文献   

12.
Four prenylated flavanones were isolated from the methanol extract of the flowers of Azadirachta indica (the neem tree) as potent antimutagens against Trp-P-1 (3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole) in the Salmonella typhimurium TA98 assay by activity-guided fractionation. Spectroscopic properties revealed that those compounds were 5,7,4'-trihydroxy-8-prenylflavanone (1), 5,4'-dihydroxy-7-methoxy-8-prenylflavanone (2), 5,7,4'-trihydroxy-3',8-diprenylflavanone (3), and 5,7,4'-trihydroxy-3',5'-diprenylflavanone (4). All isolated compounds were found for the first time in this plant. The antimutagenic IC(50) values of compounds 1-4 were 2.7 +/- 0.1, 3.7 +/- 0.1, 11.1 +/- 0.1, and 18.6 +/- 0.1 microM in the preincubation mixture, respectively. These compounds also similarly inhibited the mutagenicity of Trp-P-2 (3-amino-1-methyl-5H-pyrido[4,3-b]indole) and PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine). All of the compounds 1-4 strongly inhibited ethoxyresorufin O-dealkylation activity of cytochrome P450 1A isoforms, which catalyze N-hydroxylation of heterocyclic amines. However, compounds 1-4 did not show significant inhibition against the direct-acting mutagen NaN(3). Thus, the antimutagenic effect of compounds 1-4 would be mainly based on the inhibition of the enzymatic activation of heterocyclic amines.  相似文献   

13.
Our aim was to determine the antimutagenic activity of various solvent extracts from an herb Mesona procumbens Hemsl, normally called Hsian-tsao in China. We also investigated the relationships between the special components in the water extract of Hsian-tsao (WEHT) and the antimutagenic activity. It was found that the extracts at 0-0.6 mg/plate from three solvents (water, methanol, and ethyl acetate) exhibited a dose-dependent antimutagenic effect against benzo[a]pyrene [B(a)P] and 2-amino-3-methylimidazo(4,5-f)quinoline (IQ), both are indirect mutagens in Salmonella tester strains TA98 and TA100. The WEHT from three different plantations revealed a similar inhibitory effect on the mutagenicity of IQ in TA 98 at 2.5-5.0 mg/plate. The inhibitory effect of WEHT on the mutagenicity of IQ correlates with their polyphenol and ascorbic acid contents but not with their chlorophyll contents. These findings suggest that the antimutagenicity activity of WEHT may be attributed mainly to their polyphenolic compounds and ascorbic acid.  相似文献   

14.
Anthocyanin-rich aqueous extracts from cell suspension cultures of a high anthocyanin-producing sweetpotato PL (purple line) cell line grown under two different media conditions, MM (multiplication medium) and APM (high anthocyanin-producing medium) and from the cell line's donor tissue, field-grown storage root (SR) of sweetpotato, cv. Ayamurasaki, were evaluated for antioxidative (DPPH test), antimutagenic (Salmonella/reversion assay; mutagen, Trp-P-1), and antiproliferative (human promyelocytic leukaemia cells HL-60) activities. Both cell line extracts MM and APM exhibited higher radical scavenging activities (RSA), 3.8- and 1.4-fold, respectively, than the SR extract. The antimutagenic activity of all extracts was found to be dose-dependent. At a dose of 1 mg/plate, the highest activity exhibited APM (73% inhibition of Trp-P-1-induced reverse mutation of Salmonella typhimurium TA98), followed by MM (54% inhibition) and SR (36% inhibition). The MM extract was the strongest inhibitor of the proliferation of human promyelocytic leukemia cells. At a concentration of 1.6 mg/mL medium during 24 h, it suppressed the growth of 47% of HL-60 cells. A significantly lower growth suppression effect displayed APM and SR extracts (21 and 25%, respectively). Total anthocyanin levels and anthocyanin composition in evaluated samples seem to be related to their activities. The MM extract, which exhibited the highest RSA and antiproliferation activities, contained the highest level of anthocyanins. Among them, nonacylated cyanidin 3-sophoroside-5-glucoside dominated. It is speculated that the presence of this anthocyanin contributed toward enhanced activities of MM extract.  相似文献   

15.
The possibility that beer and other alcoholic beverages could be antimutagenic against the heterocyclic amines (HAs), a group of carcinogens produced on cooking proteinaceous foods, has been explored. In the Salmonella mutation assays, beer showed inhibitory effects against several HAs [preactivated Trp-P-1, Trp-P-2(NHOH), and Glu-P-1(NHOH)] that are directly mutagenic in bacteria. Japanese sake, red and white wines, and brandy were also effective. However, ethyl alcohol alone did not show these effects. The formation of O(6)-methylguanine by N-methyl-N'-nitro-N-nitrosoguanidine in the DNA of Salmonella YG7108 was also inhibited by beer. Nonvolatile beer components were administered orally to CDF(1) mice together with Trp-P-2. Adducts in the liver DNA were significantly decreased by the beer, as compared to those in controls fed Trp-P-2 only. Although several phenolic compounds known to be present in beer were antimutagenic toward these mutagens, their effects were very small. It was concluded that some yet to be identified component(s) of beer is (are) responsible for this antimutagenicity.  相似文献   

16.
Various extracts of the aerial parts of Barkleyanthus salicifolius (Asteraceae) and Penstemon gentianoides (Scrophulariaceae) have been used in folk medicine to treat many ailments, particularly inflammation and migraine. Neither the bioactive components responsible nor the mechanisms involved have been evaluated. Here are reported antioxidant activities of their methanol, dichloromethane, and ethyl acetate extracts. Samples were evaluated for oxygen radical absorption capacity (ORAC), ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging, and inhibition of the formation of thiobarbituric acid reactive species (TBARS), a measure of lipid peroxidation. Antioxidant activities were strongly correlated with total polyphenol content. The most active extracts from P. gentianoides in scavenging DPPH radicals and inhibiting TBARS formation were the methanol extract (A) and a further ethyl acetate extract of this (E). Partition E was further divided into eight fractions, and both E and the fractions were compared for activity against butylated hydroxytoluene, quercetin, and tocopherol. Partition E and the most active fractions, 5 and 6, were found to have I(50) values of 14.1, 38.6, and 41.8 ppm, respectively, against DPPH and 18.5, 26.0, and 12.7 ppm, respectively, against TBARS formation. Consistent with this finding, partition E and fractions 4-6 had the greatest ORAC and FRAP values. These results show that these plants could be useful antioxidant sources.  相似文献   

17.
Six compounds were isolated from fresh rhizomes of fingerroot (Boesenbergia pandurata Schult.) as strong antimutagens toward 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) in Salmonella typhimurium TA98. These compounds were 2',4',6'-trihydroxychalcone (pinocembrin chalcone; 1), 2',4'-dihydroxy-6'-methoxychalcone (cardamonin; 2), 5,7-dihydroxyflavanone (pinocembrin; 3), 5-hydroxy-7-methoxyflavanone (pinostrobin; 4), (2,4,6-trihydroxyphenyl)-[3'-methyl-2'-(3' '-methylbut-2' '-enyl)-6'-phenylcyclohex-3'-enyl]methanone (5), and (2,6-dihydroxy-4-methoxyphenyl)-[3'-methyl-2'-(3' '-methylbut-2' '-enyl)-6'-phenylcyclohex-3'-enyl]methanone (panduratin A; 6). Compound 5 was a novel compound (tentatively termed 4-hydroxypanduratin A), and 1 was not previously reported in this plant, whereas 2-4 and 6 were known compounds. The antimutagenic IC(50) values of compounds 1-6 were 5.2 +/- 0.4, 5.9 +/- 0.7, 6.9 +/- 0.8, 5.3 +/- 1.0, 12.7 +/- 0.7, and 12.1 +/- 0.8 microM in the preincubation mixture, respectively. They also similarly inhibited the mutagenicity of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). All of them strongly inhibited the N-hydroxylation of Trp-P-2. Thus, the antimutagenic effect of compounds 1-6 was mainly due to the inhibition of the first step of enzymatic activation of heterocyclic amines.  相似文献   

18.
Three different solvent extracts (methanol, ethyl acetate, and n-hexane) of longan ( Dimocarpus longan Lour.) flowers were assayed with three different antioxidant capacity methods, namely, the DPPH free radical scavenging effect, the oxygen radical absorbance capacity (ORAC) assay, and the inhibition of Cu(2+)-induced oxidation of human low-density lipoprotein (LDL). It was revealed that the methanol extract has the best antioxidative activity, followed by ethyl acetate and n-hexane extracts. The methanol extract was separated by liquid-liquid partition into n-hexane, ethyl acetate, n-butanol, and water fractions. The ethyl acetate fraction was found to have the highest activity of delaying LDL oxidation. After silica gel column chromatography, the fraction having a superior activity was identified as containing two major compounds, (-)-epicatechin and proanthocyanidin A2.  相似文献   

19.
Tyrosinase inhibitor from black rice bran   总被引:6,自引:0,他引:6  
The inhibitor of tyrosinase activity in black rice bran was investigated. The methanol extract from black rice bran was re-extracted with hexane, chloroform, ethyl acetate, or water. The ethyl acetate extract had the most potent inhibition against tyrosinase activity by 80.5% at a concentration of 0.4 mg/mL. Inhibitory compound in the ethyl acetate fraction was isolated by silica gel column chromatography, and identified as protocatechuic acid methyl ester (compound 1) by GC, GC-MS, IR, and 1H and 13C NMR spectroscopy. Compound 1 inhibited 75.4% of tyrosinase activity at a concentration of 0.50 micromol/mL. ID(50) (50% inhibition dose) value of compound 1 was 0.28 micromol/mL. To study the structure-activity relationship, protocatechuic acid (2), vanillic acid (3), vanillic acid methyl ester (4), isovanillic acid (5), isovanillic acid methyl ester (6), veratric acid (7), and veratric acid methyl ester (8) were also assayed.  相似文献   

20.
Although the Salmonella/plate test has been used extensively, a collaborative study was undertaken to determine the interlaboratory reproducibility of this microbial mutagenicity assay. Four laboratories participating in the study have completed testing, under code, of 61 carcinogens and noncarcinogens. All chemicals were tested both with and without metabolic activation in Salmonella typhimurium strains TA1535, 1537, 1538, 98, and 100. The metabolic activation systems used were derived from the livers of both uninduced and Aroclor 1254-induced Fischer rats, B6C3F1 mice, and Syrian hamsters. Analysis of the results on 23 of the chemicals tested in 3 of the participating laboratories showed that 8 were negative when tested in all laboratories and 13 were positive. Two chemicals gave positive results in 2 laboratories; the same 2 chemicals were negative when tested in the third laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号