首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 163 毫秒
1.
[目的] 研究地处黄土高原最西端,与青藏高原接壤的青海省同仁市植被时空动态变化,为黄土高原与青藏高原过渡地带的生态保护和治理提供参考。[方法] 基于MODIS-NDVI数据,采用线性趋势回归、Hurst指数,从时间和空间尺度分析了同仁市2000—2019年NDVI动态变化特征,对NDVI与土地利用和海拔高度的关系进行初步分析,并对NDVI未来变化趋势进行预测。[结果] ①2000—2019年同仁市NDVI整体呈波动上升趋势,平均增速为0.027/10 a。NDVI高值区域增加明显,主要分布在东西部山区,NDVI值介于0.8~1的区域由2000年的388.63 km2增加到2019年的1 066.92 km2。②NDVI上升的区域为2 925.21 km2,占全市面积的84.42%,广泛分布在隆务河谷地区和周围山区,其中林地626.13 km2,草地2094.11 km2。③NDVI值下降的区域为539.79 km2,占全市面积的15.58%,少部分分布在隆务河河谷地区,大部分在西部和南部山区。以同仁市冻融侵蚀海拔下限3 583 m为界,海拔3 583 m以上区域NDVI下降的面积占全市NDVI下降总面积的70.93%。④未来NDVI值持续上升的区域占全市面积的79.17%,持续下降的区域占13.13%。[结论] 过去20 a,同仁市NDVI整体上升,高覆盖度植被面积明显增加,NDVI下降区域主要分布在高海拔地区。未来同仁市NDVI整体上将持续上升,但仍有部分区域存在下降趋势。  相似文献   

2.
[目的] 研究贵州省北盘江流域NDVI变化及其与地形梯度、人口分布的关系,为喀斯特地区植被恢复、退耕还林开展、国土空间优化整治等提供科学参考。[方法] 采用2000—2018年贵州省北盘江流域NDVI数据,分析其时空变化特征及与海拔、坡度、人口密度等影响因素的相互关系。[结果] ①2000—2018年北盘江流域NDVI值总体呈上升趋势,且年均增长稳定,植被呈现不断恢复的趋势。②2000年北盘江流域NDVI空间分布在东南部最高,在西北部最低,NDVI高值在中部地区分布较为破碎,至2018年各地区NDVI值差距显著缩小,其中在西北部和中部NDVI低值区转变最为明显。③2000—2018年北盘江NDVI显著减少、轻微减少及轻微增加的地区面积较少,面积比例不足10%;而显著增加地区面积为19 986.04 km2,比例为90.93%。④2000—2018年,北盘江流域NDVI的海拔效应表现为阶段变化特点,其中2000—2010年NDVI值随着海拔的上升总体呈现下降趋势;2010—2018年NDVI值随着海拔的上升总体呈现上升趋势;NDVI值随坡度增加表现为上升—下降趋势;而NDVI值随人口密度增加呈降低趋势。[结论] 地形因子奠定植被生长条件,而社会和人为因子对NDVI值变化影响较大。  相似文献   

3.
为定量研究植被覆盖与土壤保持两者之间的关系及植被覆盖对土壤保持的影响,选取十大孔兑为研究区,利用趋势分析法、空间自相关分析、InVEST模型,重点分析十大孔兑2000—2020年植被覆盖、土壤保持时空变化及植被覆盖变化对土壤保持的作用。结果表明:(1)研究期内,十大孔兑区植被覆盖均呈增加趋势;(2)2000—2020年,土壤保持量随着植被覆盖的增加而增加,说明植被覆盖增加对于土壤侵蚀有明显的抑制作用,对土壤保持服务功能有明显的促进作用;(3)植被覆盖与土壤保持局部空间自相关,Moran’s I指数<0,但2000—2020年相关系数逐渐增大,在空间分布上,相关性分布差异明显,“高—高”和“低—低”分布在中游库布齐风沙区以及上游丘陵沟壑区有零星分布,“高—低”和“低—高”分布在上游丘陵沟壑区和下游冲积平原区,主要是上游丘陵沟壑区海拔较高,对于土壤保持能力较强,但植被覆盖度较低,下游冲积平原区主要为农田生态系统,生长季NDVI较高,但土壤抗蚀性差,土壤保持能力较弱。通过对十大孔兑区植被覆盖变化和土壤保持演变及其空间异质性和相关关系进行分析,说明植被覆盖增加在一定程度上对土壤保持有促进...  相似文献   

4.
安徽省植被覆盖度动态变化及其对地形的响应   总被引:3,自引:3,他引:0  
[目的] 探究安徽省植被覆盖度的时空变化特征与地形的相互关系,为当地资源开发中加强生态环境建设提供理论依据。[方法] 在GIS与RS技术支持下,使用安徽省2001—2019年逐月MODIS/NDVI数据,2001—2019年土地分类数据和安徽省DEM海拔、坡向地形数据,分析植被覆盖度时空变化特征及其与地形因子相互关系。[结果] 安徽省植被覆盖度季节变化特征明显。1月、10—12月,全省植被覆盖度呈现低值,且山区高于平原;2—5月,淮北平原地区植被覆盖度呈现高值,6月迅速减小;7—9月全省范围植被覆盖呈现高值,大部地区植被覆盖度高于0.8,山区平原空间差异最小。全省植被覆盖度年变化率为0.003 9/a,与时间相关性显著(R2=0.814 8)。不同海拔区间内,植被覆盖度四季差异明显。受下垫面地表类型影响,200 m以下植被覆盖度呈现低值,200~350 m植被覆盖度陡然升高,1 250 m以上植被覆盖度呈下降趋势。各坡向四季植被覆盖度夏季>秋季>春季>冬季。北坡、南坡分别为峰值、谷值。南、北向山区植被覆盖度差异呈逐年波动下降趋势,其差异值多年平均值夏季最低(0.009 3),秋季最高(0.014 2),春冬季分别为0.013 9,0.012 5。[结论] 安徽省海拔、坡向显著影响植被覆盖度动态变化特征,需结合地形特点合理开发利用地表资源,并做好生态环境保护工作。  相似文献   

5.
探究湟水流域植被NDVI时空变化及其驱动因素将有利于地区生态环境的恢复和区域可持续发展。基于多源遥感数据和社会经济数据,利用趋势分析法和皮尔逊相关分析法探究2000—2020年流域植被NDVI时空变化特征,并借助地理探测器分析自然和人为驱动因素对流域内植被空间分异及变化的影响力。结果表明:(1)2000—2020年流域植被NDVI值整体呈现上升趋势,平均增速为0.003 8/a,其中湟水沿岸及下游部分上升趋势最为明显,同时新兴城镇与"引大济湟"工程区存在明显的下降趋势。(2)整个流域内,气温和高程是影响植被NDVI空间分异的主要因素;高程、土壤和植被类型是影响植被NDVI空间变化的主要因素。(3)各驱动因素间的交互作用解释力均高于单因素,呈现出非线性增强与双因子增强的情况,气温与地貌交互作用解释力最高,达到71.6%,对植被NDVI空间分异的解释力最强。(4)流域植被NDVI空间分异及变化受自然因素与人为因素的共同影响,且自然因素的影响起主导作用。随着人们环境保护意识显著提升与地区生态工程逐步落实,流域植被覆盖情况正在转好。  相似文献   

6.
植被覆盖和降雨因子变化及对东北黑土区土壤侵蚀的影响   总被引:1,自引:0,他引:1  
[目的] 研究东北黑土区植被覆盖和降雨侵蚀力因子对土壤侵蚀时空变化的影响程度,为该区水土流失治理和可持续发展提供科学依据。[方法] 运用修正后的通用土壤流失方程(RUSLE)得到了2000—2018年东北黑土区土壤侵蚀分布特征,并探究土壤侵蚀模数与因子时空分布变化规律,得出侵蚀模数对于植被覆盖和降雨侵蚀力因子变化的敏感性。[结果] 黑土区土壤侵蚀变化与植被覆盖与管理因子和降雨侵蚀力因子的变化相关。研究期间侵蚀模数从1 175.20 t/(km2·a)下降至822.07 t/(km2·a),并且全区主要以微度侵蚀和轻度侵蚀为主,空间上呈现西南向东北逐渐降低的空间分布特点。[结论] 东北黑土区东南部和西南部的植被覆盖与管理因子(C)敏感系数分别为0.95和1.00,是强度敏感区域,提高植被覆盖度将成为有效治理手段;西北与西南降雨侵蚀力因子(R)敏感系数分别为0.45和1.00,为中度敏感和强度敏感的区域,降低降雨的影响对治理侵蚀最为有效。  相似文献   

7.
[目的]探究黄河三角洲地区植被覆盖度的时空动态变化以及植被覆盖度对土地利用变化的响应机制,为地区生态保护、建设与高质量发展提供参考。[方法]基于2000—2019年的归一化植被指数(NDVI)数据和2000—2020年5期土地利用数据,采用slope趋势分析和相关性分析等方法,分析了2000—2019年东营市植被覆盖度的时空动态变化及其对土地利用类型变化的响应。[结果]植被覆盖度在东营市南部地区、黄河沿岸以及黄河故道地区较高,而北部和东部沿海地区较低。在时间上,2000—2019年东营市NDVI为0.25~0.33,植被覆盖度呈现先增加后减少的趋势,在2010年达到最高水平。在空间上,东营市植被覆盖度改善区域面积大于退化区域,其面积占比分别为44.86%,37.94%。[结论]草地和未利用土地向城乡、工矿、居民用地和水域转化是造成植被覆盖退化的主要原因。  相似文献   

8.
为探求沂河流域植被覆盖时空演变特征及其与地表径流的关系,基于MOD13Q1 NDVI遥感影像数据,利用趋势分析方法,分析了2000—2020年沂河流域植被覆盖时空演变特征,并利用SCS模型模拟地表径流深,使用相关分析在像元尺度上分析了植被NDVI变化与径流的关系。结果表明:(1)沂河流域20年间植被NDVI呈波动增加趋势,流域内NDVI空间分布差异较大,NDVI增加的区域主要分布在流域北部,NDVI减少的区域主要分布在流域东部和南部及各城镇建成区内;(2)沂河流域不同时期径流深均呈现出不同程度的由西北向东南逐渐增加趋势,径流深出现较大幅度波动,径流存在明显的丰枯变化;(3)流域NDVI和地表径流之间呈正相关和负相关共存的相关关系,以不显著正相关为主,呈显著正相关的区域主要集中在流域北部,显著负相关区域主要集中在流域南部兰山区境内。研究表明,沂河流域整体植被覆盖得到了改善,但流域内部植被变化存在分异,植被保护与修复主要集中在北部,而南部与东部地区随着人类活动的增加,NDVI出现一定程度减少。随着流域内不同空间位置NDVI的增加及减少,径流主要呈增加趋势且两者相关关系在小空间尺度下存在明显...  相似文献   

9.
[目的]探讨2000—2021年新疆植被覆盖变化及其驱动力的分析,为新疆地区环境监测提供理论依据。[方法]借助GEE平台获取由NASA提供的NDVI数据,利用趋势分析、Hurst指数法对新疆地区2000—2021年植被覆盖变化进行动态分析,结合气象等数据,采用Mann-Kendall、偏相关分析法等对植被覆盖变化与气候、地表因素的响应进行分析。[结果](1) 2000—2021年新疆地区NDVI年际变化总体以0.001 4/a的速率波动式增长;年内变化总体呈倒U型,草甸植被的NDVI月均值波动最大。(2) 2000—2021年新疆地区NDVI年均值77.9%在0~0.3波动,在空间分布表现为北部和西北部高,南部和东南部低。(3) 2000—2021年新疆地区总体slope值在-0.036~0.052波动,主要变化趋势为基本不变和轻微改善,结合Hurst指数,新疆植被主要未来趋势变化为改善到退化。(4) 22年间新疆地区的气温总体呈上升趋势,降水、土壤湿度和径流总体呈下降趋势。NDVI年均值与气温、降水、土壤湿度和径流呈显著负相关性的像元数占比均大于正相关性的像元数占比,且存在明显的空间...  相似文献   

10.
[目的] 探讨辽宁省抚顺市退耕还林以来土地利用格局时空变化特征及生态环境效应,揭示土地利用格局变化对环境的影响,为该区土地利用结构优化提供科学依据。[方法] 以2000,2010和2020年3期遥感影像为基础数据,通过土地利用动态度、土地利用程度综合指数、土地利用转移矩阵、NDVI差值分析、区域生态环境质量指数等方法定量分析抚顺市土地利用格局时空变化特征及生态环境效应。[结果] ①2000—2020年研究区各种土地类型存在相互转化的关系,其中林地和耕地变化较为明显。20 a间,耕地面积减少825.59 km2,增长率-7.32%;林地面积增加591.14 km2,增长率5.24%;城镇用地面积增加182.36 km2,增长率1.62%; ②2000,2010和2020年研究区土地利用程度综合指数分别为224.48,225.57和226.12,同比增长0.49%和0.24%,研究区土地开发利用强度缓慢上升; ③研究区20 a间植被覆盖整体呈上升趋势,NDVI减少的区域与城镇用地的扩张区域基本重合; ④3个时期土地利用类型转化的生态环境质量指数分别为0.744 8,0.775 4和0.782 6,10 a间环境质量生态指数分别上升4.11%和0.93%,环境质量整体呈上升趋势。[结论] 20 a间研究区快速推进城镇化进程的同时环境质量整体向好,局部范围内生态环境质量改善与恶化并存。城镇用地、耕地、林地之间的转化为主要原因,退耕还林等环境保护政策使研究区环境质量不断上升,但随着时间的推移,上升趋势趋于平缓。  相似文献   

11.
为探究黄土高原植被覆被时空分布与动态变化及其与气候和人类活动的响应机制,基于趋势分析、偏相关性分析和残差分析等方法,利用2000—2015年黄土高原MODND1T/NDVI植被遥感数据、同期气象数据及ESA CCI-LC植被覆被分类数据,根据气候和人为因素对植被覆盖变化的驱动贡献,(1)分析了黄土高原NDVI分布格局、变化趋势及其驱动因素。结果表明:(1)黄土高原NDVI由西北向东南呈递增趋势,具有明显空间异质性分布特征。16年间NDVI呈显著增加趋势,平均递增速率0.010 2/a,波动范围介于0.54~0.71。(2)黄土高原NDVI变化趋势与降水有较强相关性,两者偏相关系数为0.53。(3)黄土高原不同季节NDVI均呈整体增长趋势,春季NDVI与降水呈显著正相关关系,降水是决定春季所有植被类型覆盖变化的最直接因素。(4)残差分析表明,人类活动对黄土高原NDVI的波动影响较大,是黄土高原植被覆盖变化的重要驱动因素。综上,黄土高原16年间植被覆被明显增加,降雨是黄土高原植被生长发育的主要限制因素,人类活动通过退耕还林等生态修复措施对黄土高原植被覆被带来明显改善。  相似文献   

12.
黄土高原植被覆盖时空变化及原因   总被引:1,自引:1,他引:0  
张家政  李崇贵  王涛 《水土保持研究》2022,29(1):224-230+241
研究黄土高原地区植被覆盖动态变化及其与人类活动和气象因子的关系对评价区域生态环境质量及生态过程具有重要意义。以黄土高原1982—2018年NDVI(1982—2011年GIMMS NDVI和2000—2018年MODIS NDVI)数据为基础,利用像元二分模型对植被覆盖度进行估算,借助植被绿度、相关分析和多元回归残差法分析了黄土高原植被覆盖度时空变化规律及其对人类活动和气象因子的响应特征。结果表明:(1)过去37年,黄土高原春、夏、秋和生长季植被覆盖度呈现升高趋势,且各季节FVC增加速率逐年升高,尤其以夏季和生长季增加速率的变化最为明显;(2)空间上,春、夏、秋和生长季FVC呈由西北向东南递增的趋势,且大部分地区呈显著上升趋势,植被呈现改善趋势的面积要大于呈现退化趋势的面积;(3)春、夏、秋和生长季人类活动对FVC主要以正面影响为主,且夏季人类活动对于FVC影响更为显著。在气象因素方面,FVC与平均气温在夏季和生长季呈现显著正相关的区域面积占比较大,FVC与总降水量在春季和秋季呈现显著正相关的区域面积占比较大。退耕还林(草)等生态工程的实施,使得黄土高原植被状态得到明显改善,但是城市扩张使得部分地区植被覆盖度呈现退化现象。  相似文献   

13.
近20年黄土高原土地利用/植被覆盖变化特征及其成因   总被引:1,自引:0,他引:1  
近20年来黄土高原土地利用结构发生了显著变化,生态环境取得举世瞩目的成效,揭示黄土高原土地利用/植被覆盖的变化特征及成因是促进区域土地利用空间格局优化的关键环节。运用GIS技术,对黄土高原2000年、2010年、2017年的遥感数据进行转移矩阵,系统研究了黄土高原地区、各省份和生态分区的变化特征并定性分析了造成土地利用变化的主要驱动力。结果表明:(1)黄土高原的土地利用类型主要以耕地、林地和草地为主。2000—2017年,耕地、草地和水域都呈减少趋势,分别减少了19 860 km2,42 410 km2和5 630 km2,而林地、建设用地和未利用地面积有所增加,分别增加30 650 km2,9 840 km2和27 410 km2; 草地为主要的转入与转出地类。(2)黄土高原7个省域主要土地类型与区域变化规律基本一致,草地退化现象在甘肃与宁夏的不同时间段较为严重,具体表现为甘肃省在2000—2010年有7 830 km2草地转移为未利用地,而宁夏在2010—2017年有8 900 km2草地转入未利用地。(3)黄土高塬沟壑区、丘陵沟壑区、风沙区和土石山区及河谷平原区水域面积持续减少,且主要向耕地发生转移,同时生态区土地利用主要发生耕地与草地的动态转移。(4)黄土高原土地利用/植被覆盖变化的主要驱动力是社会因子,其中国家政策的实施起到了主要的推动和促进作用,而人类活动等的影响相对小一些。研究结果可为黄土高原土地利用规划提供科学支撑,也为该区生态保护和高质量发展服务。  相似文献   

14.
黄土高原植被变化与恢复潜力预测   总被引:5,自引:2,他引:5       下载免费PDF全文
采用GIS技术与地统计方法,基于黄土高原2000—2018年的MODIS遥感影像,选取归一化植被指数探讨研究区植被时空变化特征,采用相似生境法预测黄土高原植被恢复潜力。结果表明:黄土高原2000—2018年低植被盖度区域面积减少,高植被覆盖度面积不断增加。黄河中游头道拐至龙门区间植被变化最为显著,平均增长速率为0.015~0.050/a,其中,延河上游、清涧河及秃尾河流域的植被盖度增长速率最高,均超过了0.015/a。受城市化影响,汾渭平原的下游干流区植被盖度显著降低。相似生境法预测黄土高原未来植被恢复潜力的空间差异性显著,东南部地区植被盖度接近或达到最大恢复潜力,无恢复空间;在丘陵沟壑区和风沙区的交错地带部分地区植被盖度较现状仍有25%~50%的提升潜力。由于黄土高原植被受退耕还林草工程影响,人工植被干扰强烈,受到该区降雨与水分承载力限制,未来植被恢复需调整植被类型、优化植被结构与格局,提升区域生态系统功能。本研究结果可为黄土高原未来植被恢复与水土保持规划与布局提供理论与方法支撑。  相似文献   

15.
基于NDVI的黄土高原植被覆盖变化特征分析   总被引:5,自引:0,他引:5  
黄土高原是我国生态环境最为脆弱的地区之一。探讨黄土高原地区植被覆盖动态变化对于区域植被恢复和生态系统重建具有积极意义。利用空间数据分析软件GeoDa和ArcGIS地统计分析模块,采用1998、2003、2008和2012年8月21日的SPOT—VGTNDVI数据代表黄土高原地区相应年份植被覆盖最大的时期,对黄土高原植被覆盖随时间的演变特征进行分析。结果表明,1998--2012年,黄土高原植被覆盖经历了先降低后增加的过程,且1998、2003、2008和2012年的归一化植被指数(NDVI)数值均有明显的空间自相关关系,NDVI值冷点区的位置和范围均较为稳定,热点区变化较大,主要分布在陕西和山西境内。  相似文献   

16.
土壤水作为植物耗水最主要的来源,其变化对整个生态系统都有重要影响。利用GRACE卫星数据与GLDAS-NOAH模型,分析2002—2020年黄土高原土壤水时空变化规律,并结合GEE平台2002—2020年的MODIS NDVI产品数据集、与2000—2017年降水资料对土壤水的变化进行相关性分析,使用M—K检验法对趋势进行检验,结果表明:(1)2002—2020年GRACE等效水高(毫米水柱高)变化月均值为(-7.56±4.38)mm,从2008年开始呈现显著减少趋势。(2)2000—2020年0—10 cm土层土壤水呈不显著增加趋势,10—40,40—100,100—200 cm呈不显著变化趋势,2012—2020年200 cm以下土层土壤水呈显著减少趋势。(3)随着土层深度的增加,黄土高原2000—2017年的降水与土壤水的相关性在显著降低。相关性系数从0—10 cm时的0.581降低到100—200 cm时的0.099。而将2002—2020年的200 cm以下土层土壤水与NDVI变化分析其相关性系数为-0.805~*,为显著负相关关系。研究结果阐述了黄土高原土壤水的变化规律,揭示了降水和NDVI变化与其的相关性联系,为下一步黄土高原的植被恢复提供了理论支撑。  相似文献   

17.
[目的]退耕还林还草工程实施以来,陕西省植被覆盖度明显提高。然而,省级尺度上植被覆盖度的增加一定程度上掩盖了部分市、县级区域植被覆盖度下降的实事,当前迫切需要加强对不同空间尺度植被覆盖变化及其驱动因素的研究。[方法]基于MODIS NDVI数据计算了陕西省植被覆盖度,分析了2000—2020年陕西省、地区、市和县四级尺度植被覆盖度时空变化趋势。[结果]2000—2020年陕西省植被平均覆盖度为64.3%±2.1%,增长率为0.24%/a;陕北植被覆盖度平均为37.6%±4.4%,增长率为0.63%/a;陕南植被覆盖度平均为89.6%±1.2%,增长率为0.13%/a;关中植被覆盖度平均为70.6%±3.5%,下降率为-0.18%/a。延安市、榆林市、铜川市、宝鸡市、安康市、商洛市的植被覆盖度呈持续增加趋势,而西安市、渭南市、咸阳市和汉中市的植被覆盖度呈先增加后下降趋势;全省有72.3%的区县植被覆盖度呈增加趋势,有22.3%的区县植被覆盖度变化方向与所在市相反。在不同空间尺度上,陕西省植被覆盖度增速均表现为2000—2010年高于2010—2020年,这与两个时期的造林面积差异有关。[...  相似文献   

18.
利用2000-2012年SPOT VGT NDVI数据,通过差值及相关分析法,对陕西省植被覆盖的时空演变进行研究,并对植被指数(NDVI)与气候因子的关系进行分析。结果表明:(1)2000-2012年,陕西省植被覆盖改善区域明显大于退化区域,植被覆盖增加区域主要分布在陕北风沙过渡区和黄土高原地区,减少区域主要分布在关中平原地区和陕南部分地区。(2)月平均NDVI与月平均降水量和气温呈极显著相关关系(P<0.01),相关系数分别为0.875、0.885。(3)2000-2012年,陕西全省NDVI增长速率为0.109·10a-1,说明生态恢复建设取得一定成效。(4)陕西NDVI变化具有明显的季节性,夏季和秋季NDVI增加最快,冬季增长最慢,且NDVI对降水、气温的响应存在时滞性。  相似文献   

19.
基于RS和GIS的陕北黄土高原退耕还林区土壤侵蚀定量评价   总被引:2,自引:1,他引:2  
王娟  卓静 《水土保持通报》2015,35(1):220-223,229
[目的]分析陕北黄土高原退耕还林区2000,2007和2012年土壤侵蚀量时空变化特征,为该地区开展退耕还林(还草)工程提供参考。[方法]在GIS和RS的技术支持下,以陕北黄土高原退耕还林区为研究区域,应用美国通用土壤流失预报方程(RUSLE模型)为评价模型,利用ArcGIS 9.2的栅格数据空间分析功能,对研究区域2000,2007和2012年土壤侵蚀强度进行了估算,在此基础上分析了其时空变化特征。[结果]陕北黄土高原退耕还林区2000—2012年土壤侵蚀量呈下降趋势,2012年较2000年下降了1 162t/(km2·a);以子长县为例,2000年土壤侵蚀模数在2 500t/(km2·a)以下的面积仅占区域总面积的0.1%,2012年上升为55.2%;2000年研究区主要土壤侵蚀强度为中度侵蚀,2012年为轻度侵蚀,变化剧烈的区域主要集中在黄土高原丘陵沟壑区的子长、安塞、志丹等县。[结论]植被覆盖因子是影响区域内土壤侵蚀的最主要因素,由此可见大力开展退耕还林(还草)工程可以有效抑制区域内土壤侵蚀状况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号