首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Due to increasing fragmentation of the boreal forests of Fennoscandia, a number of epiphytic lichens are now becoming threatened. Since these species typically are limited by a poor ability of dispersal, one possible but largely unexplored strategy for conservation is to disperse lichen material artificially into suitable habitats. Therefore, the objective of this study was to evaluate survival and vitality in lichen fragments from Evernia divaricata (L.) Ach. and Ramalina dilacerata (Hoffm.) Hoffm. after transplantation into three different stand types situated in northern Sweden, using different fragment sizes and modes of transplantation. After one year, survival ranged between 85% and 97.5%, and new growth occurred at all transplantation sites. The study has shown that transplantations of small fragments might constitute a resource-efficient option for establishment of new populations of endangered lichen species, or for enlarging their populations at the present sites of occurrence. In addition, the mode of transplantation was of importance for fragment vitality.  相似文献   

2.
Conservation planning is often based on static mapping of species’ ranges or habitat distributions. Succession and disturbance alter, however, habitat quality and quantity through time especially under global climate and land use change scenarios; hence, static protected areas may not ensure habitat persistence and species survival. Here, we examined the relative merits of static and dynamic (floating) protected areas for the conservation of American marten (Martes americana) habitat in a dynamic boreal forest of Québec (Canada). Forest dynamics were modeled using a spatially-explicit landscape disturbance model and protected areas were selected based on the quality and compactness of marten home ranges using MARXAN. Static protected areas were fixed in space during 200 year simulations of boreal forest dynamics, while dynamic protected areas were re-located every 50 years to track dynamic habitat. Dynamic protected areas supported more high quality home ranges through time than static protected areas. The locations of dynamic protected areas were constrained, however, by the highly fragmented forest patterns created through logging and fire in unprotected areas. Our findings emphasize the often-overlooked point that if dynamic conservation planning is to be successful in the long term, the landscape matrix quality surrounding protected areas must be managed in such a way that options remain when it comes to re-planning.  相似文献   

3.
The Canadian boreal forest covers over 300 Mha of land area. Its dynamics are largely influenced by fires and insect-induced stand mortality and to a much lesser extent by forest management. This paper analyses six scenarios of future (1990–2040) carbon (C) budgets of the Canadian boreal forest, each based on different assumptions about natural disturbances, rates of reforestation of disturbed land, and conversion of non-stocked to productive forest stands. The objective of these scenarios is to explore the range of responses to different management options. The results indicate an overall inertia of a system whose dynamics are strongly influenced by a recent 20-year period (1970–1989) of large-scale forest disturbances by fire and insects. The 50-year C budget of the six scenarios ranges from an estimated net source of 1.4 Pg C to a net sink of 9.2 Pg C. These estimates indicate the range of response to the management of the Canadian boreal forest. Although a full-scale implementation of the management activities examined here is not likely given ecological and economic realities in the Canadian boreal forest, the analyses explore the relative merits of reducing forest disturbance rates, regeneration delays, and the area of non-stocked forest land.  相似文献   

4.
In the boreal forest landscape, aspen has been effectively selected against in favour of conifers. The decrease in aspen is of particular concern, since it has more host-specific species associated with it than any other boreal tree species. Recently, forest management systems have begun to include green-tree retention in order to maintain structural diversity. Earlier studies have focused on the importance of remnant aspen trees for lichen species prevalence. We have focused on the occurrence of free-living photobionts, i.e. cyanobacteria and green-algae, since a successful establishment of sexually dispersed lichens will depend upon the presence of the photobiont. Our study shows that the abundances of Gloeocystis, Nostoc, Scytonema and Trentepohlia increased with stand age, while the abundance of Trebouxia decreased. The response to clear-felling differed between genera. The two cyanobacterial genera were able to persist in clear-cuts, although they were more abundant on the northern side of the remnant trees. The green-algae showed no consistent pattern, Trentepohlia was affected while Trebouxia was unaffected. Our study indicates that the prerequisites for new-establishment for spore dispersed lichen species, on remnant aspen, may be fulfilled in terms of availability of free-living photobionts on the northern side of the trunks. In support of this interpretation we found that the occurrence of cyanolichens was positively correlated with the occurrence of free-living cyanobacteria in the clear-cuts. We conclude that tree retention is likely to provide a useful tool for increasing biodiversity in managed forest landscapes provided that source populations still exist in the surrounding landscape.  相似文献   

5.
Predicted future changes in regional climate under a doubling of atmospheric CO2 concentrations were applied to the 1951–80 normals of 254 climate stations to examine future impacts on the boreal forest of western Canada. Previous analyses have indicated that in this region, the southern boreal forest is presently restricted to areas where annual precipitation (P) exceeds potential evapotranspiration (PET). The present analysis suggests that a predicted 11% increase in P would be insufficient to offset the increases in PET resulting from a predicted warming of 4–5°C. As a result, half of the western Canadian boreal forest could be exposed to a drier climate similar to the present aspen parkland zone (P < PET), where conifers are generally absent and aspen is restricted to patches of stunted trees interspersed with grassland. Future changes could result in permanent losses of forest cover following disturbance and an increase in the proportion of exposed edge habitat in remaining stands, where environmental conditions might induce additional stresses on tree growth. Thus if the predicted warming and drying occurs, productivity of aspen and other commercial species in the southern boreal forest would be greatly reduced.  相似文献   

6.
The ability of soil microbial communities to withstand punctual disturbance or chronic stress is important for the stability of ecosystem processes. Factors controlling microbial community composition or soil resource availability should be regarded as potential determinants of this stability. Here, we explored the effects of three stand types (jack pine, aspen and mixed-wood) and two geologic parent materials (clay and till), on the stability of the microbial biomass in the forest floor. We hypothesised that microbial communities in mixed-wood stands or on the clay soil would show greater resistance to, and resilience from, a dry-wet disturbance, and a higher tolerance to incremental additions of HCl or Cu, than microbial communities in mono-specific stands or on the till soil. We also surveyed the understory vegetation, and measured chemical properties and microbial phospholipid fatty acid profiles in the forest floor, so as to gain insights into the factors regulating microbial stability. Microbial resistance to disturbance was found to be higher in mixed-wood than in mono-specific stands. Microbial communities from mixed-wood stands also showed a high tolerance to HCl and Cu stress over both geologic parent materials, as opposed to those in mono-specific stands that showed a high tolerance to stress on only one type of parent material. Some forest floor properties in mixed-wood stands (e.g. Ca on clay, mineralisable N and C/N ratio on till) were more similar to the more productive aspen, than to jack pine stands. Other properties (understory plant communities, pH, actinomycete and arbuscular mycorrhizae) of mixed-wood stands were transitional between those in aspen and jack pine stands, suggesting that both tree species contribute in structuring the forest floor microbial pool in mixed-wood stands. We put forward that this may provide a more diverse capability to resist disturbance and tolerate stress than in mono-specific stands. We found no effect of stand type on microbial resilience to disturbance, but resilience was higher on clay than on till plots. This could be due to a higher fungal/bacterial ratio on till plots, as slower fungal growth rates may hinder resilience, or to lower carbon and nutrient availability limiting the growth rate of resistant microbial cells. We conclude that plant diversity and site productivity are important drivers of forest floor microbial stability in the southern boreal forest of eastern Canada.  相似文献   

7.
Here we quantitatively summarize the conservation ecology of one group of dead-wood-dependent organisms, the polyporous fungi, in boreal Europe. At the substrate scale, the decay stage is the strongest determinant of species richness, with large (>20 cm diameter) downed logs hosting more species than other dead-wood types. At the stand scale, the amount of dead wood is the strongest determinant of polypore species richness; the minimum average amount of dead wood for the occurrence of rare polypores appears to be 20–40 m3/ha. Species-area analysis shows that in mature boreal forests species accumulation levels off at around 20–30 ha. This leads us to suggest a heuristic 20/20/20 rule of thumb: a 20 ha stand, with an average of 20 m3/ha of dead wood of which many are logs >20 cm, is likely to be the minimum for the ecologically justified conservation of polypore diversity at the stand scale in boreal Europe. Equally crucial for polypore diversity, however, is the current and historic extent of suitable habitats at the landscape scale. The time lag between the isolation of a habitat patch and the new equilibrium in the number or occurrence of species seems to be around 100–150 years, indicating that an extinction debt is likely to exist in recently isolated fragments. Only a few studies have addressed the ecological efficiency of the new, biodiversity-oriented forest management tools (retention trees, woodland key habitats). Despite this it seems that the traditional large conservation areas are the most effective means of polypore conservation.  相似文献   

8.
This study was designed to examine whether or not specific tree species (Picea glauca, Picea mariana, Pinus banksiana, Populus tremuloides), their post-fire stand age, or their position in a successional pathway had any significant effect on the functional diversity of associated soil microbial communities in a typical mixed boreal forest ecosystem (Duck Mountain Provincial Forest, Manitoba, Canada). Multivariate analyses designed to identify significant biotic and/or abiotic variables associated with patterns of organic substrate utilization (assessed using the BIOLOG™ System) revealed the overall similarity in substrate utilization by the soil microbial communities. The five clusters identified differed mainly by their substrate-utilization value rather than by specific substrate utilization. Variability in community functional diversity was not strongly associated to tree species or post-fire stand age; however, redundancy analysis indicated a stronger association between substrate utilization and successional pathway and soil pH. For example, microbial communities associated with the relatively high pH soils of the P. tremuloides-P. glauca successional pathway, exhibited a greater degree of substrate utilization than those associated with the P. banksiana-P. mariana successional pathway and more acidic soils. Differences in functional diversity specific to tree species were not observed and this may have reflected the mixed nature of the forest stands and of their heterogeneous forest floor. In a densely treed, mixed boreal forest ecosystem, great overlap in tree and understory species occur making it difficult to assign a definitive microbial community to any particular tree species. The presence of P. tremuloides in all stand types and post fire stand ages has probably contributed to the large amount of overlap in utilization profiles among soil samples.  相似文献   

9.
This paper is a review of recent experiments dealing with the role of soil fauna in decomposition, mineralisation and primary production in coniferous forest soils. The experiments have been grouped according to the degree and nature of the ‘diversity gradient' between the ‘more diverse' community and its control: single animal species or an uncontrolled mixture of species versus microbiota only, several known animal species of the same trophic group versus one species only (species diversity), two or more functional groups versus one only, and food chains with predators versus microbes and microbivores only. The evidence available at present suggests that taxonomic diversity and predation have no consistent effects on the process rates in soil, while adding to the ‘functional' or ‘trophic group diversity' results in a more predictable enhancement in mineralisation. Especially the enchytraeid Cognettia sphagnetorum seems to be a keystone species in boreal forest soils. However, there are only few experiments in which species diversity per se has been taken as a separate factor, without a simultaneous change in the number of trophic groups or in total decomposer biomass.  相似文献   

10.
Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号