首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Most agricultural production in central Vietnam relies on sandy soils distributed along the sea coast. Because of their low exchangeable potassium (K) and low cation exchange capacity (CEC), careful adjustment of K fertilization on these soils is needed to minimize K leaching. Quantity/intensity curves were established on 24 sandy soils from Thua Thien Hue Province from which K buffering capacity (PBC) was calculated and compared with basic soil properties. Potassium buffering capacity was found to correlate best with soil texture and only a little with humus content, although these two characteristics are responsible for CEC. A simple equation based on sand content, which is easier to determine than clay content, is proposed to calculate optimum exchangeable K level as a function of target K level in soil solution.  相似文献   

2.
Potassium (K) exchange isotherms (quantity–intensity technique, Q/I) and K values derived from the Q/I relationship provide information about soil K availability. This investigation was conducted to study Q/I parameters of K, available K extracted by 1 N ammonium acetate (NH4AOc) (exchangeable K plus solution K), K saturation percentage (K index, %), and the properties of 10 different agricultural soils. In addition, the relationship of mustard plant yield response to the K requirement test based on K exchange isotherms was investigated. The Q/I parameters included readily exchangeable K (ΔK0), specific K sites (KX), linear potential buffering capacity (PBCK), and energy of exchange of K (EK). The results of x-ray diffraction analysis of the oriented clay fractions indicated that some mixed clay minerals, illite clay minerals, along with chlorite/hydroxy interlayered vermiculite and kaolinite were present in the soils. The soil solution K activity ratio at equilibrium (AR0) ranged from 8.0 × 10?4 to 3.1 × 10?3 (mol L?1)0.5. The readily exchangeable K (ΔK0) was between 0.105 to 0.325 cmolckg?1 soil, which represented an average of 88% of the exchangeable K (Kex). The soils showed high capacities to maintain the potential of K against depletion, as they represented high linear potential buffering capacities (PBCK) [13.8 to 50.1 cmolc kg?1/(mol L?1)0.5. The EK values for the soils ranged from ?3420 to ?4220 calories M?1. The percentage of K saturation (K index) ranged from 0.7% to 2.2%. Analysis of variance of the dry matter (DM), K concentrations, and K uptake of mustard plants indicated that there were no significant differences among the adjusted levels of K as determined by the exchange-isotherm curve.  相似文献   

3.
Summary An incubation experiment was conducted to study the changes that occur in the K status of soil due to earthworm activity. Samples of Tokomaru silt loam soil were inoculated with the common pasture earthworm species Aporrectodea caliginosa and incubated for 21 days. Aliquots of moist soil were analyzed for exchangeable K by leaching with neutral molar ammonium acetate at 1:50 soil solution ratio. Extraction with boiling 1 M nitric acid at 1:100 soil solution ratio for 20 min was used to determine available non-exchangeable K. The results indicated that the exchangeable K content increased significantly due to earthworm activity but nitric acid-extractable K did not change significantly. It is inferred that earthworms increase the availability of K by shifting the equilibrium among the forms of K from relatively un-available forms to more available forms in the soil chosen for the study.  相似文献   

4.
Plant availability of potassium (K) in soils is controlled by dynamic interactions among its different pools. Potassium quantity–intensity (Q/I) parameters were determined to relate them to bean plant indices in a pot experiment. The results showed that the activity ratio at equilibrium (ARk) ranged from 0.015 to 0.358 (mmol L?1)0.50, the potential buffering capacity (PBC) ranged from 7.54 to 26.32 mmol kg?1/(mmol L?1)0.50, the labile K (Δk°) ranged from 9.1 to 112.2 mg kg?1, and the K adsorbed at specific sites (Kx) ranged from 6.51 to 69.69 mg kg?1. The results of pot experiment showed that some K Q/I parameters were significantly correlated with some plant indices. Also, the correlation study showed that readily exchangeable K was significantly correlated with K Q/I parameters except Kx. The results of this research show that the K Q/I method can be used for estimating of soil K availability for bean.  相似文献   

5.
The plant minimal exchangeable K (EPl,min) defines the lower accessible limit of the most available pool of soil K to plants. It is also an index of long‐term K reserve in soils. However, its estimation by the classical method of exhaustion cropping is laborious. This study aimed at comparing EPl,min values obtained by the exhaustion cropping method with EPl,min values estimated by an alternative approach based on the cationic exchange capacity (CEC) of the infinitely high selective sites for K (i.e., always saturated with K) in the K‐Ca exchange (EK‐Ca,min). A set of 45 soil samples, corresponding to the various fertilization K treatments of 15 long‐term K fertilization trials, was used in this study. The selected soil samples presented a wide range of texture, CEC, and exchangeable K. The plant minimal exchangeable K was found more or less independent of the K treatment, whereas EK‐Ca,min increased when the soil exchangeable K content increased. The plant minimal exchangeable K was systematically lower than EK‐Ca,min, showing that EK‐Ca,min is at least partially available to the plant. Hence, EK‐Ca,min is not a surrogate of EPl,min. Conversely, the plant minimal exchangeable K was strongly, positively correlated to soil CEC (measured at soil pH; r2 = 0.90***). This soil property can consequently be used as a proxy of EPl,min.  相似文献   

6.
王玉  张一平 《土壤学报》2002,39(2):254-260
滤纸法对非饱和土壤溶液离子浓度的变化有较高的敏感性和较好的重现性 ,能够用于非饱和土壤离子吸附等温线的测定。滤纸法和乙醇浸提法、离心法有很好的一致性。滤纸法测定的非饱和土壤NH 4 、K 离子吸附等温线具有一般吸附等温线的共性 ,可用Freundlich方程描述 ,且达极显著相关水平。在土壤溶液浓度相同的情况下 ,液土比增大 ,离子固相吸附量增大 ,Freundlich方程的k值 ,n值增大 ,说明液土比增大有利于非饱和土壤离子吸附反应进行  相似文献   

7.
The Ca concentration of the soil solution influences K plant nutrition by its influence on K concentration of the soil solution and on soil buffer power through ion exchange and K release or fixation. The effects of the imposed solution Ca concentration on the estimates of these parameters and on these two phenomena were studied on a loamy soil. Potassium sorption and desorption experiments were conducted for 16 h at five initial Ca concentrations (from 0 to 10?1 M) and followed by the measurement of soil exchangeable K (ammonium acetate extraction). Soil K-Ca exchange properties and the contributions of exchangeable K and non-exchangeable K to K dynamics of the soil-solution system were estimated. The‘Ratio Law’ applied for the medium range of Ca concentrations, i.e. 10?1 M to 10?3 M. But, it failed for some experiments at small initial Ca concentrations (0 M and 10?4 M). This failure went with a decrease of the number of sites of great affinity for K in K-Ca ion exchange and/or a decrease of the amount of K not in exchange equilibrium with Ca but extracted by M ammonium acetate. Release of K increased and fixation of K decreased when Ca concentration increased. The relation between the change in the amount of non-exchangeable K during the experiment and the initial constraint (ø) was curvilinear on the large range of ø investigated. But, this relation was independent of Ca concentration. The K concentration of the solution for which neither sorption of K by the soil nor desorption of K from the soil occurred decreased and the slope of the sorption-desorption curve at this K concentration increased when the solution Ca concentration decreased. These two parameters can be considered the K concentration of the soil solution of the soil and the buffer power of the soil, respectively, only if the initial Ca concentration imposed during the sorption-desorption experiments is close to the Ca concentration of the soil solution of the soil. A predictive model of the soil buffer power based on ion exchange and release-fixation properties is proposed. Despite some discrepancies at very low Ca concentrations (<0·5 mM Ca) when‘Ratio Law’did not apply the agreement between calculated and observed values was good. The model permits the correction of the experimentally obtained buffer power for the bias related to the great solution volume: soil weight ratio commonly used during the sorption-desorption experiments.  相似文献   

8.
长期施用钾肥和稻草对红壤双季稻田土壤供钾能力的影响   总被引:4,自引:1,他引:3  
以红壤双季稻区长期定位施肥试验(1981―2012年)为基础,研究了长期施用化肥和稻草对双季稻集约化种植下水稻产量、作物吸钾量和土壤供钾能力的影响。结果表明,施钾能增加水稻稻谷和稻草的产量;水稻从土壤中的吸钾量随钾肥施用量的增加而显著增加,年平均吸钾量顺序为NPK+RS(施氮磷钾化肥+稻草)NPK(施氮磷钾化肥)NP+RS(施氮磷化肥+稻草)CK(不施任何肥料)NP(施氮磷化肥);长期不施用或施用不足量钾肥(CK、NP、NP+RS)会导致耕层土壤速效钾、缓效钾和全钾数量的亏缺。长期施用钾肥和稻草不仅有利于土壤伊利石含量的增加,而且有利于晶格不良伊利石向晶格良好伊利石的方向发展;施钾能增加土壤黏粒中的游离伊利石和伊利石的含量,长期施用钾肥和稻草会使土壤黏粒中的蛭石向伊利石转化。土壤钾素的容量-强度(Q/I)曲线参数可以解释长期施用钾肥和稻草处理土壤供钾能力强是由于这些处理的活性钾(-ΔK°)量高、专性吸附钾位(Kx)多、有效钾强度(AReK)强、紧吸持K+量多,而潜在缓冲容量(PBCK)、吉布斯自由能(-ΔG)和阳离子交换系数(KG)较长期不施钾肥处理低。综上,在施氮磷肥的基础上,配施钾肥和稻草还田不仅能提高水稻高产、稳产的能力,而且对促进水稻对钾的吸收量、增强土壤的钾吸持能力、保持农田钾素平衡以及提高土壤供钾能力有重要作用。  相似文献   

9.
紫色土K+吸附解吸动力学研究   总被引:7,自引:0,他引:7       下载免费PDF全文
从国家紫色土肥力与肥料效益监测基地定位试验上 ,在第 10年水稻收获后从 0~ 30cm土层采取土壤样品 ,研究土壤K 吸附、解吸动力学过程。结果表明 ,不同施肥处理土壤K 吸附、解吸反应分别在2 4~ 32min和 4 6~ 6 4min达到平衡 ,吸附、解吸平衡量分别为 14 1~ 19 2cmolkg-1和 11 6~ 17 5cmolkg-1。相关分析说明 ,土壤阳离子交换量 (CEC)及粘粒含量是影响吸附平衡时间、吸附平衡量的重要因素 ;CEC、交换钾量是影响解吸平衡时间、解吸平衡量的重要因素。由此可见 ,长期不同施肥对土壤CEC、粘粒及交换钾量产生影响 ,从而影响了紫色土K 吸附、解吸平衡时间及吸附、解吸平衡量。平衡前钾离子的吸附、解吸速度及吸附、解吸率与反应时间lnt间存在良好的线性关系。其中反应速度直线和解吸率直线的斜率、初始反应速度及初始吸附率均与CEC、粘粒含量密切相关。Elovich方程和一级扩散方程分别为描述紫色土K 吸附、解吸反应的最优与最差模型 ,指数方程和抛物线扩散方程拟合性介于Elovich方程和一级扩散方程之间。由此可见 ,紫色土K 吸附、解吸过程不是一个单纯的过程 ,而是一个包括土体膨胀、吸附位活化、表面扩散等诸多因素的复杂过程。  相似文献   

10.
Potassium release and fixation in Ferralsols (Oxisols) from Southern Togo   总被引:1,自引:0,他引:1  
Potassium release and fixation were studied on Ferralsols (typic Eutrustox) of Southern Togo both by isotopic exchange with 42K+ ions and by exchange with 1 M ammonium acetate. Experiments were conducted on soil samples taken from surface (0–30 cm) and subsoil (80–100 cm) layers of four plots. These plats, with the same soil type, were subjected to various kinds of use: forest and crops, with or without fertilizers. A single wetting and drying of the soil samples increased the amounts of exchangeable K. This exchangeable K release could stem from clay protonation during drying. However, the K release is insufficient to allow permanent intensive agriculture without K fertilizer addition. Soil samples were therefore treated with KCI in order to study K fixation. About 20% of the applied K was fixed and the percentage increased with wetting and drying. The fixation can be explained by the presence of about 2% of interstratified clay minerals in these kaolinitic soils. Comparison of the kinetic characteristics of the isotopically exchangeable K with the amounts of ammonium exchangeable K revealed the existence of several kinds of exchange site for K ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号