首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
为了解镉胁迫下外源NO对地被植物生理响应的调控机制,采用盆栽试验研究了外源NO(SNP)对镉胁迫下长春花幼苗生长、活性氧代谢、质膜ATP酶活性及光合特性的影响。结果表明,外施100μmol·L^-1SNP能缓解25mg·kg一镉胁迫对长春花幼苗生长的抑制,增加叶长、叶宽、株高、基径和生物量。与镉胁迫相比,施用SNP能够降低叶片和根系中丙二醛(MDA)、过氧化氢(H2O2)含量和过氧根离子自由基(O2^-·)产生速率,提高过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)活性及还原型谷胱甘肽(GSH)含量。SNP能显著缓解镉胁迫对叶绿素a(Chla)、叶绿素b(Chlb)和总叶绿素的抑制,提高叶片净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和气孔限制值(Ls),降低胞间CO2浓度(G)和瞬时光能利用效率(LUE)。同时,外源NO能诱导叶片和根系中质膜H+-ATPase和Ca2+-ATPase活性提升到正常水平(对照)。但外施100μmol·L-1 NO分解产物NaNOx或SNP相似物Na3Fe(CN)6对镉胁迫则无明显缓解作用。因此,外源NO可通过提高活性氧清除能力,增加叶绿素含量,增强质膜ATP酶活性,从而提高叶肉细胞光合能力,加强离子跨膜运输和信号转导,缓解镉胁迫对细胞质膜的损伤。  相似文献   

2.
为探讨外源NO(SNP为供体)对50 mol/L铜、镉毒害的缓解效应,采用营养液培养方法,研究了不同程度的铜、镉毒害(5 mol/L和50 mol/L)对番茄幼苗生物量、根系活力、硝酸还原酶、光合特性及生物膜ATPase、H+-PPase等功能蛋白酶活性的影响。结果表明,铜、镉胁迫显著抑制番茄生长。随处理浓度增加,番茄根系活力、硝酸还原酶活性显著降低,番茄长势越差; 铜、镉胁迫对根系离子吸收的影响远远大于叶片,尤其是铜胁迫,50 mol/L铜胁迫使番茄根系铜含量增加了12倍。铜浓度的增加对镉含量无影响,镉浓度的增加降低了铜的吸收。铜、镉胁迫使番茄净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)显著降低,胞间CO2浓度(Ci)显著增加,表现为非气孔限制。50 mol/L 铜、镉处理显著降低叶片、根系质膜H+-ATPase、Ca2+-ATPase和根系液泡膜H+-ATPase、Ca2+-ATPase和H+-PPase活性; 提高了5和50 mol/L部分处理叶片液泡膜H+-ATPase、Ca2+-ATPase和H+-PPase的活性。表明生物膜功能蛋白对不同程度铜、镉胁迫的响应时间和部位存在差异。铜毒害对细胞质膜ATPase的影响较大,而镉毒害对液泡膜伤害的程度较大。100 mol/L SNP可以显著缓解铜、镉胁迫导致的番茄生长受抑,铜、镉总吸收量显著高于胁迫处理。  相似文献   

3.
蒋先军  骆永明  赵其国 《土壤》2001,33(4):197-201
本文通过温室盆栽试验研究了在10~190 mg/kg共10个浓度梯度的Cd处理下,印度芥菜生长对Cd的响应、Cd在根与地上部的积累以及在Cd胁迫和毒害条件下对Ca和Zn吸收的影响。结果表明,Cd对印度芥菜生长的毒害浓度在各个生育期各有不同:幼苗期与营养生长前期在70~110 mg/kg左右;营养生长后期在110 mg/kg以上;成熟期在150 mg/kg左右。植物吸收的镉随土壤镉处理浓度的增加而增加,本试验中印度芥菜根和叶积累镉最高浓度分别为300 和160 mg/kg。在Cd胁迫下,印度芥菜吸收的Ca和Zn增加;在Cd毒害条件下,印度芥菜吸收的Ca和Zn下降。认为高浓度的Cd对印度芥菜生长有抑制,但印度芥菜对镉也表现出很强的耐性,这种耐性可能与植物体内Cd和Ca、Zn之间的平衡有关。  相似文献   

4.
试验采用营养液培养的方法,以玉米为试材,研究了不同供镉浓度(0、5、20和100μmol/L)和处理时间(12、2,4、48、96、168h)对植株体内钙调蛋白(CaM)含量及生物膜上的Ca^2++ATPase活性的影响。结果表明,植株可溶性Ca^2+含量在镉胁迫后较不加镉处理增加,镉处理在叶和根中分别在48和24h后达最高,然后随镉处理浓度和处理时间的增加逐步下降;同时镉诱导了植株CaM的合成,其含量随镉处理浓度和处理时间增加逐步增加,但20μmol/L和100μmol/L镉处理在168h后有所下降;与不加镉处理相比,镉胁迫导致植株生物膜上的Ca^2+-ATPase活性迅速升高,但随镉处理浓度提高和时间延长,镉胁迫植株的Ca^2+-ATPase活性在48h(质膜、液泡膜和内质网膜)和24h(线粒体膜)后逐步降低。各膜上的Ca^2+-ATPase活性依次为质膜〉液泡膜〉内质网膜〉线粒体膜,且同一微囊膜,根中的活性大于叶中。  相似文献   

5.
蒋先军  骆永明  赵其国 《土壤》2001,33(4):197-201
本通过温控盆栽试验研究在10-190mg/kg共10个浓度梯度的Cd处理下,印度芥菜生长对Cd的响应,Cd在根与地上部的积累以及在Cd胁迫和毒害条件下对Ca和Zn吸收的影响,结果表明,Cd对印度芥菜生长的毒害浓度在各个生育期各有不同:幼功期与营养生长前期在70-110mg/kg左右;营养生长后期在110mg/kg以上;成熟期在150mg/kg左右。植物吸收的镉随土壤镉处理浓度的增加而增加,本试验中印度茶菜根和叶积累镉最高浓度分别为300和160mg/kg,在Cd胁迫下,印度芥菜吸收的Ca和Zn增加,在Cd毒害条件下,印度芥菜吸收的Ca和Zn下降。认为高浓度的Cd对印度芥菜生产有抑制,但印度芥菜对镉也表现出很强的耐性,这种耐性可与植物体内Cd和Ca,Zn之间的平衡有关。  相似文献   

6.
添加有机酸对土壤镉形态转化及苋菜镉积累的影响   总被引:6,自引:0,他引:6  
植物根系分泌的低分子量有机酸能够与土壤中的镉形成镉–有机酸复合体,从而影响根际镉的移动性。本文通过添加有机酸对土壤镉形态转化的研究,阐明有机酸与镉生物积累的关系。采用盆栽试验及土壤培养等方法,研究了添加苹果酸、柠檬酸对赤红壤和黄棕壤中镉的形态转化以及超积累型苋菜天星米镉生物积累的影响。结果表明,与Cd 25 mg/kg处理比较,Cd 25 mg/kg+苹果酸、Cd 25mg/kg+柠檬酸处理对苋菜生物量未产生影响,但显著增加苋菜根系及地上部镉含量;添加苹果酸、柠檬酸处理显著降低土壤专性吸附态Cd含量,却显著增加了交换态Cd、碳酸盐结合态Cd和有机结合态Cd含量。说明添加苹果酸、柠檬酸还能够通过影响土壤镉形态转化而促进苋菜对镉的积累。  相似文献   

7.
NaCl胁迫对嫁接番茄根系质膜和液泡膜ATP酶活性的影响   总被引:2,自引:0,他引:2  
在NaCl胁迫下,对番茄嫁接苗和自根苗的根系活力、根系质膜H+-ATPase、液泡膜H+-ATPase和H+-PPase、质膜和液泡膜Ca2+-ATPase、质膜氧化还原系统活性进行了比较。结果表明,胁迫条件下,嫁接苗根系活力显著高于自根苗。胁迫前期,嫁接苗根系质膜H+-ATPase活性、液泡膜H+-ATPase和H+-PPase活性、质膜和液泡膜Ca2+-ATPase活性、质膜NADH氧化速率和Fe (CN)63- 还原速率被显著诱导;自根苗根系液泡膜H+-ATPase、H+-PPase和Ca2+-ATPase活性、质膜NADH氧化速率和Fe (CN)63- 还原速率被显著诱导。胁迫后期,嫁接苗和自根苗根系各项指标均被显著抑制,但嫁接苗各指标受抑制时间较自根苗晚,且数值上均显著高于自根苗。表明嫁接苗比自根苗具有较强的耐盐性。  相似文献   

8.
4种草本植物对酸性黄壤中铅的吸收特性研究   总被引:4,自引:0,他引:4  
研究4种草本植物(黑麦草、狗牙根、早熟禾、翦股颖)对重金属铅的吸收积累规律,为生态环境建设提供科学依据。采用盆栽试验,分别测定地上部与根部铅含量,计算地上部铅含量/根系铅含量(S/R),根系耐性指数,富集系数4个指标。4种植物地上部和根系中的铅含量与土壤中铅含量呈显著的正相关,相关系数都大于0.90;综合4个指标,对铅的抗性相对顺序为翦股颖〉黑麦草〉早熟禾〉狗牙根。在较高铅离子浓度处理下,4种植物外观没有表现出明显的胁迫现象,特别是黑麦草和翦股颖在重金属Pb含量高达3000 mg/kg的污染土壤上,能够忍耐并正常生长,更适合于Pb污染土壤的修复。  相似文献   

9.
以玉米为材料,通过营养液培养试验,研究浓度为5~100 μmol/L的镉胁迫后不同时间内,植株体内活性氧代谢及其抗氧化酶活性的变化特征,探讨镉胁迫导致植物体内活性氧自由基累积的原因及不同程度镉胁迫对植物体内活性氧代谢的影响。随着加镉量的增加,玉米地上部生物量明显降低,而根部生物量未表现出差异。镉处理降低了叶片光合作用速率,高镉处理的影响较早。镉处理4d后,5、20、和100 mol/L Cd2+浓度处理玉米叶片Fv/Fm减小,PSII系统的原初光能转换效率下降,但比光合作用速率下降的时间要晚;镉处理7d的叶片中丙二醛(MDA)含量还没有受到明显影响,但20和100 μmol/L Cd2+处理4d后,根系膜质过氧化增强,MDA含量升高。随着镉浓度升高,处理时间延长,活性氧酶清除系统包括超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和谷胱甘肽还原酶(GR)等酶活性明显增加,受到镉胁迫诱导,高浓度镉处理该现象出现更早。本文试验结果表明,镉胁迫下植物体内活性氧形成增多,诱导活性氧酶清除系统活性升高,其中一个重要原因是与CO2同化受到限制有关。  相似文献   

10.
试验采用营养液培养的方法,以玉米为试材,研究了不同供镉浓度(0﹑5﹑20和100 µmol/L)和处理时间(12﹑24﹑48﹑96、168 h)对植株体内钙调蛋白(CaM)含量及生物膜上的Ca2+-ATPase活性的影响。结果表明,植株可溶性Ca2+含量在镉胁迫后较不加镉处理增加,镉处理在叶和根中分别在48和24 h后达最高,然后随镉处理浓度和处理时间的增加逐步下降;同时镉诱导了植株CaM的合成,其含量随镉处理浓度和处理时间增加逐步增加,但20 µmol/L和100 µmol/L镉处理在168 h后有所下降;与不加镉处理相比,镉胁迫导致植株生物膜上的Ca2+-ATPase活性迅速升高,但随镉处理浓度提高和时间延长,镉胁迫植株的Ca2+-ATPase活性在48 h(质膜、液泡膜和内质网膜)和24 h(线粒体膜)后逐步降低。各膜上的Ca2+-ATPase活性依次为质膜> 液泡膜> 内质网膜> 线粒体膜,且同一微囊膜,根中的活性大于叶中。  相似文献   

11.
The use of phosphorus (P) to reduce lead (Pb)bioavailability is being proposed as an alternative to excavationand disposal as a remedial technology for Pb-contaminated soilsin residential areas. The objective of this study was todetermine the influence of P sources and rates andCaCO3additions on the bioavailabilities of Pb, cadmium (Cd), and zinc(Zn) in a contaminated soil material using plants, a sequentialextraction procedure, and ion activities in equilibrium solutionas indicators. A contaminated soil containing 370 mg kg-1 Cd, 2800 mg kg-1 Pb and 29100 mg kg-1 Zn was amended ina factorial arrangement of CaCO3 (0 or 2000 mg kg-1) and P as rock phosphate or KH2PO4 at 0:1, 2:1 or 4:1P:Pb mole ratios. A pot study was conducted using sorghum-sudangrass (Sorghum bicolor L. Moench). The addition of P did not influence Pb concentrations in plant tissue and had little effect on Cd concentrations. An interaction between P source and level of P addition was found for Zn concentrations in plant tissue; concentrations increased with increasing amounts of P from KH2PO4 anddecreased with increasing amounts of P from rock phosphate. Sequential extraction results suggested a much greater reduction in Pb bioavailability from treatment withKH2PO4 than with rock phosphate and that P influencedthe fractionations of Cd and Zn. Activities of Cd2+,Pb2+, and Zn2+ in equilibrium solutions generally weredecreased by rock phosphate and increased by KH2PO4. Saturation indices suggested the addition ofKH2PO4shifted the soil equilibrium from octavite to hydroxypyromorphite, whereas solid-phase control of Cd2+ andZn2+ was not influenced by soil amendments. A soluble Psource was more effective in reducing Pb bioavailability thanrock phosphate but had variable effects on Cd and Znbioavailabilities.  相似文献   

12.
为探讨生物质炭对红壤性水稻土中镉(Cd)元素吸附解吸特性的影响,采用一次平衡法研究添加生物质炭后Cd2+在红壤性水稻土中的吸附动力学、等温吸附和解吸过程。结果表明:施用CK(0t/hm^2)、A10(10t/hm^2)、A20(20t/hm^2)、A30(30t/hm^2)和A40(40t/hm^2)生物质炭后,红壤性水稻土对Cd2+的吸附过程是以化学吸附为主、非均匀的多表面吸附。施用CK(0t/hm^2)、A10(10t/h2)、A20(20t/hm^2)、A30(30t/hm^2)和A40(40t/hm^2)生物质炭处理的最大吸附量和最大解吸量分别为2933~3346mg/kg和171~192mg/kg。添加生物质炭可以提高红壤性水稻土对Cd2+的吸附固持能力,同时增强土壤对外源Cd2+的缓冲能力。生物质炭添加量对红壤性水稻土的吸附解吸能力的改良效果具体表现为:A30>A40>A20>A10。高剂量的生物质炭处理使土壤吸附点位饱和,生物质炭吸附能力相对降低。因此,添加30t/hm^2生物质炭是一种有效预防和治理红壤性水稻土镉污染的措施。  相似文献   

13.
Purpose

Determination of the effectiveness of white mustard and oats in immobilising cadmium as a soil contaminant and determining the role of cellulose and urea in restoring homeostasis in soil under pressure from Cd2+.

Materials and methods

Soil samples were contaminated with cadmium (CdCl2·21/2H2O) at 0, 4, 8 and 16 mg Cd2+ kg?1. In order to reduce the negative impact of Cd2+, cellulose was introduced to the soil at the following rates: 0 and 15 g kg?1 and urea at 80 and 160 mg N kg?1. The yield of the above-ground parts and roots was determined on days 40 and 80 of the experiment, along with the cadmium content in the plant material. The enzyme activity was also determined, and the physical and chemical properties of the soil were determined on the day of the oats’ (aftercrop) harvest.

Results and discussion

Contamination of soil with Cd2+ at 4 to 16 mg kg?1 d.m. of soil reduced the yield of white mustard and oats. The tolerance index (TI) values indicate that oats (aftercrop) is more tolerant than white mustard of soil contamination with Cd2+. Cadmium accumulated more intensely in roots compared with the above-ground parts of the plants. The translocation index (TF) indicates smaller Cd2+ translocation from roots to above-ground parts, as it was below 1 in both plants. An addition of cellulose and nitrogen offsets the adverse impact of cadmium on plants. Arylsulphatase was the most sensitive to soil contamination with Cd2+, followed by dehydrogenases, catalase, β-glucosidase and urease, and alkaline phosphatase and acid phosphatase were the least sensitive. Contamination of soil with Cd2+ changed its physical and chemical properties only slightly.

Conclusions

White mustard and oats have phytostabilisation potential with respect to soil contaminated with cadmium. Cellulose introduced to the soil and fertilisation with urea alleviated the negative impact of cadmium on the growth and development of plants.

  相似文献   

14.
Abstract

A chelating resin procedure was developed to predict the plant uptake of Cd by municipal sewage sludges applied to land. Seventeen anaerobically digested sludges were sampled to give a range of total Cd content of 0.07 to 2.02 mmol/kg. Sludge suspensions [20 g in 100 mL 0.05 M Ca(NO3)2] were equilibrated with 1 g Chelex 100 resin placed in dialysis tubing and shaken at 200 rpm for 16 h. Resin‐extractable Cd was compared with sludge solution Cd (CdT and Cd2+) in equilibrium with 0.05 M Ca(NO3)2, and 0.05 M Ca(NO3)2 containing 50 (μM Na‐EDTA (ethylenediaminetetraacetate). Resin extractable Cd was correlated with Cd uptake by sudax, a sorghum/sudangrass hybrid (Sorghum bicolar), grown in Spinks loamy sand (Typic Udipsamment) amended with each of the sludges to give a constant Cd concentration of 22 μmol/kg soil.

Resin extractable Cd ranged from < 0.1 to 48 μmol/kg. Resin extracted between zero and 5.3% of total sludge Cd. Resin extractable Cd was highly correlated with CdT and Cd2+ in 0.05 M Ca(NO3)2 (R2 = 0.97 and 0.98, respectively), and with 0.05 M Ca(NO3)2 containing 50 μM NaEDTA (R2 = 0.97 and 0.98, respectively). There was a lower correlation with total sludge Cd and soil solution Cd (R2 = 0.53 and 0.63, respectively). Cadmium concentration in sudax was highly correlated with resin extractable sludge Cd (R2 = 0.92). When the two sludges with highest total sludge Cd were dropped, the correlation dropped (R2 = 0.57), but resin extractable Cd predicted Cd uptake as effectively as CdT and Cd2+ in Ca(NO3)2 or Ca(NO3)2/EDTA. Resin extraction appears to be a promising method of assessing the potential bioavailability of sludge Cd.  相似文献   

15.
Abstract

A study was conducted to investigate the chemical speciation of added cadmium (Cd) and lead (Pb) and their availability as influenced by fresh organic matter (OM) and sodium chloride (NaCl) in three agricultural soils. The soils were treated with 20 mg Cd/kg as cadmium nitrate [Cd(NO3)2 · 4H2O], 150 mg Pb/kg as lead nitrate [Pb(NO3)2], 20 g/kg alfalfa powder, and 50 mmol/kg of NaCl and then incubated for 3 months at 60% water‐holding capacity (WHC) and constant temperature (25 °C). Subsamples were taken after 1, 3, 6, and 12 weeks of incubation, and electrical conductivity (EC), pH, dissolved organic carbon (DOC), and concentrations of cations and anions were determined in the 1:2.5 soil/water extract. Available Cd and Pb were determined in 0.05 M ethylenediaminetetraacetic acid (EDTA) extract. Concentrations of organic and inorganic species of Cd and Pb in soil solution were also predicted using Visual Minteq speciation program. The most prevalent species of dissolved Pb and Cd in the soils were Pb‐DOC and Cd2+ species, respectively. Salinity application increased the available and soluble Cd significantly in the acid and calcareous soils. It, however, had little effect on soluble Pb and no effect on available Pb. Organic‐matter application decreased availability of added Pb significantly in all soils. In contrast, it raised soluble Pb in all soils except for the acid one and approximated gradually to the added Pb with time. Impact of OM on available Cd was somewhat similar to that of Pb. Soluble Cd increased by OM application in the calcareous soil, whereas it decreased initially and then increased with time in the other soils.  相似文献   

16.
A hydroponic experiment was conducted to investigate the effect of sulfur (S) on growth inhibition and oxidative stress caused by Cd2+ toxicity, using two rice cultivars with different grain Cd2+ content. Treatments consisted of factorial arrangement of three S levels (0.2, 0.4, and 0.8 mmol), two cadmium (Cd) levels (0 and 1 μ mol), and two rice cultivars (‘Bing 97252,’ a cultivar with low grain Cd2+ content, and ‘Xiushui 63,’ a cultivar with high grain Cd2+ content). The results showed that Cd2+ addition in the medium generally increased Cd2+ and malondialdehyde (MDA) content in both roots and shoots; the increases were more pronounced in ‘Xuishui 63’ than in ‘Bing 97252.’ Dramatic reductions in growth parameters, including plant height, root and shoot weight, tillers per plant, chlorophyll content, and net photosynthetic rate were found in the plants exposed to Cd stress relative to the plants without Cd2+ treatment. ‘Xiushui 63’ showed more sensitivity than ‘Bing 97252’ under Cd2+ exposure. In comparison with the lower S level (0.2 mmol), the higher S levels (0.4 and 0.6 mmol) helped alleviate Cd toxicity, characterized by a significant increase in growth parameters, and a decrease in Cd2+ and MDA content in both roots and shoots. In addition, superoxide dismutase (SOD) activity in the plants varied among tissues, cultivars, and Cd treatments. High Cd2+ and MDA content was consistently accompanied by higher SOD activity, and higher S levels caused a marked increase in glutathione content and a reduction in SOD activity, indicating a positive effect of S in alleviating oxidative stress.  相似文献   

17.
Abstract

To investigate the activity of free cadmium (Cd2+), copper (Cu2+), lead (Pb2+), and zinc (Zn2+) ions and analyze their dependence on pH and other soil properties, ten contaminated soils were sampled and analyzed for total contents of Cd, Cu, Pb, and Zn (CdT, CuT, PbT, and ZnT, respectively), 0.43 MHNO3‐extractable Cd, Cu, Pb, and Zn (CdN, CuN, PbN, and ZnN, respectively), pH, dissolved organic matter (DOC), cation exchange capacity (CEC), ammonium oxalate extractable aluminum (Al) and iron (Fe), and dissolved calcium [Ca2+]. The activity of free Pb2+, Cd2+, Cu2+, and Zn2+ ions in soil solutions was determined using Donnan equilibrium/graphite furnace atomic absorption (DE/GFAA). The solubility of Cd in soils varied from 0.16 to 0.94 μg L‐1, Cu from 3.43 to 7.42 μg L‐1, Pb from 1.23 to 5.8 μg L‐1, and Zn from 24.5 to 34.3 μg L. In saturation soil extracts, the activity of free Cd2+ ions constituted 42 to 82% of the dissolved fraction, for Cu2+the range was 0.1 to 7.8%, for Pb2+ 0.1 to 5.1% and for Zn2+2 to 72%. The principal species of Cd, Cu, Pb, and Zn in the soil solution is free metal ions and hydrolyzed ions. Soil pH displayed a pronounced effect on the activity of free Cd2+, Cu2t, Pb2+, and Zn2+ ions.  相似文献   

18.
With increasing graphene oxide (GO) applications in industry and biomedicine, effects of GO on microorganisms, animals, and human health have been frequently studied; however, direct and indirect effects of GO on plants are seldom concerned. In this study, effects of GO and/or Cd2+ on seed germination, seedling growth, and uptake to Cd2+ were investigated in solution culture. The results showed that GO could quickly adsorb Cd2+ in solution, and the higher the GO concentration was, the lower the residual Cd2+ concentration was in solution. Rice seed germination, seminal root length, and bud length decreased with increasing GO and Cd2+ concentrations respectively, while the presence of GO could alleviate the inhibitive effects of Cd2+ on seminal root and bud growth compared with the single Cd2+ treatment. In maize seedling, fresh weights of shoot and root showed similar responses to the presence of Cd2+ and/or GO. Compared with the single Cd2+ treatment, root Cd concentrations were generally increased by GO in high Cd2+ solution (20 mg/L), while were slightly affected by GO in low Cd2+ solution (5 mg/L) independent of GO concentrations except for 100 mg/L GO. Shoot Cd concentrations were decreased by low GO (100 mg/L) while were increased by high GO (>?500 mg/L) independent of Cd2+ concentrations in solution. Moreover, significant interactive effects of GO and Cd2+ on root and shoot Cd concentrations were observed. This study indicates that GO can change the effects of Cd2+ on seed germination, seedling growth, and uptake to Cd2+ in solution through its adsorption on Cd2+.  相似文献   

19.
An experiment developed in soilless culture was used to study the cadmium (Cd) accumulation, and distribution of Cd in cucumber (Cucumis sativus var. peonero‐mixfl) plant. Four treatments were established (0, 5, 10, and 20 mg Cd+2 L‐1). Uptake, and transport of Cd were increased with time, and Cd concentration in the nutrient solution. Fruit accumulation of Cd varied from 16 to 92 mg kg‐1 depending on the treatments. The fresh weight, and dry matter accumulation of cucumber plant organs (roots, stem, leaves, and fruits) was affected by cadmium treatment. A decrease of the total, a, and b chlorophyll increasing Cd concentration in nutrient solution, and time of experiment were observed. The incidence of this metal on the content of chlorophyll b seem to be faster than chlorophyll a. Cucumber plant could be a feasible plant for pollution experiments due to their high sensibility, and transport efficiency.  相似文献   

20.
Bush bean and pea plants grown in a sandy substrate and treated daily with nutrient solutions containing either 50 and 125 pM cadmium (Cd), added as cadmium nitrate [Cd(NO3)2], were analyzed for dry matter production, total Cd content, and extractable Cd. Cadmium depressed dry matter production of both plant species. Bush bean plants accumulated larger amounts of Cd in tissues and displayed lower Cd tolerance than pea plants. The high accumulation of Cd in roots of bush bean does not seem to prevent Cd translocation. Pea plants show a higher exclusion capacity at the root level, suggesting that membrane selectivity rather than apoplastic compartmentation may act as a defence mechanism against Cd toxicity. Gel‐permeation chromatography and voltammetric analyses showed that part of water‐soluble Cd extracted from tissues of pea and bush bean was as free metal ion (Cd2+). In addition, Cd into the nutrient solution induced progressively the synthesis of water‐soluble proteins at low molecular weigth in tissues of both plant specie. In root extracts of pea and bush bean, Cd was also associated with “like‐protein”; fraction with apparent molecular weight >30 KDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号