首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to investigate the effect of converting native savanna to Eucalyptus grandis forest on soil microbial biomass in tropics. Soil samples were collected from three sites: undisturbed native savanna (savanna), the site of a 1‐year‐old E. grandis forest (1 y), and the site of a 2‐year‐old E. grandis forest (2 y). Soil microbial biomass C (MBC), basal respiration, substrate induced respiration (SIR), soil organic carbon (SOC), microbial, and respiratory quotients were evaluated in soil samples collected from 0–20 cm depth. One year converted forest caused a significant reduction in MBC, SIR, and microbial quotient (about 70, 65 and 75 per cent, respectively). However, after 2 years of E. grandis forest growth, there was recovery of these variables. Soil basal respiration and respiratory quotient were significantly higher in 1 y forest (about 4 and 14 times, respectively) than in savanna. The results showed a significant decrease, after 2 years, in soil respiration and respiratory quotient, suggesting a recovery of soil microorganisms as time passes. In the short term, our results showed negative changes in soil microbial biomass following the conversion of native savanna to E. grandis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Soil microbial biomass data derived from fumigation–extraction (FE), substrate-induced respiration (SIR) and ATP estimations differed significantly and were significantly correlated, which agrees to previous studies. In a second step, the SIR/FE, ATP/FE and SIR/ATP ratios were calculated to evaluate the glucose-responsive and active component of the microbial (active and resting) biomass and the glucose-responsive component of the active microbiota. Soils were sampled along gradients within and between associated ecosystems in Northern Germany, Denmark and along a gradient of heavy metal pollution in Finland. The ratios indicated that the active portion and glucose-responsive component decreased with proceeding litter decomposition, higher degree of sustainable land management practices and higher degree of heavy metal contamination. This work was presented at the workshop ‘Non-molecular manipulation of soil microbial communities’ at the University of Udine, Udine, Italy, 17–20 October 2004; convened by P.C. Brookes and M. De Nobili and supported by European Science Foundation.  相似文献   

3.
In studying the basal respiration, microbial biomass (substrate-induced respiration, SIR), and metabolic quotient (qCO2) in western red cedar (Thuja plicata Donn ex D. Don)-western hemlock [(Tsuga heterophylla Raf.) Sarg.] ecosystems (old-growth forests, 3- and 10-year-old plantations) on northern Vancouver Island, British Columbia, Canada, we predicted that (1) soil basal respiration would be reduced by harvesting and burning, reflecting the reduction in microbial biomass and activities; (2) the microbial biomass would be reduced by harvesting and slash-burning, due to the excessive heat of the burning or due to reduced substrate availability; (3) microbial biomass in the plantations would tend to recover to the preharvesting levels with growth of the trees and increased substrate availability; and (4) microbial biomass measured by the SIR method would compare well with that measured by the fumigation-extraction (FE) method. Decaying litter layer (F), woody F (Fw) and humus layer (H) materials were sampled four times in the summer of 1992. The results obtained supported the four predictions. Microbial biomass was reduced in the harvested and slash-burned plots. Both SIR and FE methods provided equally good estimates of microbial biomass in the samples [SIR microbial C (mg g-1)=0.227+0.458 FE microbial C (mg g-1), r=0.63, P=0.0001] and proved suitable for microbial biomass measurements in this strongly acidic soil. Basal respiration was significantly greater in the old-growth forests than in the young plantations (P<0.05) in both F and H layers, but not in the Fw layer. For the 3- and 10-year-old plantations, there was no difference in basal respiration in F, Fw, and H layers. Basal respiration was related to changes in air temperature, precipitation, and the soil moisture contant at the time of sampling. The qCO2 values were higher in the old-growth stands than in the plantations. Clear-cutting followed by prescribed burning did not increase soil microbial respiration, but CO2 released from slash-burning and that contributed from other sources may be of concern to increasing atmospheric CO2 concentrations.  相似文献   

4.
 A model describing the respiration curves of glucose-amended soils was applied to the characterization of microbial biomass. Both lag and exponential growth phases were simulated. Fitted parameters were used for the determination of the growing and sustaining fractions of the microbial biomass as well as its specific growth rate (μ max). These microbial biomass characteristics were measured periodically in a loamy silt and a sandy loam soil incubated under laboratory conditions. Less than 1% of the biomass oxidizing glucose was able to grow immediately due to the chronic starvation of the microbial populations in situ. Glucose applied at a rate of 0.5 mg C g–1 increased that portion to 4–10%. Both soils showed similar dynamics with a peak in the growing biomass at day 3 after initial glucose amendment, while the total (sustaining plus growing) biomass was maximum at day 7. The microorganisms in the loamy silt soil showed a larger growth potential, with the growing biomass increasing 16-fold after glucose application compared to a sevenfold increase in the sandy loam soil. The results gained by the applied kinetic approach were compared to those obtained by the substrate-induced respiration (SIR) technique for soil microbial biomass estimation, and with results from a simple exponential model used to describe the growth response. SIR proved to be only suitable for soils that contain a sustaining microbial biomass and no growing microbial biomass. The exponential model was unsuitable for situations where a growing microbial biomass was associated with a sustaining biomass. The kinetic model tested in this study (Panikov and Sizova 1996) proved to describe all situations in a meaningful, quantitative and statistically reliable way. Received: 19 July 1999  相似文献   

5.
The functional potential of soil ecosystems can be predicted from the activity and abundance of the microbial community in relation to key soil properties. When describing microbial community dynamics, soil physicochemical properties have traditionally been used. The extent of correlations between properties, however, differs between studies, especially across larger spatial scales. In this research we analysed soil microbial biomass and substrate‐induced respiration of 156 samples from Irish grasslands. In addition to the standard physicochemical, soil type and land management variables, soil diagnostic properties were included to identify if these important soil–landscape genesis classes affected microbial biomass and respiration dynamics in Irish soil. Apart from physicochemical properties, soil drainage class was identified as having an important effect on microbial properties. In particular, biomass‐specific basal (qCO2) and substrate‐induced respiration (SIR:CFE) were explained best by the soil drainage. Poorly drained soil had smaller values of these respiration measures than well‐drained soil. We concluded that this resulted from different groups within the microbial community that could use readily available carbon sources, which suggests a change in microbial community dynamics associated with soil texture and periods of water stress. Overall, our results indicate that soil quality assessments should include both physicochemical properties and diagnostic classes, to provide a better understanding of the behaviour of soil microbial communities.

Highlights

  • Assessing the effect of soil diagnostic features and properties on microbial biomass and respiration
  • A soil biological survey from 156 grassland sites in Ireland
  • Soil drainage class has an important effect on microbial properties
  • Soil quality assessments should include both physicochemical properties and diagnostic classes
  相似文献   

6.
The solfatara field is a unique ecosystem characterized by harsh conditions such as acidic soils. We examined the respiration rate and phospholipid fatty acid (PLFA) content of solfatara soils and their responses to carbon and nitrogen addition to determine whether soil microbial respiration and biomass in a solfatara field are limited by substrate availability. Soil samples were collected from locations along a transect across a solfatara field in Oita Prefecture, Japan. The soil in the central part of the solfatara field was highly acidic (pH 2.4) and contained low amounts of carbon and nitrogen. Low basal respiration rates were detected in these soil samples. Measurements of substrate-induced respiration (SIR) and PLFA contents suggested that it was partly attributable to low microbial biomass. Addition of a carbon source (glucose) to the solfatara soil engendered a marked increase in the microbial respiration rate, whereas the nitrogen source (ammonium nitrate) application had no marked effect. Addition of both carbon and nitrogen caused a nearly eightfold increase in the microbial respiration rate and a threefold increase in the total PLFA contents. These results suggest that some acidophilic and/or acid-tolerant microorganisms exist in solfatara soil, but that their respiration and biomass are limited by low substrate availability.  相似文献   

7.
The soil conditioners anionic polyacrylamide (PAM) and dicyandiamide (DCD) are frequently applied to soils to reduce soil erosion and nitrogen loss, respectively. A 27‐day incubation study was set up to gauge their interactive effects on the microbial biomass, carbon (C) mineralization and nitrification activity of a sandy loam soil in the presence or absence of maize straw. PAM‐amended soils received 308 or 615 mg PAM/kg. Nitrogen (N)‐fertilized soils were amended with 1800 mg/kg ammonium sulphate [(NH4)2SO4], with or without 70 mg DCD/kg. Maize straw was added to soil at the rate of 4500 mg/kg. Maize straw application increased soil microbial biomass and respiration. PAM stimulated nitrification and C mineralization, as evidenced by significant increases in extractable nitrate and evolved carbon dioxide (CO2) concentrations. This is likely to have been effected by the PAM improving microbial conditions and partially being utilized as a substrate, with the latter being indicated by a PAM‐induced significant increase in the metabolic quotient. PAM did not reduce the microbial biomass except in one treatment at the highest application rate. Ammonium sulphate stimulated nitrification and reduced microbial biomass; the resultant acidification of the former is likely to have caused these effects. N fertilizer application may also have induced short‐term C‐limitation in the soil with impacts on microbial growth and respiration. The nitrification inhibitor DCD reduced the negative impacts on microbial biomass of (NH4)2SO4 and proved to be an effective soil amendment to reduce nitrification under conditions where mineralization was increased by addition of PAM.  相似文献   

8.
In the future, climate models predict an increase in global surface temperature and during winter a changing of precipitation from less snowfall to more raining. Without protective snow cover, freezing can be more intensive and can enter noticeably deeper into the soil with effects on C cycling and soil organic matter (SOM) dynamics. We removed the natural snow cover in a Norway spruce forest in the Fichtelgebirge Mts. during winter from late December 2005 until middle of February 2006 on three replicate plots. Hence, we induced soil frost to 15 cm depth (at a depth of 5 cm below surface up to –5°C) from January to April 2006, while the snow‐covered control plots never reached temperatures < 0°C. Quantity and quality of SOM was followed by total organic C and biomarker analysis. While soil frost did not influence total organic‐C and lignin concentrations, the decomposition of vanillyl monomers (Ac/Ad)V and the microbial‐sugar concentrations decreased at the end of the frost period, these results confirm reduced SOM mineralization under frost. Soil microbial biomass was not affected by the frost event or recovered more quickly than the accumulation of microbial residues such as microbial sugars directly after the experiment. However, in the subsequent autumn, soil microbial biomass was significantly higher at the snow‐removal (SR) treatments compared to the control despite lower CO2 respiration. In addition, the water‐stress indicator (PLFA [cy17:0 + cy19:0] / [16:1ω7c + 18:1ω7c]) increased. These results suggest that soil microbial respiration and therefore the activity was not closely related to soil microbial biomass but more strongly controlled by substrate availability and quality. The PLFA pattern indicates that fungi are more susceptible to soil frost than bacteria.  相似文献   

9.
An incubation experiment was conducted to determine the response of soil microbial biomass and activity to salinity when supplied with two different carbon forms. One nonsaline and three saline soils of similar texture (sandy clay loam) with electrical conductivities of the saturation extract (ECe) of 1, 11, 24 and 43 dS m?1 were used. Carbon was added at 2.5 and 5 g C kg?1 (2.5C, 5C) as glucose or cellulose; soluble N and P were added to achieve a C/N ratio of 20 and C/P ratio of 200. Soil microbial activity was assessed by measuring CO2 evolution continuously for 3 weeks; microbial biomass C and available N and P were determined on days 2, 7, 14 and 21. In all soils, cumulative respiration was higher with 5C than with 2.5C and higher with glucose than with cellulose. Cumulative respiration was highest in the nonsaline soil and decreased with increasing EC, whereas the decrease was gradual with glucose, there was a sharp drop in cumulative respiration with cellulose from the nonsaline soil to soil with EC11 with little further decrease at higher ECs. Microbial biomass C and available N and P concentrations were highest in the nonsaline soil but did not differ among the saline soils. Microbial biomass C was higher and available N was lower with 5C than with 2.5C. The C form affected the temporal changes of microbial biomass and available nutrients differentially. With glucose, microbial biomass was highest on day 2 and then decreased, whereas available N showed the opposite pattern, being lowest on day 2 and then increasing. With cellulose, microbial biomass C increased gradually over time, and available N decreased gradually. It is concluded that salinity reduced the ability of microbes to decompose cellulose more than that of glucose.  相似文献   

10.
Oat straw, hay, and alfalfa litter, differing in microbial colonization and recalcitrance, were added to organic matter–free quartz sand (5 mg C [g material]–1) and incubated in the laboratory at 5°C, 10°C, 15°C, 20°C, and 25°C. Different incubation periods were chosen so that theoretically the same amounts of CO2 would be produced and the same amounts of O2 would be consumed for each litter type. It was investigated whether Q10 values (change in respiration rate between two temperatures) increase with decreasing temperature and how much these Q10 values and also the respiratory quotient (RQ: mol CO2/mol O2) depend on the litter type. The sums of CO2‐C evolved and O2 consumed, but also the contents of microbial biomass C and microbial biomass N showed a nearly 7‐fold increase in the order oat straw < hay < alfalfa litter. In contrast, the ratio of the fungal cell‐membrane component ergosterol to microbial biomass C was highest in the oat straw (4.1‰) and lowest in the alfalfa litter (0.2‰). This ratio reached a similar level between 5°C and 15°C (1.9‰), significantly higher (p = 0.01) than the level at 20°C (0.9‰). Respiration was similar between 20°C and 25°C, with a mean Q10 value of 1.9. The use of temperature rate‐modifying factors suggested by the carbon‐turnover model ROTHC revealed that the incubation period for similar respiration rates was underestimated at 5°C and overestimated at 25°C. The lignin‐poor and protein‐rich alfalfa litter showed the highest Q10 values of the three litter types in the medium temperature range of 10°C to 20°C. In contrast, the lignin‐rich and protein‐poor oat straw showed significantly highest Q10 values at 5°C and 25°C in comparison with the other two litter types. The RQ was significantly highest in the hay litter (1.05) and in comparison with alfalfa litter (0.97) and oat straw (0.92). Strong temperature‐dependent variations in Q10 values and respiratory quotients suggest interactions between litter quality, microbial colonization of litter, and temperature, which warrants further investigation.  相似文献   

11.
Soil taken during summer from permanent pasture on a clay loam in S.W. England which had been under four different N management treatments for at least 3 yr was stored under aerobic conditions at 18°C. Total soil microbial biomass (SMB), measured by fumigation-extraction, was higher in the unfertilized grass and grass–clover treatments than in the fertilized grass and clover treatments and these differences persisted for 30 weeks. Over this period total SMB decreased by 25% in all the treatments, soil respiration also decreased, but more rapidly and to a greater extent (50%). The respiration response of the biomass to glucose, estimating “active” biomass, was measured by a substrate induced respiration (SIR) procedure; it showed no differences between the four treatments but was reduced by 66% over 30 weeks. Concentrations of NO3–N increased progressively in each treatment by more than 15-fold. At the end of the 30 weeks addition of available C in the form of glucose resulted in a small increase in total SMB and respiratory activity and a large decrease in NO3–N in all treatments: the SIR response of the biomass was completely restored. It is suggested that the differences in total SMB in the management treatments throughout the incubation were attributable to the “inactive” fraction of the biomass.  相似文献   

12.
Soil respiration is comprised primarily of root and microbial respiration, and accounts for nearly half of the total CO2 efflux from terrestrial ecosystems. Soil acidification resulting from acid deposition significantly affects soil respiration. Yet, the mechanisms that underlie the effects of acidification on soil respiration and its two components remain unclear. We collected data on sources of soil CO2 efflux (microbial and root respiration), above- and belowground biotic communities, and soil properties in a 4-year field experiment with seven levels of acid in a semi-arid Inner Mongolian grassland. Here, we show that soil acidification has contrasting effects on root and microbial respiration in a typical steppe grassland. Soil acidification increases root respiration mainly by an increase in root biomass and a shift to plant species with greater specific root respiration rates. The shift of plant community from perennial bunchgrasses to perennial rhizome grasses was in turn regulated by the decreases in soil base cations and N status. In contrast, soil acidification suppresses microbial respiration by reducing total microbial biomass and enzymatic activities, which appear to result from increases in soil H+ ions and decreases in soil base cations. Our results suggest that shifts in both plant and microbial communities dominate the responses of soil respiration and its components to soil acidification. These results also indicate that carbon cycling models concerned with future climate change should consider soil acidification as well as shifts in biotic communities.  相似文献   

13.
The rhizosphere reflects a sphere of high substrate input by means of rhizodeposits. Active microorganisms and extracellular enzymes are known to be responsible for substrate utilization in soil, especially in rooted soil. We tested for microbial‐ and enzyme activities in arable soil, in order to investigate the effects of continuous input of easily available organics (e.g., root‐exudates) to the microbial community. In a field experiment with maize, rooted and root‐free soil were analyzed and rhizosphere processes were linked to microbial activity indicators such as specific microbial growth rates and kinetics of six hydrolytic extracellular enzymes: β‐glucosidase, β‐cellobiohydrolase, β‐xylosidase, acid phosphatase, leucine‐ and tyrosine‐aminopeptidase. Higher potential activities of leucine‐aminopeptidase (2‐fold) for rooted vs. root‐free soil suggested increased costs of enzyme production, which retarded the specific microbial growth rates. Total microbial biomass determined by the substrate‐induced respiration technique and dsDNA extraction method was 23% and 42% higher in the rooted surface‐layer (0–10 cm) compared to the root‐free soil, respectively. For the rooted soil, potential enzyme activities of β‐glucosidase were reduced by 23% and acid phosphatase by 25%, and increased by 300% for β‐cellobiohydrolase at 10–20 cm depth compared to the surface‐layer. The actively growing microbial biomass increased by the 17‐fold in rooted soil in the 10–20 cm layer compared to the upper 10 cm. Despite the specific microbial growth rates showing no changes in the presence of roots, these rates decreased by 42% at 10–20 cm depth compared to the surface‐layer. This suggests the dominance in abundances of highly active but slower growing microbes with depth, reflecting also their slower turnover. Shifts in microbial growth strategy, upregulation of enzyme production and increased microbial respiration indicate strong root effects in maize planted soil.  相似文献   

14.
Drying and rewetting cycles are known to be important for the turnover of carbon (C) in soil, but less is known about the turnover of phosphorus (P) and its relation to C cycling. In this study the effects of repeated drying-rewetting (DRW) cycles on phosphorus (P) and carbon (C) pulses and microbial biomass were investigated. Soil (Chromic Luvisol) was amended with different C substrates (glucose, cellulose, starch; 2.5 g C kg−1) to manipulate the size and community composition of the microbial biomass, thereby altering P mineralisation and immobilisation and the forms and availability of P. Subsequently, soils were either subjected to three DRW cycles (1 week dry/1 week moist) or incubated at constant water content (70% water filled pore space). Rewetting dry soil always produced an immediate pulse in respiration, between 2 and 10 times the basal rates of the moist incubated controls, but respiration pulses decreased with consecutive DRW cycles. DRW increased total CO2 production in glucose and starch amended and non-amended soils, but decreased it in cellulose amended soil. Large differences between the soils persisted when respiration was expressed per unit of microbial biomass. In all soils, a large reduction in microbial biomass (C and P) occurred after the first DRW event, and microbial C and P remained lower than in the moist control. Pulses in extractable organic C (EOC) after rewetting were related to changes in microbial C only during the first DRW cycle; EOC concentrations were similar in all soils despite large differences in microbial C and respiration rates. Up to 7 mg kg−1 of resin extractable P (Presin) was released after rewetting, representing a 35-40% increase in P availability. However, the pulse in Presin had disappeared after 7 d of moist incubation. Unlike respiration and reductions in microbial P due to DRW, pulses in Presin increased during subsequent DRW cycles, indicating that the source of the P pulse was probably not the microbial biomass. Microbial community composition as indicated by fatty acid methyl ester (FAME) analysis showed that in amended soils, DRW resulted in a reduction in fungi and an increase in Gram-positive bacteria. In contrast, the microbial community in the non-amended soil was not altered by DRW. The non-selective reduction in the microbial community in the non-amended soil suggests that indigenous microbial communities may be more resilient to DRW. In conclusion, DRW cycles result in C and P pulses and alter the microbial community composition. Carbon pulses but not phosphorus pulses are related to changes in microbial biomass. The transient pulses in available P could be important for P availability in soils under Mediterranean climates.  相似文献   

15.
Within the Mediterranean basin, soil tillage enhances the mineralisation of soil organic matter. We assessed the short‐term impact of shallow tillage [field cultivator (FC), rotary tiller (RT) and spading machine (SM)] on some soil quality indicators [bulk density, water‐stable aggregates, total and labile organic C pools (microbial biomass and extractable organic C), soil respiration and related eco‐physiological indexes] in a Sicilian vineyard. Also no tillage was included. We hypothesized that (i) RT and FC worsened soil quality indicators more than SM, and (ii) within the same tillage system, labile C pools, soil respiration and eco‐physiological indexes will respond more efficiently than chemical and physical soil properties since the tillage starts. The experiment started at March 2009, and each tillage type was applied three times per year (March or April, May and June), with soil tilled up to 15‐cm depth. Soil was sampled (0–15 and 15–30‐cm depth) in March 2009, April 2010, May 2012 and June 2014. SM was very effective in preserving soil organic matter pool and in improving any monitored soil quality indicator, similarly to no tillage. By contrast, RT was the most deleterious machine as it worsened most investigated indicators. Such deleterious effects were due to drastic disruption of soil aggregates and consequent exposition of protected soil organic matter to further microbial mineralization. Labile organic C pools and microbial quotients were the most responsive soil parameters for assessing the impact of shallow tillage on soil quality, even in the short term (<5 years). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The community fingerprints of both the prevalent and the metabolically active microbial community were related to a quantitative estimation of microbial biomass in an arable soil, revealed by substrate-induced-respiration (SIR). Two concentrations of glucose or l-asparagine, representing those used in the SIR measurement or equivalent to those released in root exudates, were studied. Respiration rates and changes in community structure fingerprints were followed for 48 h. Bacterial and fungal community fingerprints were obtained using both reverse transcribed 16S and 18S ribosomal RNA (rRNA) regions and the corresponding rDNA as a template in PCR. Samples were then analysed by denaturing gradient gel electrophoresis (DGGE). Low concentrations of substrate amendments resulted in minor changes in rRNA or rDNA-based bacterial and fungal banding patterns during the whole 48 h incubation. High concentrations of substrates, especially l-asparagine, increased respiration rates and induced significant changes in both 16S rRNA and rDNA-community fingerprints. The prominent rRNA and rDNA bacterial community sequence types were common to all treatments, but in general the bacterial rDNA fingerprints had fewer bands than the corresponding rRNA profiles that assess the active fraction of the community. In contrast, there was little difference between fungal 18S rRNA and rDNA patterns. The number of fungal ribosomal sequence types in DGGE fingerprints was lower than the number of bacterial types. This study indicated that there was a rapid respiration response by the whole microbial community during SIR estimates in soil, but that community structure did not change during the conventional incubation period. In an extended (8-48 h) incubation with high amounts of l-asparagine increased respiration was associated with growth of the microbial community.  相似文献   

17.
Response of microbial metabolism (growth, substrate utilization, energetic metabolism) to fertilization by N and P and resulting changes in soil‐organic‐matter (SOM) decomposition (priming effect) were studied in grassland soils with relatively high organic‐matter content. Treatments with and without glucose addition were studied to simulate difference between rhizosphere and bulk soil. Our expectation was that fertilization would decrease soil respiration in both treatments due to an increased efficiency of microbial metabolism. At first, fertilization activated microbial metabolism in both treatments. In glucose‐nonamended soils, this was connected with a short‐term apparent priming effect but if glucose was available, the higher energetic demand was covered by its mineralization in preference against SOM, causing significant SOM savings as compared to unfertilized soils. After a relatively short period of 1–3 d, however, the phase of deprived microbial metabolism occurred in both treatments, which was characterized by lower soil respiration in fertilized than in unfertilized soils. Fertilization further decreased net microbial growth following glucose addition, shortened turnover time of microbial biomass and changed the partitioning of assimilated glucose within microbial biomass (decreased accumulation of storage compounds and increased the proportion of mineralized glucose). As a result, fertilization reduced soil respiration mainly due to a deprivation of microbial metabolism. The rate and range of microbial response to fertilization and also the amount of saved soil C were larger in the soil with higher SOM content, likely driven by the higher content of microbial biomass.  相似文献   

18.
Paclobutrazol is a plant growth regulator largely utilized in mango cultivation and usually applied directly to soil. The aim of this study was to examine the effect of paclobutrazol on soil microbial biomass, soil respiration and cellulose decomposition in Brazilian soils under laboratory conditions. Soil samples were collected from fields with and without a reported history of paclobutrazol application. A solution of paclobutrazol (8 mg of active ingredient kg?1 of soil) was added to soils, which were then incubated at 28 °C for 30 days. Paclobutrazol decreased soil microbial biomass, soil respiration and cellulose decomposition in soil with and without a report of paclobutrazol application, while significant increase was observed in the respiratory quotient (qCO2). Our results show that the soil microbiological attributes were negatively affected by paclobutrazol in short-term experiment.  相似文献   

19.
The aim of this study was to evaluate a set of microbial soil tests for their ability to discriminate between different agricultural practices. For this purpose three sites included in the Swedish Long-Term Soil Fertility Experiments were chosen. The fertility experiments were designed to compare different cropping systems (simulating farming with and without livestock), PK-fertiliser and N-fertiliser regimes. Six different microbial tests were used to derive nine variables describing: (1) basal microbial activity (B-res), (2) potential microbial activities (substrate induced respiration, SIR; potential NH4 + oxidation, PAO; potential denitrification activity, PDA; and alkaline phosphatase activity, Alk-P), (3) specific microbial growth rates (μ res and μ PDA) and (4) nutrient-limited respiration rates (maximal P-limited respiration, Max-P; and maximal N-limited respiration, Max-N?). Among the individual microbial variables B-res, SIR, μ res and μ PDA were the best discriminators of the two different cropping systems. All of them, except μ PDA, showed some degree of interaction between different treatments. However, the best discriminators between cropping systems were the components [principal component (PC)?1 and 2] from a PC analysis (PCA). In all three soils PC?1 discriminated well between the two cropping systems. In addition, PC?1 and PC?2 reflected the P-fertilisation rate. Max-P alone had the best potential to reflect the microbially available P in the soil and thereby indirectly the plant-available P. The μ res was also useful when assessing available P in the soil. The N-fertilisation rate seemed to be the most difficult treatment to assess with the microbial activity variables. In addition, PCA revealed a consistent functional relationship in all three soils between the potential activity variables (SIR, PAO, PDA, and Alk-P).  相似文献   

20.
The content levels and activities of the microbiota were estimated in topsoils and in one soil profile at agricultural and forest sites of the Bornhöved Lake district in northern Germany. Discrepancies between data achieved by fumigation-extraction (FE) and substrate-induced respiration (SIR), both used for the quantification of microbial biomass, were attributed to the composition of the microbial populations in the soils. In the topsoils, the active, glucose-responsive (SIR) versus the total, chloroform-sensitive microbial (FE) biomass decreased in the order; field maize monoculture (field-MM)>field crop rotation (field-CR) and dry grassland>beech forest. This ratio decreased within the soil profile of the beech forest from the litter horizon down to the topsoil. Differences between microbial biomass and activities suggested varying biomass-specific transformation intensities in the soils. The metabolic quotient (qCO2), defined as the respiration rate per unit of biomass, indicates the efficiency in acquiring organic C and the intensity of C mineralization, while biomass-specific arginine-ammonification (arginine-ammonification rate related to microbial biomass content) seems to be dependent on N availability. The qCO2, calculated on the basis of the total microbial biomass, decreased for the topsoils in the same order as did the ratio between the active, glucose-responsive microbial biomass to the total, chloroform-sensitive microbial biomass, in contrast to qCO2 values based on the glucose-responsive microbial biomass, which did not. There was no difference between the levels of biomass-specific arginine-ammonification in topsoils of the fertilized field-CR, fertilized field-MM, fertilized dry grassland and eutric alder forest, but levels were lower in the beech forest, dystric alder forest, and unfertilized wet grassland topsoils. Ratios between values of different microbiological features are suggested to be more useful than microbiological features related to soil weight when evaluating microbial populations and microbially mediated processes in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号