首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 264 毫秒
1.
冻融交替对土壤CO2及N2O释放效应的研究进展   总被引:2,自引:1,他引:2  
杨红露  秦纪洪  孙辉 《土壤》2010,42(4):519-525
在秋冬交替和冬春交替时期高纬度地区和高海拔生态系统表层土壤常有冻融交替频繁发生。由于冻融交替作用通过改变土壤水热性质而对土壤物理、化学、生物学特性产生效应。冻结通常导致土壤团聚体破裂、微生物细胞及细根死亡,释放出活性较高的有机物,增强随后融解的土壤的反硝化和呼吸活性,从而影响土壤生物、生物化学过程以及生物地化循环。已有对苔原、泰加林等北极和亚北极生态系统的研究表明,土壤冻融交替次数、冻融极端温度、土壤水分、土壤团聚体结构变化等对CO2和N2O的释放通量影响较为显著,一般在冻融的最初几个循环温室气体排放会增加,随后会降至一个较为稳定的水平。目前,冻融循环变化背景下的温室气体排放研究主要是针对北方高纬度地区,而且对冻融交替影响土壤温室气体排放的机理研究也不够。我国面积广大的青藏高原高海拔地带在全球增温背景下,轻微增温会导致季节性冻土表层冻融交替次数增加,甚至冻土季节消失,加强全球增温背景下我国高山亚高山季节性冻土生态系统效应和过程研究,特别是土壤暖化导致的温室气体排放变化通量和变化机理的研究,对揭示全球变化的区域效应以及高海拔生态系统的管理都具有重要作用。  相似文献   

2.
土壤冻融作用是季节性冻土区和多年冻土区常见的自然现象,主要是指由于土壤温度变化而出现的反复冻结解冻过程。冻融作用不仅影响土壤的理化和生物学性质,而且还会改变植物的生理生态过程,从而可能对冻土广泛分布的高纬度和高海拔地区植被生态系统生产力产生重要影响。本文重点论述了土壤冻融对植物地上和地下部分生理生态过程的影响效应以及全球变化背景下高寒植被生态系统对不同冻融格局的响应特征,总结了不同气候环境条件及生境胁迫下植物光合作用、生物量和生产力、根系生长及其对水分和温度胁迫响应等的生理生态表现,同时对当前土壤冻融与植物生理生态领域研究存在的不足进行了阐释,提出全球变化背景下频繁的土壤冻融作用将强烈改变植被生态格局和功能,并指出这种改变在高寒生态系统中表现将更为显著。  相似文献   

3.
农田施肥过量导致氮磷养分淋溶引发的水体污染问题日益突出,冻融交替是中高纬度、高海拔和部分温带地区的自然现象,对冻土区农田生态系统的土壤生物地球化学过程有重要影响。了解冻融交替如何影响土壤氮磷养分淋溶,对建立阻控养分淋溶的措施至关重要。本文对国内外已有的研究结果进行归纳和梳理,从土壤物理、化学和生物学角度阐述了冻融交替对农田土壤氮磷淋溶的作用机制和影响因素。冻融交替主要是通过以下几个方面影响养分淋溶:1)土壤水的相变对土壤颗粒、孔隙结构、微生物细胞的破坏作用;2)对土壤微生物群落组成、结构及其参与的养分循环的影响; 3)最终导致土壤对养分和水分固持能力、可淋溶养分的含量和形态以及淋溶通道的改变。此外,气候因素包括气温和积雪覆盖对冻融模式的影响以及土壤自身的性质决定着冻融期间养分淋溶损失程度。基于冻融对养分淋溶的影响机制,阐述了增施生物炭、种植覆盖作物、采用免耕秸秆覆盖等耕作方式在减缓养分淋溶方面的研究进展和潜在机制,为今后相关研究工作提供了理论依据。最后简要指出当前研究的不足之处,提出未来相关研究的方向。  相似文献   

4.
冻融交替对土壤氮素转化及相关微生物学特性的影响   总被引:4,自引:0,他引:4  
土壤冻融是发生在中、高纬度及高海拔地区的一种常见的自然现象。冻融作用通过影响土壤物理性质及生物学性状进而对土壤氮素转化过程产生重要影响,但目前关于冻融作用对土壤氮素转化过程影响的研究结果还不尽一致,对于冻融作用下土壤微生物学特性的研究相对较少。本文着重论述了冻融作用对土壤氮素转化过程(有效氮素含量变化、氮素净矿化速率、氮素损失途径等)的影响,并对冻融作用下土壤微生物生理和代谢特性进行了归纳和总结,简要指出目前研究过程中存在的问题,并对未来研究方向提出展望。  相似文献   

5.
冻融对土壤氮素转化和N2O排放的影响研究进展   总被引:4,自引:0,他引:4  
在中、高纬度及高海拔地区,土壤冻融现象常有发生。冻融作用通过影响土壤理化性质和生物学性状进而影响土壤氮素转化过程及N2O的产生和释放,但迄今关于冻融对土壤氮素转化过程影响的研究结果还不尽一致,正效应或负效应均存在,土壤冻融期间N2O排放对全年N2O排放总量的贡献程度也存在着较大差异。本文重点论述了土壤冻结或冻融循环过程对土壤氮矿化、固持、硝化和反硝化等主要氮素转化过程的影响机制,同时分析了可引起冻融期间N2O排放强度变化的四种可能机理(禁锢-释放、环境-底物诱导、N2O还原酶抑制和化学反硝化增强)。指出在全球变暖背景下研究土壤冻融格局改变影响土壤氮素转化过程及N2O排放的必要性,并简要提出了若干理论问题及研究方向。  相似文献   

6.
中国的冻土   总被引:17,自引:0,他引:17       下载免费PDF全文
中国冻土面积大,分布规律特殊,对于研究世界冻土的形成、分布具有重要意义。中国冻土有高纬度冻土和高海拔冻土两种。高纬度冻土分布于东北地区,北纬53—46°N,面积38.2×104km2,纬度高而海拔较低,这类冻土的一系列特征主要受高纬度的影响;高海拔冻土主要分布于青藏高原和西部高山,面积176×104km2,占北半球高海拔冻土面积的75.7%,居世界首位,大部分分布于北纬35°N以南,最南达27°左右,纬度低而海拔高,其一系列特征主要受海拔高度的影响。两类冻土的土壤类型和性状各具特点,差异很大。高纬度冻土具有湿寒特点,植被为森林,土壤有机质含量高,pH低,不含CaCO3,盐基不饱和;高海拔冻土具有干寒特点,植被为草原和荒漠,土壤有机质含量很低,PH高,盐基饱和,大多富含石灰,部分含石膏磐层。目前中国及国际上均未将冻土列为独立的土壤分类单元,我们建议在中国土壤中,增设一个冻土土纲,下设正常冻土(高纬度冻土)和高寒冻土(高海拔冻土)两个亚纲。  相似文献   

7.
土壤冻融是由于大气温度的周期性变化,土壤层出现冻结与融化交替的现象,在草原、农田、森林等生态系统广泛存在。土壤冻融对农业生产、土壤资源的有效利用以及生态气候与水文环境的预测具有重要的指示作用。近年来,关于土壤冻融的生态效应备受关注。论文重点阐述了近年来国内外关于土壤冻融循环研究方面的进展,从冻融循环对土壤的物理、化学以及生物特性3个角度的影响进行分析。现有研究表明,冻融循环是以土壤为传递基质的水分运移发生了变化,也是土壤能量输入和输出的过程。此外,冻融循环也会影响到土壤抗侵蚀性能,尤其在春季解冻期间较为严重,其中土壤含水量较高和有积雪的地域十分明显。冻融循环过程对土壤生物化学的影响主要是通过作用于土壤微生物区系、微生物量和活性等方面,使微生物群落组成和结构发生变化。基于此,论文从冻融循环对土壤理化性质(水热状态、团聚体和抗剪程度)、碳氮循环、土壤酶活性以及土壤微生物活性影响等方面对国内外研究现状进行了归纳与总结,并提出了研究展望,以期加深人们对土壤冻融循环生态效应的认知,并为挖掘冻融循环下植物-土壤-微生物耦合关联机理的研究提供一定的科学依据。  相似文献   

8.
土壤冻融作用是指由于土壤温度变化而出现的反复冻结和解冻过程,是季节性冻土区和多年冻土区常见的自然现象。冻融作用不仅会影响土壤理化性质、生物地球化学循环,而且还会通过生境胁迫或土壤环境改变影响植物的生理生态过程,从而可能对冻土广泛分布地区的植被生态系统生产力产生重要影响。本文分别论述了土壤冻融作用对植物生理生态的直接和间接影响,总结了不同气候环境条件下植物物候、光合作用、细胞膜和渗透调节物质、生产力和和群落组成、根系生长等的生理生态表现,并对目前土壤冻融与植物生理生态领域存在的不足进行了分析。提出应加强冻融作用对植物生理生态的长期影响研究,并从分子生物学角度探讨其机理等研究冻融胁迫对植物影响的建议。  相似文献   

9.
从农田生态系统过程角度综合分析了气候变化([CO2]增加、温度升高)对土壤碳库、氮供给生物化学过程的综合影响和长期效应。总结指出,[CO2]增加、温度升高对农田生态系统过程的影响具有明显的时间效应,短时间尺度上加快农田土壤养分周转,改变碳氮组分,长时间尺度上导致土壤养分有效性降低;[CO2]增加、温度升高和养分管理对农田生态系统过程的影响具有显著的交互作用,土壤养分有效性制约着气候变化对农田生态系统生产力和碳汇功能的影响。因此,气候变化([CO2]增加、温度升高)情景下对农业生产管理包括施肥运筹及秸秆还田策略等的启示在于:根据气候变化背景下土壤养分的周转规律有效管理农田土壤养分、保持农田土壤肥力,从而保障农业高产的可持续性以及农田碳汇的生态服务功能。  相似文献   

10.
土壤含水率对季节性冻土入渗特性影响的试验研究   总被引:13,自引:3,他引:10  
基于季节性冻融期不同土壤含水率条件下的冬小麦田单点入渗试验,讨论了土壤含水率对冻融土壤水分入渗能力和入渗率的影响以及不同冻融阶段土壤入渗特性的变化。结果表明季节性冻融期土壤含水率对冻融土壤入渗特性的影响显著。土壤入渗能力随土壤含水率的升高而减小;冻融土壤累积入渗量随土壤含水率的变化符合幂函数规律;高土壤含水率导致的水力传导度减小是冻土入渗能力降低的主要原因。研究结果对于季节性冻土分布区农田冬春灌溉、确定合理灌水技术参数及水资源合理利用提供了参考。  相似文献   

11.
王旭  李斐  赵世翔 《土壤通报》2022,53(3):728-737
在全球气候变暖背景下,愈加广泛和频繁的冻融现象将会对土壤碳的生物地球化学循环过程产生深远的影响,因此归纳总结冻融作用对土壤二氧化碳(CO2)排放的影响,可为科学揭示冻融作用对土壤CO2排放的影响机理提供理论支撑。在总结相关文献的基础上,系统地分析了冻融格局(冻融温度、循环次数及持续时间等)对土壤CO2排放量的影响,并从土壤理化性质、土壤微生物等方面归纳总结土壤CO2排放对冻融作用的响应机制。冻融作用能降低土壤团聚体稳定性,促进溶解性有机碳的释放,并能够使微生物的数量降低,细胞破裂,释放碳氮营养物质以供存活的微生物利用,从而促进土壤CO2排放的增加,且与冻结温度和冻融循环次数密切相关。但由于生态系统类型、土壤理化性质、冻结温度等的差异,冻融作用也可能会促进土壤团聚体稳定性增加,抑制活性碳的释放和微生物的活性,减少土壤CO2的排放。虽然目前已有研究能够对冻融作用对土壤CO2排放的影响及其驱动机制作出初步解释,但由于存在实验参数缺乏原位性、对土壤微生物的研究不够深入和数据难以量化等不足,致使研究结果存在较大的差异和不确定性,因此还需进一步深入研究。  相似文献   

12.
马晶晶  王佩  邓钰婧  马娟娟  孙海涛  陈奇 《土壤》2022,54(3):619-628
根据2018—2020年青海湖流域高寒草甸野外定点监测的温度、降水、土壤水热数据,分析了高寒草甸生态系统土壤冻融特征以及不同冻融阶段土壤温度、水分的日变化和季节动态过程。结果表明:(1)基于土壤温度变化特征分析,可将冻融循环过程划分为始冻期、完全冻结期、解冻期和完全融化期。各阶段持续的天数长短依次为:完全融化期>完全冻结期>解冻期>始冻期。从表层到深层土壤,完全融化天数持续增大,完全冻结天数趋于减小,0~180 cm土层完全融化期持续天数超过半年以上。(2)冻土表现出单向冻结、双向融化的规律,土壤融化速率(5.45 cm/d)快于土壤冻结速率(2 cm/d)。整个冻融过程,不同深度土壤水分的变化比温度的变化更复杂。(3)随着冻融循环过程,土壤温湿度呈现出周期性的季节变动特征。土壤温湿度日变化具有一致性,表层日较差大,随着深度的增加,日较差变小并趋于稳定。土壤剖面的结构特征对土壤水分异质性分布具有较强的解释性。  相似文献   

13.
Freeze-thaw fluctuations in soil temperature may be critical events in the annual pattern of nutrient mobilisation that supplies plant growth requirements in some temperate, and most high latitude and high altitude ecosystems. We investigated the effects of two differing freeze-thaw regimes, each of which is realistic of in situ spatial and temporal variation in field conditions, on C and N dynamics in sub-arctic heath tundra mesocosms. In addition, 15N isotopic label was used to follow the partitioning of a labile N pool between major ecosystem components, both during the freeze-thaw treatments phase, and in a subsequent equilibration phase. A single deep freeze treatment phase enhanced dissolved total and labelled N pools in the soil solution at initial thaw, and resulted in reduced pool sizes at the end of the equilibration phase. By contrast, a multiple freeze-thaw cycling treatment directly enhanced the dissolved labelled N pool, but did not significantly affect dissolved total N. Furthermore, both dissolved labelled N and dissolved total N pools were significantly enhanced in the equilibration period following multiple freeze-thaw, the latter due to a marked increase in soil solution NH4+. Microbial biomass C was not significantly affected by either of the freezing treatments upon final thaw, but was significantly reduced over the combined treatment and equilibration phases of the multiple freeze-thaw regimes. Furthermore, the treatments had no significant effects on total or labelled N within the microbial biomass over either phase. Total mesocosm CO2 efflux rates remained closely correlated with soil temperature throughout the experiment in both regimes, suggesting that respiratory flushes associated with treatment-induced microbial cell lysis were negligible. Together, these results indicate that moderate freeze-thaw fluctuations may have minimal influences on microbial biomass pools, but nevertheless can have strong contrasting effects on the amounts, forms, and timing of N and organic C supply into the soil solution. Ecosystem losses via N2O effluxes were of greatest magnitude immediately upon thawing in both treatments, and were of similar total magnitude to inorganic N leachates in throughflow. Herb leaves, total fine roots, and vascular stems accumulated some 15N label in one or both of the freezing treatments by the end of the experiment. Together, these results indicating very small N losses relative to the magnitudes of internal transfers, suggest tight ecosystem N cycling both during and after freeze-thaw events. Furthermore, our small and subtle effects on microbial and soluble C and N pools relative to previous studies using more severe regimes, suggests that periods of moderate freeze-thaw fluctuations may have only a minor influence on the annual pattern of C and nutrient dynamics in seasonally cold ecosystems.  相似文献   

14.
青藏高原高寒草原草甸土壤团聚体及养分因子变化特征   总被引:2,自引:0,他引:2  
为探讨青藏高原高寒草原草甸的土壤团聚体稳定性及有机碳等养分因子的变化分布,在青海省三江源区高寒地带选取样点分层采集土壤样品,进行室内测定并分析2种植被下土壤团聚体和养分因子的变化特征。结果表明:研究区土壤>0.25 mm水稳性团聚体含量(WSA)、平均质量直径(MWD)与几何平均直径(GMD)均为草甸>草原,而分形维数(D)与结构体破坏率(PAD)为草原>草甸,即青藏高原高寒草甸土壤团聚体稳定性大于高寒草原。高寒草甸土壤稳定性及养分含量随土层深度增加显著降低(P<0.05),草原土壤稳定性和养分含量随土层深度无显著变化趋势。高寒草原土壤稳定性与各养分含量随海拔升高而降低,高寒草甸土壤团聚体稳定性与养分随海拔升高先降低后增加。高寒草甸土壤团聚度与养分含量呈极显著相关(P<0.01),高寒草原土壤团聚度与养分无显著相关;>4,4~2,2~1 mm粒级团聚体是影响研究区土壤养分含量的主导粒径,其稳定性程度主要受大团聚体作用。研究结果对于青藏高原土壤质量评价、生态环境保护具有重要科学意义。  相似文献   

15.

Purpose

Soil microbes control the bioelement cycles and energy transformation in forest ecosystems, and are sensitive to environmental change. As yet, the effects of altitude and season on soil microbes remain unknown. A 560 m vertical transitional zone was selected along an altitude gradient from 3023, 3298 and 3582 m, to determine the potential effects of seasonal freeze-thaw on soil microbial community.

Materials and methods

Soil samples were collected from the three elevations in the growing season (GS), onset of freezing period (FP), deeply frozen period (FPD), thawing period (TP), and later thawing period (TPL), respectively. Real-time qPCR and polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) were used to measure the abundance and structure of soil microbial community.

Results and discussion

The bacterial, archaeal, and fungal ribosomal DNA (rDNA) copy numbers decreased from GS to freezing stage (FP and FPD) and then increased in thawing stage (TP and TPL). Similarly, the diversity of microbial community varied with seasonal freeze-thaw processes. The diversity index (H) of the bacterial and archaeal communities decreased from GS to FP and then increased to TPL. The fungal community H index increased in the freezing process.

Conclusions

Our results suggested that abundance and structure of soil microbial community in the Tibetan coniferous forests varied by season and bacterial and archaeal communities respond more promptly to seasonal freeze-thaw processes relative to fungal community. This may have important implications for carbon and nutrient cycles in alpine forest ecosystems. Accordingly, future warming-induced changes in seasonal freeze-thaw patterns would affect soil nutrient cycles via altering soil microbial properties.
  相似文献   

16.
冻融循环对黑土容重和孔隙度影响的试验研究   总被引:18,自引:4,他引:14  
反复的冻融循环会通过改变土壤容重、孔隙度等物理性质而使其侵蚀加剧,该文探讨了土壤容重及孔隙度在冻融循环作用下的变化.试从机理上分析冻融作用对土壤抗蚀性的影响规律.以东北黑土为研究对象,考虑冻融温差和土壤含水率两个影响因素.通过室内冻融试验研究了黑土容重及孔隙度的变化规律.结果表明:随着冻融循环次数的增大,土壤的容重和孔隙度分别呈现缓慢减小及增大趋势,且变化幅度越来越小,最后达到基本稳定的状态;冻融温差越大,冻结温度越低,同一含水率土壤的容重变得更低,而孔隙度相对较高,并且两者的变化量最大;在同一冻融温差下,高含水率土壤经过冻融循环后较低含水率土壤容重更低,而孔隙度更高,且数值的变化量最大.  相似文献   

17.
《Applied soil ecology》2007,37(2-3):136-146
The effect of temperature changes on soil communities is an important aspect when estimating the effects of a predicted climate change. The aim of this investigation was to increase knowledge on how freeze-thaw cycles alter the soil microarthropod community in the sub-arctic. The abundance of springtails and mites was investigated after three seasons of prolonged periods of freeze-thaw cycles in the field, and the presence or absence of migration barriers, at two different field sites. Dome shaped transparent plastic greenhouses were successfully used as a novel method to increase freeze-thaw cycle frequencies in the soil. At a fellfield site, freeze-thaw treatment did not lead to significant differences in the five main soil faunal groups, but increased abundance were seen in a number of separate taxa. There was no freeze-thaw treatment effect on soil microbial biomass or soil nutrients, although treatments interacted as inorganic N increased in the separate freeze-thaw and migration barrier treatments. By contrast, at a glade site responses were strong due to more pronounced increases in the number of freeze-thaw cycles. The highest numbers of Collembola after 2 years of treatment were found in the freeze-thaw plots, in combination with migration barriers. The freeze-thaw treatment here also resulted in more Oribatida, microbial biomass C and dissolved organic C. A common hypothesis is that an increased number of freeze-thaw cycles would result in elevated winter mortality in microarthropods due to increased risk of inoculative freezing. However, we observed no increased mortality due to freeze-thaw events. Rather, there was a stimulation of soil microarthropods and microbial biomass, perhaps due to a prolonged period of microbial and faunal activity when the soil is repeatedly frozen and thawed compared to a constantly frozen soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号