首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Emission of N2O and CH4 oxidation rates were measured from soils of contrasting (30-75%) water-filled pore space (WFPS). Oxidation rates of 13C-CH4 were determined after application of 10 μl 13C-CH4 l−1 (10 at. % excess 13C) to soil headspace and comparisons made with estimates from changes in net CH4 emission in these treatments and under ambient CH4 where no 13C-CH4 had been applied. We found a significant effect of soil WFPS on 13C-CH4 oxidation rates and evidence for oxidation of 2.2 μg 13C-CH4 d−1 occurring in the 75% WFPS soil, which may have been either aerobic oxidation occurring in aerobic microsites in this soil or anaerobic CH4 oxidation. The lowest 13C-CH4 oxidation rate was measured in the 30% WFPS soil and was attributed to inhibition of methanotroph activity in this dry soil. However, oxidation was lowest in the wetter soils when estimated from changes in concentration of 12+13C-CH4. Thus, both methanogenesis and CH4 oxidation may have been occurring simultaneously in these wet soils, indicating the advantage of using a stable isotope approach to determine oxidation rates. Application of 13C-CH4 at 10 μl 13C-CH4 l−1 resulted in more rapid oxidation than under ambient CH4 conditions, suggesting CH4 oxidation in this soil was substrate limited, particularly in the wetter soils. Application of and (80 mg N kg soil−1; 9.9 at.% excess 15N) to different replicates enabled determination of the respective contributions of nitrification and denitrification to N2O emissions. The highest N2O emission (119 μg 14+15N-N2O kg soil−1 over 72 h) was measured from the 75% WFPS soil and was mostly produced during denitrification (18.1 μg 15N-N2O kg soil−1; 90% of 15N-N2O from this treatment). Strong negative correlations between 14+15N-N2O emissions, denitrified 15N-N2O emissions and 13C-CH4 concentrations (r=−0.93 to −0.95, N2O; r=−0.87 to −0.95, denitrified 15N-N2O; P<0.05) suggest a close relationship between CH4 oxidation and denitrification in our soil, the nature of which requires further investigation.  相似文献   

2.
The methane emission from typical bog landscapes of the West Siberian subtaiga was studied in the summer-autumn of 2007?C2010. The lowest specific fluxes (the median value is 0.08 mg C-CH4/m2 per h) were recorded from ryams (raised bogs with dwarf shrub-sphagnum associations). From the ridges of the ridge-pool complexes, the fluxes were estimated at 0.49 mg C-CH4/m2 per h; from the oligotrophic hollows, eutrophic bogs, floating lake mats, and mesotrophic quaking bogs, they were estimated at 2.68, 3.36, 4.53, and 4.98 mg C-CH4/m2 per h, respectively. The maximal flux was determined from the lakes (the median is 17.98 mg C-CH4/m2 per h). The regional assessment of the methane flux from the bogs of Western Siberia (2.93 Tg C-CH4/yr) was obtained on the basis of the authors?? and literature data.  相似文献   

3.
In the summer-autumn seasons of 2007–2011, the methane emission from typical mire landscapes of Western Siberia was studied using the static chamber method. The lowest methane flux turned out to be characteristic of the ryams (pine-dwarf shrub-sphagnum associations) and the ridges of the ridge-hollow complexes, as well as of the wetland lakes in the northern and middle taiga (the medians are within the range of 0.1–0.5 mg C-CH4/m2 h). Values that are 10 times higher are typical for the oligotrophic hollows, fens, peat mats, and poor fens in different subzones (the medians are 2 to 7 mg C-CH4/m2 h). The maximal values of the methane flux from the wetland lakes of the southern taiga are 17.98 mg C-CH4/m2 h. Based on the data obtained by the authors, along with the previously published ones, the regional methane fluxes from the taiga mires were calculated: 2.22 Mt C-CH4/m2 per year, or about 80% of the total methane flux from the West Siberian mires. The estimates of the CH4 regional flux obtained by other researchers are discussed; the main source of the estimation uncertainty is analyzed.  相似文献   

4.
 N2O emission from a wetland rice soil as affected by the application of three controlled-availability fertilizers (CAFs) and urea was investigated through a pot experiment. N2O fluxes from the N fertilized paddy soil averaged 44.8–69.3 μg N m–2 h–1 during the rice growing season, accounting for 0.28–0.51% of the applied N. The emission primarily occurred during the mid-season aeration (MSA) and the subsequent re-flooding period. Fluxes were highly correlated with the NO3 and N2O concentrations in the soil water. As there were relatively large amounts of NH4 +-N present in the soil of the CAF treatments at the beginning of MSA, leading to large amounts of NO3 -N during the MSA and the subsequent re-flooding period, the tested CAFs were not effective in reducing N2O emission from this paddy soil. The potential of applied CAFs to reduce N2O emissions from paddy soil is discussed. Received: 25 May 1999  相似文献   

5.
During summer and autumn of 2008–2010 in the north and middle taiga, measurements of methane emissions from different types of wetland landscapes in Khanty-Mansi and Yamalo-Nenets Autonomous Okrugs were made by the static chamber method. Total methane emission from West-Siberian northern and middle taiga mires is estimated at 550 and 530 kt C-CH4 per year.  相似文献   

6.
 Soil microbial biomass and the emission of CO2 from the soil surface were measured in yellow soils (Ultisols) of the karst areas of southwest China. The soils are relatively weathered, leached and impoverished, and have a low input of plant residues. The measurements were made for a 1-year period and show a reciprocal relationship between microbial biomass and surface CO2 efflux. The highest (42.6±2.8 mg CO2-C m–2 h–1) and lowest (15.6±0.6 mg CO2-C m–2 h–1) CO2 effluxes are found in the summer and winter, respectively. The cumulative CO2 efflux is 0.24 kg CO2-C m–2 year–1. There is also a marked seasonal variation in the amount of soil microbial biomass carbon, but with the highest (644±71 μg C g–1 soil) and lowest (270±24 μg C g–1 soil) values occurring in the winter and summer, respectively. The cumulative loss of soil microbial biomass carbon in the top 10 cm of the soil was 608 μg C g–1 year–1 soil over 17 sampling times. The mean residence time of microbial biomass is estimated at 105 days, suggesting that the carbon in soil microbial biomass may act as a source of the CO2 released from soils. Received: 13 July 1999  相似文献   

7.
Applications of a commercial formulation of carbofuran, a carbamate insecticide, at rates of 2kg and 12kg active ingredient ha–1 to flooded fields planted to rice led to significant inhibition of methane emission. Likewise, laboratory incubation studies showed that carbofuran applied at low rates (5 and 10μgg–1soil) inhibited the net methane production relative to that of the control, but stimulated it when applied at a rate of 100μgg–1soil. Interestingly, carbofuran increased the oxidation of methane when applied at low rates and inhibited it when applied at a rate of 100μgg–1soil. Received: 5 May 1997  相似文献   

8.
Application of feedlot manure (FLM) to cropping and grazing soils could provide a valuable N nutrient resource. However, because of its high but variable N concentration, FLM has the potential for environmental pollution of water bodies and N2O emission to the atmosphere. As a potential management tool, we utilised the low-nutrient green waste compost (GWC) to assess its effectiveness in regulating N release and the amount of N2O emission from two Vertisols when both FLM and GWC were applied together. Cumulative soil N2O emission over 32 weeks at 24°C and field capacity (70% water-filled pore space) for a black Vertisol (Udic Paleustert) was 45 mg N2O m−2 from unamended soil. This increased to 274 mg N2O m−2 when FLM was applied at 1 kg m−2 and to 403 mg N2O m−2 at 2 kg m−2. In contrast, the emissions of 60 mg N2O m−2 when the soil was amended with GWC 1 kg m−2 and 48 mg N2O m−2 at 2 kg m−2 were not significantly greater than the unamended soil. Emission from a mixture of FLM and GWC applied in equal amounts (0.5 kg m−2) was 106 mg N2O m−2 and FLM applied at 0.5 kg m−2 and GWC at 1.5 kg GWC m−2 was 117 mg N2O m−2. Although cumulative N2O emissions from an unamended grey Vertisol (Typic Chromustert) were only slightly higher than black Vertisol (57 mg N2O m−2), FLM application at 1 kg m−2 increased N2O emissions by 14 times (792 mg N2O m−2) and at 2 kg m−2 application by 22 times (1260 mg N2O m-2). Application of GWC did not significantly increase N2O emission (99 mg N2O m−2 at 1 kg m−2 and 65 mg N2O m−2 at 2 kg m−2) above the unamended soil. As observed for the black Vertisol, a mixture of FLM (0.5 kg m−2) and GWC (0.5 or 1.5 kg m−2) reduced N2O emission by >50% of that from the FLM alone, most likely by reducing the amount of mineral N (NH4+–N and NO3–N) in the soil, as mineral N in soil and the N2O emission were closely correlated.  相似文献   

9.
The intensity of the in situ soil respiration in the background northern taiga spruce forests of the Kola subarctic region reaches 120–290 mg C-CO2/m2 per h. In the impact zone of the Severonikel smelter, it decreases to 90–140, 30, and 15–30 mg C-CO2/m2 per h at the stages of spruce defoliation, spruce-birch woodland, and technogenic barrens of the technogenic succession, respectively. For the first time, the impact of the industrial pollution on root respiration has been assessed, and the dependences of the CO2 emission, the contribution of mineral soil horizons to this process, the microbial biomass, and root respiration on the concentrations of available nickel and copper compounds have been determined. The efficiency of two remediation technologies applied to technogenic barrens near the smelter has been evaluated on the basis of four parameters of the soil biological activity. The results indicate that remediation with the creation of a new filled soil layer is more efficient than chemical and phytoremediation methods.  相似文献   

10.
The mineralization rate of the organic matter (OM) in the aggregate fractions of a gray forest soil separated by repeated sieving through sieves with different mesh sizes was assessed. The samples of the soil aggregate fractions were incubated for 141 days under constant temperature and moisture, and the C-CO2 emission rate was measured. The mineralizable OM pool in the aggregates of <0.25, 1–0.25, and 3–1 mm in size from the soil under a forest contained easily (C1, k 1 > 0.1 days−1), moderately (C2, k 2 > 0.01 days−1), and difficultly (C3, k 3 > 0.001 days−1) mineralized compounds; the C1 and C2 components were present in the coarser aggregates. In the arable soil, the C1, C2, and C3 OM components were separated in the aggregates of <0.25 and 1–0.25 mm; the C1 and C3 were separated in the aggregates of 3–1 and 5–3 mm; and the C1 and C2 were separated in the coarsest (10–5 mm) aggregates. The highest content of potentially mineralized OM (C0) occurred in the aggregates of 1–0.25 and 3–1 mm, but the size of the mineralizable OM pool was more dependent on the portion of the aggregate fraction in the soil than on the absolute C0 content in the fraction. It was shown that the decrease in the share of coarse structural aggregates is accompanied by a depletion of potentially mineralized OM in the arable soil, and the formation of coarse aggregates is an important condition of the soil carbon sequestration.  相似文献   

11.
Methane emission from paddy fields in Taiwan   总被引:3,自引:0,他引:3  
 In order to investigate the effect of environmental conditions on CH4 emission from paddy fields in Taiwan, four locations, two cropping seasons and two irrigation systems were studied. CH4 emission was high at the active tillering and the booting stages in the first cropping season, whereas it was low at the transplanting and the ripening stages with an intermittent irrigation system. CH4 emission was high at the transplanting stage in the second cropping season, and decreased gradually during rice cultivation. Daily temperature and light intensity increased gradually during rice growth in the first cropping season (February–June), while it was reversed in the second cropping season (August–December). The seasonal CH4 emission from paddy fields ranged from 1.73 to 11.70 g m–2, and from 10.54 to 39.50 g m–2 in the first and second cropping seasons, respectively. The seasonal CH4 emission in the second cropping season was higher than that in the first cropping season in all test fields. The seasonal CH4 emission was 32.65 mg m–2 in the first cropping season of the National Taiwan University paddy field with continuous flooding, and it was 28.85 mg m–2 in the second cropping season. The annual CH4 emission ranged from 12.3 to 49.3 g m–2 with an intermittent irrigation system, and the value was 61.5 g m–2 with a continuous flooding treatment. The annual CH4 emission from paddy fields was estimated to be 0.034 Tg in 1997 from 364,212 ha of paddy fields with an intermittent irrigation system, which was less than the 0.241 Tg calculated by the IPCC method with a continuous flooding treatment Received: 23 February 2000  相似文献   

12.
Emission of N2O from rye grass (Lolium perenne L.)   总被引:6,自引:0,他引:6  
 The possibility of an additional N2O emission pathway via plants was investigated in a soil-rye-grass (Lolium perenne L.) system. The N2O emission rate of the system varied between 0.8 and 13.3 mg N2O-N m–2 day–1. Comparing the N2O emission rate of the system before and immediately after cutting the rye grass allowed us to calculate the contribution of the rye grass to the N2O emission from the soil-plant system. It was found that, depending on the type of fertilization and the growing period of the plants, the N2O released from the rye grass varied between 0 and 2.8 mg N2O-N m–2 day–1. N 2 O emission mediated by the rye grass increased towards the end of the growing period. An exponential correlation [R2=0.93, y=(8×10–6x 2 )–(2×10–5x)+0.21] was observed between the N2O emission (y) from the rye grass and its NO3 –N content (x). However, it was not clear whether N2O was produced by the plants themselves or whether the rye grass served as a conduit for N2O produced in the soil. Received: 18 March 1998  相似文献   

13.
The analysis of daily, seasonal, and annual dynamics of CO2 emission from soils under different stands of monsoon tropical tall-tree forest was performed on the basis of field observations conducted at the Russian-Vietnamese Tropical Research and Technology Center of the Russian Academy of Sciences. Under a tropical climate, the main factors responsible for the rate of carbon dioxide emission from the soils are shown to be the soil type and the topographic position of the area studied along with the type of vegetation. Depending on these factors, the rate of CO2 emission from the soils was 65–178 mg C/(m2 h) during the dry season and 123–259 mg C/(m2 h) during the wet season. The daily dynamics of CO2 emissions from the soils of the tropical zone was weakly pronounced in both the wet and the dry season owing to the insignificant diurnal fluctuations of soil temperature. The investigations carried out allowed making an expert evaluation of the annual CO2 fluxes from the soils under different stands of monsoon tropical tall-tree forest in southern Vietnam. They amounted to 900–2000 g C/(m2 yr) depending on the forest type.  相似文献   

14.
The regularities of the seasonal dynamics of the CO2 emission from the surface of a podzolic soil under a bilberry pine forest of the middle taiga were revealed. In mid-May, after the snow melt, the CO2 emission was 0.10–0.20 g of CO2/m2 per h. Then, the intensity of the CO2 emission increased, reached its maximum (1.0 to 1.5 g of CO2/m2 per h) in July–August, and decreased down to 0.04–0.10 g of CO2 g/m2 per h in mid-October. The correlation between the rate of the CO2 emission and the temperature and moisture of the soil was positive and negative: r = 0.34 to 0.91 and ?0.44 to ?0.86, respectively. According to the empirical model, 2.26–2.69 t of C-CO2/ha were emitted during the warm time of the year.  相似文献   

15.
Here, we examine the effect of long-term pH differences and short-term pH change on N2O emissions from soil, and the microbial source (ammonia oxidation versus denitrification) of 15N-N2O emissions. 15N-fertiliser (20 g N m?2; 10 atom% excess 15N) was applied to (1) a silt loam soil of pH 7 held at 50% and 65% water-filled pore space (WFPS) (experiment 1) and (2) a loamy sand soil maintained at pH 4.5 and pH 7 for over 40 years (experiment 2). Soils were limed with CaCO3 or acidified with H2SO4, and comparisons were made with unadjusted soils. Ammonia oxidation was the main microbial source of 15N-N2O in soils limed to pH 7.0–8.1, unadjusted pH 7.1 (Experiment 1) and long-term pH 7 (experiment 2) soils. Eighty percent of 15N-N2O from the long-term pH 4.5 soil (experiment 2) was derived from denitrification suggesting a possible inhibition of N2O reduction. Short-term acidification to pH 5.6 or 4.3 lowered N2O emissions. Liming of the pH 4.5 soil resulted in over four times greater N2O emission (11 mg 14+15N-N2O m?2 over 41 days) than from the long-term pH 7.0 soil (experiment 2), with an associated increase in ammonia oxidiser-N2O and decrease in denitrifier-N2O production. This is the first report of a pH-induced change in microbial source of N2O. Our results highlight the importance of distinguishing between short- and long-term effects of pH management when predicting N2O emissions from soil, as they exhibit predominance of different microbial groups in N2O production, with likely adaptation of the microbial community.  相似文献   

16.
Emissions of N2O and CH4 and CH4 oxidation rates were measured from Lolium perenne swards in a short-term study under ambient (36 Pa) and elevated (60 Pa) atmospheric CO2 at the Free Air Carbon dioxide Enrichment experiment, Eschikon, Switzerland. Elevated pCO2 increased (P<0.05) N2O emissions from high N fertilised (11.2 g N m−2) swards by 69%, but had no significant effect on net emissions of CH4. Application of 13C-CH4 (11 μl l−1; 11 at.% excess 13C) to closed chamber headspaces in microplots enabled determination of rates of 13C-CH4 oxidation even when net CH4 fluxes from main plots were positive. We found a significant interaction between fertiliser application rate and atmospheric pCO2 on 13C-CH4 oxidation rates that was attributed to differences in gross nitrification rates and C and N availability. CH4 oxidation was slower and thought to be temporarily inhibited in the high N ambient pCO2 sward. The most rapid CH4 oxidation of 14.6 μg 13C-CH4 m−2 h−1 was measured in the high fertilised elevated pCO2 sward, and we concluded that either elevated pCO2 had a stimulatory effect on CH4 oxidation or inhibition of oxidation following fertiliser application was lowered under elevated pCO2. Application of 14NH415NO3 and 15NH415NO3 (10 at.% excess 15N) to different replicates enabled determination of the respective contributions of nitrification and denitrification to N2O emissions. Inhibition of CH4 oxidation in the high fertilised ambient pCO2 sward, due to competition between NH3 and CH4 for methane monooxygenase enzymes or toxic effects of NH2OH or NO2 produced during nitrification, was hypothesised to increase gross nitrification (12.0 mg N kg dry soil−1) and N2O emissions during nitrification (327 mg 15N-N2O m−2 over 11 d). Our results indicate that increasing atmospheric concentrations of CO2 may increase emissions of N2O by denitrification, lower nitrification rates and either increase or decrease the ability of soil to act as a sink for atmospheric CH4 depending on fertiliser management.  相似文献   

17.
 The effects of salt type and its concentration on nitrification, N mineralization and N2O emission were examined under two levels of moisture content in Yellow soil and Andosol samples as simulated to agriculture under arid/semi-arid conditions and under heavy application of fertilizer in a glass-house, respectively. The salt mixtures were composed of chlorides (NaCl and NH4Cl) or sulphates [Na2SO4 and (NH4)2SO4] and were added at various concentrations (0, 0.1, 0.2, 0.4 and 0.6 M as in the soil solution). These salts were added to non-saline Yellow soil at different moisture contents (45 or 40 and 65% of maximum water-holding capacity; WHC) and their effects on the changes in mineral N (NH4 +-N and NO3 -N) concentration as well as N2O emission were examined periodically during laboratory incubation. We also measured urease activities to know the effect of salts on N mineralization. Furthermore, Ca(NO3)2 solution was added at various concentrations (0, 0.1, 0.3, 0.5 and 0.8 M as in the soil solution) to a non-saline Andosol taken from the subsurface layer in a glass-house and incubated at different moisture contents (50% and 70% of WHC) to examine their effects on changes in mineral N. Nitrification was inhibited by high, but remained unaffected by low, salt concentrations. These phenomena were shown in both the model experiments. It was considered that the salinity level for inhibition of nitrification was an electric conductivity (1 : 5) of 1 dS m–1. This level was independent of the type of salts or soil, and was not affected by soil moisture content. The critical level of salts for urease activities was about 2 dS m–1. The emission rate of N2O was maximum at the beginning of the incubation period and stabilized at a low level after an initial peak. There was no significant difference in N2O emission among the treatments at different salt concentrations, while higher moisture level enhanced N2O emission remarkably. Received: 29 July 1998  相似文献   

18.
 Application of a commercial formulation of the herbicide butachlor (N-butoxymethyl-2-chloro-2′,6′-diethyl acetanilide) at 1 kg a.i. ha–1 to an alluvial soil planted with direct-seeded flooded rice (cv. Annada), significantly inhibited both crop-mediated emission and ebullition fluxes of methane (CH4). Over a cropping period of 110 days, the crop-mediated cumulative emission flux of CH4 was lowered by ∼20% in butachlor-treated field plots compared with that of an untreated control. Concurrently, ebollition flux of CH4 was also retarded in butachlor-treated field plots by about 81% compared with that of control plots. Significant relationships existed between CH4 emission and redox potential (E h) and Fe2+ content of the flooded soil. Application of butachlor retarded a drop in soil redox potential as well as accumulation of Fe2+ in treated field plots. Methanogenic bacterial population, counted at the maturity stage of the crop, was also low in butachlor-treated plots, indicating both direct and indirect inhibitory effects of butachlor on methanogenic bacterial populations and their activity. Results indicate that butachlor, even at field-application level, can effectively abate CH4 emission and ebollition from flooded soils planted to rice whilst maintaining grain yield. Received: 15 March 2000  相似文献   

19.
A combination of stable isotope and acetylene (0.01% v/v) inhibition techniques were used for the first time to determine N2O production during denitrification, autotrophic nitrification and heterotrophic nitrification in a fertilised (200 kg N ha–1) silt loam soil at contrasting (20–70%) water-filled pore space (WFPS). 15N-N2O emissions from 14NH415NO3 replicates were attributed to denitrification and 15N-N2O from 15NH415NO3 minus that from 14NH415NO3 replicates was attributed to nitrification and heterotrophic nitrification in the presence of acetylene, as there was no dissimilatory nitrate reduction to ammonium or immobilisation and remineralisation of 15N-NO3. All of the N2O emitted at 70% WFPS (31.6 mg N2O-N m–2 over 24 days; 1.12 g N2O-N g dry soil–1; 0.16% of N applied) was produced during denitrification, but at 35–60% WFPS nitrification was the main process producing N2O, accounting for 81% of 15N-N2O emitted at 60% WFPS, and 7.9 g 15N-N2O m–2 (0.28 ng 15N-N2O g dry soil–1) was estimated to be emitted over 7 days during heterotrophic nitrification in the 50% WFPS treatment and accounted for 20% of 15N-N2O from this treatment. Denitrification was the predominant N2O-producing process at 20% WFPS (2.6 g 15N-N2O m–2 over 7 days; 0.09 ng 15N-N2O g dry soil–1; 85% of 15N-N2O from this treatment) and may have been due to the occurrence of aerobic denitrification at this WFPS. Our results demonstrate the usefulness of a combined stable isotope and acetylene approach to quantify N2O emissions from different processes and to show that several processes may contribute to N2O emission from agricultural soils depending on soil WFPS.  相似文献   

20.
稻虾共作对秸秆还田后稻田温室气体排放的影响   总被引:12,自引:3,他引:9  
稻虾共作模式是稻田种养复合模式的重要组成部分,其主要特点是稻草全量还田、非稻季持续淹水和周年养殖克氏原螯虾。目前对稻虾共作模式稻田温室气体排放的影响尚不清楚。本研究以江汉平原冬泡无稻草还田为对照,设置冬泡+稻草还田和冬泡+稻草还田+养虾处理,探讨稻草还田及稻虾共作对稻田系统CH_4、N_2O和CO_2排放的影响,为准确评估稻田温室气体排放提供数据支撑和理论支持。结果表明,在大田监测期间,冬泡+稻草还田处理CH_4累积排放量比冬泡无稻草还田处理显著增加(P0.05),2015年和2016年增幅分别为27.23%和60.08%;冬泡+稻草还田+养虾处理CH_4累积排放量比冬泡+稻草还田显著降低(P0.05),2015年和2016年降幅分别为29.02%和41.19%。冬泡+稻草还田处理CO_2累积排放比冬泡无稻草还田处理显著提高;与冬泡无稻草还田处理相比较,冬泡+稻草还田处理和冬泡+稻草还田+养虾处理对N_2O累积排放无显著影响。从温室效应角度看,冬泡+稻草还田处理温室效应比冬泡无稻草还田处理大幅度增加,而冬泡+稻草还田基础上进行养虾则可大幅度降低CH_4排放,从而降低因秸秆还田带来的温室效应增强。所有处理水稻产量无显著差异,与冬泡+稻草还田处理相比,冬泡+稻草还田+养虾可显著降低温室气体排放强度。和冬泡无稻草还田处理相比,冬泡+稻草还田和冬泡+稻草还田+养虾对土壤可溶性有机碳(DOC)、乙酸和NH_4~+-N并无显著影响。冬泡+稻草还田+养虾可极显著提高单位面积收益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号