首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
以泥炭为主复合基质石灰反应的研究   总被引:1,自引:0,他引:1  
试验采用恒温培养法研究以泥炭为主的复合基质pH的石灰反应情况。结果显示 :基质 pH的变化主要发生在前 5天 ,在第 8天基本达到稳定状态 ;随着时间的推移 ,pH有升高的趋势 ;石粉的使用量明显影响基质 pH的变化 ,其范围大致为 2~ 6kg/m3 。  相似文献   

2.
白云石石粉调节育苗基质pH的试验研究   总被引:3,自引:1,他引:2  
王清奎  张志国 《土壤》2003,35(3):262-263
基质过酸过碱都不利于作物生长发育,用白云石石粉调节育苗基质pH还可以提供Ca2 、Mg2 。本文主要研究白云石石粉在基质中的反应以及其颗粒大小和用量与基质pH的关系。研究结果表明:其反应主要发生在前8天,pH增加快;石粉的用量与pH具有明显相关性。  相似文献   

3.
菇渣和泥炭基质理化特性比较及其调节   总被引:20,自引:1,他引:19       下载免费PDF全文
为了研究菇渣作为泥炭替代物的可行性,该试验比较了菇渣与泥炭的理化性状,并对菇渣生长障碍因素进行了分析和调节.结果表明:菇渣大粒径较多,透气透水性较好,持水孔隙比泥炭少,浇水需量少次数多,但失水速率比泥炭慢;菇渣毛管水上升速率快,加湿润剂对其作用不明显;菇渣水分特征曲线与泥炭相似;菇渣保肥性能较弱,需要增加施肥次数;菇渣EC值偏高,而泥炭较低,可通过与泥炭按一定比例混合或淋洗方式降低菇渣的EC值;菇渣pH值偏高,可以通过添加硫磺粉、稀硫酸以及与泥炭等低pH值材料混合的措施解决.菇渣经过适当调节及变换一些管理措施,在无土栽培中可以部分替代泥炭.  相似文献   

4.
不同改良剂对酸性土壤的修复效应   总被引:2,自引:1,他引:2  
为明确不同改良剂对酸性植烟土壤的修复效应,采用盆栽试验,分析了施用丰收延酸性土壤改良剂、金叶酸性土壤改良剂及石灰后土壤pH、水解性酸、潜性酸及土壤交换性能的动态变化。结果表明:施用改良剂可提高土壤pH 3.01%~24.11%,降低土壤水解性酸16.08%~50.46%、交换性Al 3+51.80%~64.27%、交换性H+含量84.12%~93.56%,提高土壤交换性盐基总量45.18%~46.16%、阳离子交换量0.33%~20.10%、盐基饱和度21.35%~49.78%。施用土壤改良剂后,土壤pH先升高后下降,至移栽60天后趋于稳定;土壤水解性酸在烤烟移栽后30~90天差异较小,至移栽后120天略有增加。施用石灰的土壤交换性氢、交换性铝一直下降,但施用丰收延、金叶酸性土壤改良剂的土壤交换性铝下降至烟苗移栽后120天略有增加,土壤交换性氢上升至烟苗移栽后120天大幅度下降。施用土壤改良剂后,土壤交换性盐基总量、阳离子交换量、盐基饱和度一直提高,但变化幅度较小。不同土壤改良剂的材料来源及组成成分不同,其对酸性土壤的恢复效果也不同,以施用石灰的效果最好。  相似文献   

5.
泥炭和褐煤对土壤有机碳和腐殖物质组成的影响   总被引:1,自引:0,他引:1  
《土壤通报》2017,(5):1149-1153
在相同温湿度环境条件下,研究泥炭和褐煤与土壤混合后对土壤有机碳及其腐殖物质组成变化的影响,为改善耕地土壤有机碳库的管理提供理论依据。结果表明:随着培养时间的延长,添加褐煤、木本泥炭的土壤有机碳含量分别上升了0.66%和17.41%,添加草本泥炭的土壤有机碳含量下降了3.15%;胡敏酸含碳量呈逐渐增加的趋势,富里酸含碳量呈逐渐减小的趋势;添加草本泥炭的胡敏素含碳量呈下降趋势,添加褐煤和木本泥炭的土壤胡敏素含碳量呈逐渐上升趋势。土壤胡富比和PQ值整体上都表现出随着培养时间的延长而逐渐增加的趋势。由此可知,泥炭和褐煤能提高土壤有机碳,改良土壤腐殖物质组分,且添加木本泥炭的土壤有机质含量和腐殖物质组分改善效果最好。  相似文献   

6.
国内外泥炭农用特性比较研究   总被引:5,自引:0,他引:5       下载免费PDF全文
比较研究国内外商品泥炭农用物理化学特性结果表明 ,与国外泥炭相比 ,国产泥炭总孔隙度小 ,容重、灰分含量、pH值和电导率均高 ,阳离子代换量低 ;国产泥炭全量养分含量较高 ,全N、全P、全K分别约为进口泥炭的2倍、3~ 4倍和 3~ 5倍。国产泥炭与进口泥炭相比微量元素全Fe和全Mn含量差异最大 ;除速效铁外国产泥炭其他速效养分与进口泥炭相比差异较小 ,而调试好 pH值的进口泥炭速效钙含量较高。  相似文献   

7.
CO_2是调节废水pH的有效途径在造纸、化工、纺织和食品行业等许多工艺过程中,都产生强碱性的废液。英国传统上用无机酸(如硫酸和盐酸)中和,使之符合排入河流及下水道的要求(pH的允许范围为5~9)。然而,这类无机酸的酸性强,操作需严格谨慎。但在该酸-碱?..  相似文献   

8.
汞在泥炭上的吸附动力学研究   总被引:6,自引:0,他引:6  
采用批次法研究了汞在三江平原泥炭和吉林双阳泥炭上的吸附动力学特征及温度、pH值对吸附的影响,实验表明:在相同的实验条件下,三江平原泥炭对汞的吸附速率小于吉林双阳泥炭;温度升高加快泥炭吸附汞的反应速度;两种泥炭对汞的吸附速率受pH值的影响明显且都在pH6.0左右具有最大的吸附量;在酸性介质内,介质的pH值升高,利于泥炭对汞的吸附;两种泥炭对汞的吸附动力学用Hill方程描述最为合适。湿地泥炭土壤较高的吸附容量,以及湿地低温和适当的pH都利于湿地对汞的累积。  相似文献   

9.
红原1#泥炭地泥炭性质的初步研究   总被引:2,自引:0,他引:2  
田丹碧  田定一 《土壤》2004,36(4):442-445
红原县 1#泥炭地是四川省若尔盖高原泥炭区的优良泥炭矿区之一。对该矿主矿段泥炭的品质作了初步综合考察,测定了泥炭的组成和元素的含量,其质量优于若尔盖地区其他的泥炭矿,具有较高的开发价值。  相似文献   

10.
内蒙古自治区哲里木盟科尔沁左翼后旗广泛分布着沙碱化土壤,其风沙土与盐碱土的面积占其总土壤面积的76%,自然肥力贫瘠.但是,该旗同时分布着储量约达62×106m3的泥炭资源,埋藏较浅,泥炭层较厚,易于开采.研究表 明,在盐渍土种植玉米的条件下,大量增施泥炭,能获得显著的改土增产效果.  相似文献   

11.
    
Abstract

Four liming and Mg materials were compared in a greenhouse experiment with soybeans for their ability to raise soil pH, supply Mg, and their effect on the availability of Mn, Cu, Fe, and Zn. Three materials were added at rates of 0, 1, and 2 times the lime requirement, calcitic lime, dolomitic lime, and Hydra‐Mag (an industrial by‐product containing 20% Mg). Sul‐Po‐Mag was the fourth material added as a plus Mg check at a rate based on an equivalent amount of Mg to that supplied by Hydra‐Mag. Plant growth, plant tissue element content and extractable soil elements were determined after growing the soybeans for 5 weeks. Plants in treatments where no lime/Mg materials were added were very small due possibly to Mg deficiency and Al toxicity. The 1 and 2 times rates of the materials gave about equal growth except that the high Sul‐Po‐Mag rate caused salt injury. Hydra‐Mag increased soil pH more than calcitic lime which increased soil pH more than dolomitic lime. Soil and plant Mg levels were increased more by Hydra‐Mag than dolomitic lime when applied at equivalent rates based on the lime requirement. Dolomitic lime gave very good plant growth indicating that it made adequate amounts of Mg available. Hydra‐Mag reduced plant and extractable soil Zn, Cu, and Fe but no more so than calcitic or dolomitic lime. Hydra‐Mag reduced plant Mn more than for the other limes.  相似文献   

12.
Abstract

High vater table sandy soils present special problems when establishing soil pH variables under field conditions. In order to examine the response of a coarse‐textured soil to lime and HC1 acid treatments, data are reported for soil pH and extractable Ca and Mg for a field experiment where Mn treatments on soybeans was the primary objective. Three treatments included HC1 acid, control, and lime. Acid (742 liters/ha 3N HC1) was added only at the beginning of the experiment but dolomitic lime treatments were added each year (2240, 2740, and 2900 kg/ha). The lime and acid were applied to the soil surface and incorporated to a depth of 10 to 13 cm. Soil samples were taken every 2 to 3 months at 3 depths (0 to 15, 15 to 30, and 30 to 45 cm) and analyzed for pH and extractable Ca and Mg. Acid treatment decreased the pH by 0.2 units below the untreated soil at the 0 to 30 cm depth and the effect lasted the entire 3 years of the study. Calcium values were lowered only slightly by the acid treatment. Lime additions caused steady increases in soil Ca. Magnesium values increased several months after each of the first and second lime applications. Lime raised the subsoil (30 to 45 cm) pH after 4 to 6 months. Seasonal variations in pH were very wide with the untreated soil pH varying from 6.1 to 6.8. The high pH level of 7.0 was not maintained for an entire season until the third year of the experiment. Soil pH as well as extractable Ca and Mg showed fluctuations that were the result of seasonal variations and soil moisture content at the time of sampling. Soil pH variables on a sandy soil should be established at least a year in advance of starting an experiment and must be closely monitored in order to maintain the desired pH levels.  相似文献   

13.
A 3-year field trial examined in a long-term no-till system the effects of surface-applied lime and cover black oat ( Avena strigosa Schreb) residues on soil chemical attributes, root growth and grain yield of corn ( Zea mays L.) and soybean ( Glycine max L. Merrill) on a loamy, kaolinitic, thermic Typic Hapludox in Paraná State, Brazil. The treatments consisted of dolomitic lime broadcast on the soil surface at 0 or 12 t/ha, with and without cover of black oat residues. Corn and soybeans were grown without rainfall limitation. Applying lime on the surface improved soil acidity and decreased aluminium (Al) toxicity to a 10-cm depth 1 year after application. Surface liming increased pH and the content of exchangeable Ca2+ to a 20-cm depth, and decreased Al toxicity to a 40- to 60-cm depth, 3 years after application, indicating that the surface-applied lime moved deeper. Cover black oat residues did not favour the mobility of surface-applied lime to alleviate subsoil acidity and an increase in the Al3+ saturation level at the soil surface was found in unlimed plots with black oat residues. Root growth and grain yields of corn and soybean were not influenced by surface liming with or without cover black oat residue. Despite the soil acidity level, root length of corn and soybean ranged from 55 to 60% at 0- to 10-cm depth. The results suggest that Al toxicity is low in no-till systems during cropping seasons with adequate and well-distributed rainfall, but this effect is not related to the presence of cover oat residues.  相似文献   

14.
碱渣与菜籽饼共施对茶园土壤酸度调控的研究   总被引:2,自引:0,他引:2  
Rapeseed cake (RC), the residue of rapeseed oil extraction, is effective for improving tea (Camellia sinensis) quality, especially taste and aroma, but it has limited ability to ameliorate strongly acidic soil. In order to improve the liming potential of RC, alkaline slag (AS), the by-product of recovery of sodium carbonate, was incorporated. Combined effects of different levels of RC and AS on ameliorating acidic soil from a tea garden were investigated. Laboratory incubations showed that combined use of AS and RC was an effective method to reduce soil exchangeable acidity and Al saturation and increase base saturation, but not necessarily for soil pH adjustment. The release of alkalinity from the combined amendments and the mineralization of organic nitrogen increased soil pH initially, but then soil pH decreased due to nitrifications. Various degrees of nitrification were correlated with the interaction of different Ca levels, pH and N contents. When RC was applied at low levels, high Ca levels from AS repressed soil nitrification, resulting in smaller pH fluctuations. In contrast, high AS stimulated soil nitrification, when RC was applied at high levels, and resulted in a large pH decrease. Based on the optimum pH for tea production and quality, high ratios of AS to RC were indicated for soil acidity amelioration, and 8.0 g kg-1 and less than 2.5 g kg-1 were indicated for AS and RC, respectively. Further, field studies are needed to investigate the variables of combined amendments.  相似文献   

15.
    
《Soil Use and Management》2018,34(3):343-353
Acid soil amelioration was measured annually over an 11 year experiment. Lime, and superphosphate were surface‐applied under combinations of three rates of lime, viz. nil, lime to raise pHC a of 0–10 cm to 5.0 (low rate) and 5.5 (high rate) respectively, two rates of superphosphate (125 kg/ha every 2 to 3 yr, 250 kg/ha/yr) and two sheep stocking rates. Soils were sampled at 0–2.5, 2.5–5, 5–7.5, 7.5–10, 10–15 and 15–20 cm. Soil pH stratification developed after lime application. By 11 yr lime had not raised pHC a to either 5.0 or 5.5 in the 5–10 cm profile. However, pHC a >5.0 or >5.5 were observed in the 0–5 cm profile. Under high P, low lime application, soil pHC a was higher in the 0–2.5 cm profile at low stocking rate. Effects of applied lime on pHC a declined with time and depth under low lime and the relationship with Alex which increased as pHC a declined, was modelled. A rarely reported relationship showed that as soil C increased the apparent solubility of Al decreased. At the lowest pHC a considered, there was a strong negative association between Alex and total C, becoming weaker with positive pHC a increments. Higher P rates increased pHC a under low lime contrasting with lesser effects on pHC a under low P at the same lime rate. Slow and limited lime movement means that farmers growing acid sensitive plants must apply lime early enough and at rates and frequencies sufficient to ensure downward movement.  相似文献   

16.
石灰与生物炭配施对不同浓度镉污染土壤修复   总被引:3,自引:2,他引:3  
通过室内培养试验,研究生物炭与石灰不同用量配施对镉污染土壤pH和镉赋存形态的影响。结果表明,生物炭与石灰配施能够明显提高污染土壤pH,且随着施入量的增加pH提升效果显著。随着石灰和生物炭配施用量的增加,土壤交换态镉降低比例逐渐增大。培养60天后,镉污染浓度为5mg/kg的土壤交换态镉含量同对照处理相比依次减少36.80%,49.12%和57.38%;而土壤镉污染浓度为20mg/kg的土壤交换态镉含量较对照相比分别降低29.27%,31.68%和39.03%。2个浓度中土壤碳酸盐结合态镉、铁锰氧化物结合态镉和有机结合态镉均有所增加,残渣态镉虽有所增加,但在不同浓度之间存在差异。总体来看,本试验用量条件下,石灰和生物炭配施对污染浓度为5mg/kg的土壤镉钝化效果优于污染浓度为20mg/kg的土壤。  相似文献   

17.
    
Liming is necessary for good nutrient availability and crop growth. Lime use in Ireland is now the lowest in half a century. A recent study shows that grassland mineral soils in Ireland has a mean pH of 5.4 and mean lime requirement (LR) of 9.3 t/ha ground limestone. There have been a number of studies in the USA to re-evaluate LR, but little activity in the European Union (EU) in recent years. The primary aim of our research was to compare five methods for estimating LR, which included the Shoemaker–McLean–Pratt (SMP) buffer method currently used in Ireland (IRL), the Sikora buffer method used at the University of Kentucky (UKY), Ca(OH)2 titration used at University of Georgia (UGA), the modified Mehlich buffer method used at Penn State University (PSU) and the UK RothLime model, using 57 representative grassland mineral soils from Ireland with a pH range from 4.8 to 6.6. The secondary aim was to explore an alternative to the SMP buffer that does not involve the use of toxic chemicals. The results show good agreement between the pH measured by the Irish and three US laboratories and reasonably good agreement in LR estimated by five methods. The main conclusions are: (1) a significant proportion of grassland on mineral soils in Ireland would benefit from liming to increase soil pH, (2) on average, LRs as recommended in Ireland are higher than those advised elsewhere , ( 3) the target pH in Ireland is high compared with that in other countries and should be reduced from pH 6.5 to 6.2, (4) the SMP buffer method should be replaced by a suitable alternative and, in principle, any of the four methods studied would be suitable, (5) to find the most suitable alternative for accurate LR advice it would be necessary to compare the different methods to the actual LR from incubation of representative soils with calcium hydroxide.  相似文献   

18.
Lime is used as a soil amendment to achieve the optimum pH suitable for good crop growth. Buffer pH (BpH) measurements have been calibrated to relate the linear drop in pH of the soil–buffer system to the amount of lime needed to neutralize soil to a certain pH level. The amount of lime required to neutralize soil acidity, called the lime requirement (LR), is obtained from soil–limestone (CaCO3) incubations. In this study, 13 soils from Ohio were incubated with CaCO3 for a period of 1 month to determine the LR to achieve different target pHs. This LR was then regressed with the different BpHs of four buffer solutions [(1) Shoemaker, McLean, and Pratt (SMP), (2) Sikora, (3) Mehlich, and (4) modified Mehlich] to obtain calibration equations. The Sikora and modified Mehlich buffers are variations of the SMP and Mehlich buffers, respectively, but they are designed to promote buffering without use of any hazardous constituents [i.e., chromium(VI) in SMP buffer and barium in the Mehlich buffer]. This study was done to verify the applicability of the buffers that do not contain any hazardous constituents and to calibrate these buffers for predicting lime requirement needs for Ohio soils. Comparing the calibrated equations of the SMP and Sikora buffers with CaCO3‐incubation LR recommendations revealed that the SMP and Sikora buffer solutions were not significantly different, and a single calibrated equation can be used for these two buffers to determine LR predictions in Ohio. The Mehlich and modified Mehlich calibration equations differed significantly from the SMP calibration equations and were not as highly correlated with CaCO3‐incubation LR recommendations using a linear model (r2 < 0.54). Thus, it is possible to use the Mehlich and modified Mehlich for determining lime recommendations, but they require a correction factor such as inclusion of the initial soil pH to improve the precision of the LR prediction. We also found the various buffers tested in this study were better able to predict LR rates for greater LR soils than low LR soils. In conclusion, successful laboratory tests to predict LR for Ohio soils are possible using alternative buffers that do not contain hazardous constituents.  相似文献   

19.
以K326烤烟品种为材料,在土培条件下研究了石灰和聚丙烯酰胺(PAM)处理的酸性土壤对烤烟生长及生理特性的影响。结果表明:石灰和PAM处理的酸性土壤,在PAM含量低时(0.1%),烤烟生物量显著提高,光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)增高,根系活力增大,相对电导率和丙二醛(MDA)含量下降,但随PAM用量的增大,烤烟生长减缓。在酸性土壤中,烤烟叶片和根系的超氧化物歧化酶(SOD)、过氧化物(POD)、过氧化氢酶(CAT)活性最低;在加入石灰的土壤中,烤烟叶片和根系的三种酶活性升高,同时加入石灰和PAM的土壤,在PAM含量低时,三种酶活性下降,但随着PAM含量增高(0.2%),酶活性又开始上升。石灰和PAM处理的酸性土壤,土壤交换性H、交换性Al含量的改变是由石灰引起的,PAM的影响不显著;相反,石灰对土壤含水量、水势、比重、孔隙度的影响不显著,而PAM影响显著,低PAM含量时(0.1%),土壤含水量增加,但随PAM用量加大,土壤比重、孔隙度进一步增大,土壤含水量则逐渐降低,土壤水势显著下降。因此推测,石灰显著降低了酸性土壤交换性H、交换性Al含量,适量PAM提高了土壤孔隙度,增加土壤含水量,从而促进烤烟生长;但是当PAM过量,会导致土壤水势下降,烤烟吸水困难,其生长减缓。  相似文献   

20.
采用室内培养试验和田间试验相结合的方法,研究土壤酸度对石灰施用量的动态响应规律,以及石灰施用量对烤烟农艺性状及经济性状的影响。结果表明:酸化黄壤在室内培养环境下对石灰的响应可分为3个阶段,即快速变化阶段,土壤pH值急剧升高,持续时间较短;缓慢变化阶段,土壤pH值的变化速度以及持续时间受石灰施用量的影响,石灰施用量低于3.00 t/hm2时该阶段持续时间约60 d,石灰施用量高于4.50 t/hm2时该阶段持续时间为15~30 d;稳定阶段,石灰施用量与土壤pH值间呈显著的非线性正相关关系。田间试验研究表明,土壤pH值随石灰施用量的变化规律基本与室内试验研究结果相吻合。综合石灰施用量对烤烟影响发现,在pH值为5.0左右的酸性黄壤整治烟田中,推荐提前移栽期60 d向烟田垄体中施入1.50 t/hm2的石灰以矫正土壤酸度,促进烤烟生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号