首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Al tolerance of horse bean, yellow lupin, barley and rye. II. Mineral element concentrations in shoots and roots as affected by Al supply Inhibition of seminal root elongation by Al in solution culture gave the following ranking for Al tolerance: yellow lupin (Lupinus luteus ?Schwako”?) ? rye (Secale cereale ?Kustro)”? « horse bean (Vicia faba ?Herz Freya”?) > barley (Hordeum vulgare ?Roland”?). Exclusion from uptake by inactivation of Al outside the root was not responsible for the higher Al tolerance of lupin and rye, because comparable inhibition of root elongation occured at much higher Al concentration of the root and the root tips (5 mm) compared to barley and horse bean. The plant species differed considerable in nutrient concentrations of the roots: higher Ca concentrations in horse bean and rye, higher Mg concentrations in rye and lupin and higher P concentration in lupin. Al supply reduced Ca and Mg concentrations (Ca > Mg) in shoots and roots of all species. P concentrations were hardly affected. The nutrient concentrations in the root tips did not indicate that induction of nutrient deficiency was responsible for the effect of Al on root elongation and Al sensitivity of barley and horse bean. The considerable differences in Ca, Mg and P concentrations of the roots between the Al-tolerant plant species rye and lupin do not suggest a common physiological mechanism responsible for Al tolerance.  相似文献   

2.
Dry matter (DM) partitioning into root, leaf, stem, shoot dry weight plant?1 response in four cool season C3-cereals viz. wheat (Triticum aestivum L.), rye (Secale cereale L.), barley (Hordeum vulgare L.) and oats (Avena sativa L.) was investigated at 30, 60 and 90 days after emergence (DAE) under eight nitrogen, phosphorus and potassium (NPK) sources: S1 = 20-20-20, S2 = 20-27-5, S3 = 7-22-8, S4 = 10-10-10-20S, S5 = 11-15-11, S6 = 31-11-11, S7 = 24-8-16, and S8 = 19-6-12 in pot experiment at Dryland Agriculture Institute, West Texas A&;M University, Canyon, Texas, USA during winter 2009-10. A considerable variation in DM partitioning into various plant parts was observed in the four crop species at different growth stages and NPK source. At 30 DAE, 27% of the total DM per plant (TDMPP) was partitioned into roots and 73% into shoots (19% stems + 54% leaf). Only16 % of the TDMPP was partitioned into roots and 84% into shoots (18 % stem + 66 % leaf) at 60 DAE. At 90 DAE, 29% of TDMPP was partitioned into roots and 71 % into shoots (33 % stems + 38 % leaf) at 90 DAE. Percent DM partitioning into stems ranked first (33%) at 90 DAE > at 30 DAE (19%) > at 60 DAE (18 %). With advancement in crops age, DM partitioning into various crop parts increased. The root DM plant?1 (RDMPP) increased from 11.5–722 mg plant?1; stem DM plant?1 (STDMPP) from 8.3–889.0 mg plant?1; leaf DM plant?1 (LDMPP) from 23.1–1031.0 mg plant?1; shoot DM plant?1 (SHDMPP) from 31.3–1921 mg plant?1, and TDMPP increased from 42.9–2693.0 mg plant?1 at 30 and 90 DAE, respectively. Because of the higher N contents in S7 (24:8:16) and S6 (31:11:11) reduced the DM partitioning into various plants parts as well as TDMPP at all three growth stages. The adverse effects of S6 and S7 on DM partitioning was more on oats > rye > wheat > barley. The S4 with 10:10:10 (NPK) and :20S was not toxic at 30 DAE, but at 60 and 90 DAE it became toxic that adversely affected the DM partitioning as well as TDMPP probably may be due its high sulfur (20%) content which lacking in other NPK sources. The DM partitioning to various parts of barley and wheat was more than oats and rye at different growth stages (barley > wheat > rye > oats). Since the DM portioning values were determined on the average of five plants in pot experiment under organic soil at field capacity; in case of field experiments more research is needed on various crop species/varieties under different environmental conditions particularly under moisture stress condition.  相似文献   

3.
We have examined the influence of host plant genotype and geographical characters on the vertical distribution pattern of arbuscular mycorrhiza associated with Avena. The degree of colonization of oat roots at different soil depths (0–10, 10–20, 20–30, 30–40, 40–50 cm) was compared among three habitats from lower to higher altitude and six different cultivars in one specific habitat. Altitude had no impact on the percentage of root length colonized by mycorrhiza. However, oats growing at the higher altitudes formed more abundant arbuscules and vesicles within their roots. Plant genotype showed a significant influence on the percentage of root length colonized and abundance of arbuscules and vesicles, and there was much greater colonization of naked oat than of husk oat (common oat). The vertical distribution pattern of mycorrhizal root length was similar in terms of geographical and genotypic aspects, with the most extensive root colonization occurring in the topsoil and decreasing with increasing soil depth. However, the percentage of root length colonized by arbuscular mycorrhizal fungi (AMF) remained at about 20% colonization at a depth of 40–50 cm. Intraradical structures also showed a decreasing trend with increasing soil depth. The results suggest that an AMF “gene bank” may persist in the subsoil, and this may facilitate the ecological restoration of degraded agricultural areas.  相似文献   

4.
Rhizosphere bacteria may enhance plant uptake of Fe by producing siderophores that chelate sparingly soluble Fe3+ in calcareous soils. To evaluate the extent to which plants benefit from colonization of the roots by prolific siderophore-producing bacteria, we inoculated two oat cultivars with six strains of bacteria that produced high concentrations of siderophores under Felimiting conditions in vitro. Oat cv Coker 227, an Fe-efficient cultivar, which produces the phytosiderophore avenic acid, and cv TAM 0-312, and Fe-inefficient cultivar, which does not produce the phytosiderophore, were grown in a calcareous soil (Weswood silt loam) on a light bench in the laboratory. Half of the plants were fertilized with a nutrient solution containing 5 mM Fe and half with a nutrient solution containing no Fe. After 6 weeks of growth, we compared colonization of the roots by the inoculant bacteria and the dry weight and Fe content of roots and shoots. Three species of Pseudomonas colonized the roots of both oat cultivars in high numbers (106 cells g-1 root dry weight), whereas the remaining bacteria colonized the roots in substantially lower numbers (104 cells g-1 root dry weight). Plants fertilized with 5 mM Fe were larger and supported greater numbers or rhizosphere bacteria per gram of root than plants not supplied with Fe. Comparisons of the Fe content and dry weight of roots and shoots revealed few significant differences between inoculated and uninoculated plants, or among the plants inoculated with the different strains of siderophore-producing bacteria. The differences that were observed revealed no consistent response to inoculation. We conclude that inoculation of the roots of the two oat cultivars with bacteria that produce high concentrations of siderophores in response to an Fe deficiency had little or no effect on Fe acquisition by the plants.  相似文献   

5.
Genotypic variation and mycorrhiza play an important role in plant uptake of phosphorus (P). A pot experiment was conducted with three cereals, wheat (Triticum aestivum L. cv. PBW-34), rye (Secale cereale L. cv. R-308), and triticale (Triticale octoploide L. cv. DT-46), a hybrid of wheat and rye, to examine the genetic variation in the degree of arbuscular-mycorrhizal (AM) infection and its inheritability from parents (wheat and rye) to their progeny (triticale). The soil used for pot culture was low in available P (7.8 mg P kg?1soil). Inoculation with AM fungi showed a significant increase in extent of root colonization for all three cereals (average 70%) compared with their performance without AM (average 19.1%). However, among the three cereals, this increase was significantly greater in rye than in the other two crops, while wheat and triticale did not differ significantly. Mycorrhizal infection resulted in 1.6, 1.7, and 1.8-fold increases in shoot, root, and total plant dry matter, respectively, compared with the un-inoculated treatment. Among the three cereals, rye recorded maximum shoot, root, and total plant dry mass and P content with AM inoculation. The P uptake by wheat, rye, and triticale was 10%, 64%, and 35%, respectively, higher with rather than without mycorrhizal infection. Rye was most responsive to AM inoculation, with mycorrhizal dependency of 193%; here again, triticale followed wheat, with similar mycorrhizal dependency. Rye showed an increase in P utilization efficiency (PUE) without AM inoculation while the PUE of triticale was intermediate between wheat and rye. High efficiency of AM symbiosis in terms of P uptake exists in rye and most of these traits in triticale seem to be inherited from wheat rather than rye.  相似文献   

6.
AI tolerance of horse bean, yellow lupin, barley and rye. I. Shoot and root growth as affected by Al supply In solution culture considerable differences existed in Al tolerance between the plant species horse bean (Vicia faba ?Herz Freya”?), yellow lupin (Lupinus luteus ?Schwako”?), barley (Hordeum vulgare ?Roland”?) and rye (Secale cereale ?Kustro”?): compared to barley (0.05 μg Al l?1 = 1.85 μM Al) an 80 fold higher concentration of Al was necessary for lupin and rye for comparable growth depression and for horse bean a 5 times higher Al concentration. Injury by Al after 7 days of Al treatment was most effectively and sensitively characterized by an inhibition of elongation of seminal and especially of lateral roots. Numbers of laterals were also reduced. Dry matter production of roots and shoots was less affected by Al. In lupin, low Al supply even slightly increased the dry weight. The high Al tolerance of rye and yellow lupin in solution culture during the seedling stage is in good agreement with their adaptation to acid mineral soils.  相似文献   

7.
The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO3–N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO3–N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.  相似文献   

8.
 Arbuscular mycorrhizal (AM) root colonization was studied in a long-term field trial in which four farming systems currently in use in Switzerland were continuously applied to a randomized set of plots at a single field site from 1978 till 1993. There were two low-input farming systems (organic and bio-dynamic) and two high-input (conventional) farming systems (according to Swiss guidelines of integrated plant production with and without farmyard manure). The systems had an identical 7-year crop rotation and tillage scheme and differed essentially only in the amount and type of fertilizer supplied and in plant protection management. The percentage of root colonization by AM fungi was determined in field samples 2–3 times over the growing season in crops in the rotation, namely in winter wheat (Triticum aestivum L. cv. Sardona), vetch-rye and grass-clover. We found the percentage of root length colonized by AM fungi to be 30–60% higher (P≤0.05) in the plants grown in soils from the low-input farming systems than in those grown in conventionally farmed soils. Approximately 50% of the variation of AM root colonization was explained by chemical properties of the soils (pH, soluble P and K, exchangeable Mg), the effect of soluble soil P being most pronounced. The potential of the field soils from the differently managed plots to cause symbiosis with AM fungi was tested in a glasshouse experiment, using wheat as a host plant. Soils from the low-input farming systems had a greatly enhanced capacity to initiate AM symbiosis. The relative differences in this capacity remained similar when propagules of the AM fungus Glomus mosseae were experimentally added to the soils, although overall root colonization by AM fungi was 2.8 times higher. Received: 27 August 1999  相似文献   

9.
Emission of N2O from rye grass (Lolium perenne L.)   总被引:6,自引:0,他引:6  
 The possibility of an additional N2O emission pathway via plants was investigated in a soil-rye-grass (Lolium perenne L.) system. The N2O emission rate of the system varied between 0.8 and 13.3 mg N2O-N m–2 day–1. Comparing the N2O emission rate of the system before and immediately after cutting the rye grass allowed us to calculate the contribution of the rye grass to the N2O emission from the soil-plant system. It was found that, depending on the type of fertilization and the growing period of the plants, the N2O released from the rye grass varied between 0 and 2.8 mg N2O-N m–2 day–1. N 2 O emission mediated by the rye grass increased towards the end of the growing period. An exponential correlation [R2=0.93, y=(8×10–6x 2 )–(2×10–5x)+0.21] was observed between the N2O emission (y) from the rye grass and its NO3 –N content (x). However, it was not clear whether N2O was produced by the plants themselves or whether the rye grass served as a conduit for N2O produced in the soil. Received: 18 March 1998  相似文献   

10.
Abstract

Azotobacter chroococcum strains E12, HT57 were genetically tagged with lac Z, gfp to study the colonization behaviour on wheat (Triticum aestivum) and cotton (Gossypium sp.) in soil under controlled conditions. 103 – 104 cfu g?1 soil of HT57 lac Z were found to colonize roots of both cotton and wheat crops whereas 1.7 × 104 – 7.2 × 104 cfu g?1 soil of E12 gfp was colonizing wheat roots and 1.6 × 104 – 9.3 × 104 cfu g?1 soil of E12 gfp colonized cotton roots respectively. Tagged strains colonized mostly on root tips compared to basal roots in both the crops.  相似文献   

11.
 In long-term field experiments on sandy loam and loamy sand soils, the influence of conservation and conventional tillage on soil and rhizosphere microorganisms was studied. Conservation tillage stimulated rhizosphere bacteria on winter wheat, winter barley, winter rye and maize in different soil layers. Particularly the populations of Agrobacterium spp. and Pseudomonas spp. were increased. On the sandy loam, N2 fixation and nodulation of pea plants were significantly increased. No influence of different soil tillage was determined on the colonization of the rhizosphere by mycorrhiza and saprophytic fungi. Stubble residues infected with Gaeumanomyces graminis were infectious for a longer time on the soil surface than after incorporation into the soil. Received: 10 March 1998  相似文献   

12.
Summary Colonization patterns of Pseudomonas fluorescens and Bacillus subtilis on roots of wheat seedlings growing on water agar were studied qualitatively by replica printing and quantitatively by the plate count method. The results indicated a stronger colonization potential for P. fluorescens (up to 107 cfu/cm root) than for B. subtilis (up to 105 cfu/cm root). Although the numbers of both species were lower when inoculated together, the observed colonization patterns on the roots were comparable to those found with single inoculations. For none of these bacteria was active migration along the root surface in any direction observed, indicating that distal positions are reached mainly by a passive displacement on the root tip and elongating cells. Ecological implications of the observed phenomena are discussed.  相似文献   

13.
 The unintentional introduction of a new earthworm species (Aporrectodea nocturna) into a Swiss pre-alpine meadow resulted in a great increase in earthworm density in the newly colonized area (386 m–2) compared with the density observed in the natural area (273 m–2) where an earthworm community was already present. To investigate the impact of this introduction on the burrow systems, eight soil cores (length 25 cm, diameter 16 cm) were taken (four in the colonized area and four in the natural area) and analysed with computer-assisted X-ray tomography. The resulting images were processed to obtain the 3D-skeleton reconstructions of the earthworm burrow systems. Due to high variability in these burrow systems, only slight differences were observed between the two areas. The total burrow length and the mean burrow lengths tended to be greater in the colonized area. Moreover, the distribution of pore numbers with depth showed different patterns with a maximum for depths between 10 cm and 15 cm in the colonized area and a maximum for depths between 20 cm and 25 cm in the natural area. These differences may have been related to: (1) the particular behaviour of A. nocturna, which was observed to cast at the surface in this site, and (2) the predominance of juvenile earthworms around the colonization front. These differences were sufficient to create significant effects on the continuity of the burrow systems (assessed by the number of different pathways between virtual horizontal planes) for the two areas. The colonized area was characterized by a greater pore continuity, which could have resulted in enhanced transfer properties. Received: 2 July 1999  相似文献   

14.
Maize roots are colonized by arbuscular mycorrhizal fungi, but less mycorrhizal symbiosis is expected as the plant-available phosphorus (P) concentration of soil increases, based on greenhouse and growth bench experiments. The objective of this study was to evaluate maize root colonization by arbuscular mycorrhizal fungi in a sandy loam soil with a gradient of plant-available P concentrations resulting from P fertilizer inputs. The field experiment received inorganic and organic P fertilizers for 3 years, and this created a 20-fold difference in the plant-available P concentration, from 12 to 204 mg Mehlich-3 extractable P kg−1. The proportion of maize roots colonized with arbuscular mycorrhizal fungi increased from 26 ± 2% during vegetative growth (V8 and VT growth stages) to 46 ± 2% in the reproductive R2 and R6 stages. The P fertilizer input did not affect maize root colonization by arbuscular mycorrhizal fungi. More arbuscular mycorrhizal fungi colonization of maize roots occurred in soil with increasing plant-available P concentrations (r = .12, = .05, n = 237), and this was associated with greater P uptake in the maize shoots (r = .53, < .001, n = 240). We conclude that the root-mycorrhizal symbiosis was more strongly related to maize growth than the plant-available P concentration under field conditions.  相似文献   

15.
 The effect of inoculating wheat (Triticum aestivum L.) with the PO4 3–-solubilizing microorganisms (PSM) Bacillus circulans and Cladosporium herbarum and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus sp. 88 with or without Mussoorie rock phosphate (MRP) amendment in a nutrient-deficient natural sandy soil was studied. In the sandy soil of low fertility root colonization by VAM fungi was low. Inoculation with Glomus sp. 88 improved root colonization. At maturity, grain and straw yields as well as N and P uptake improved significantly following inoculation with PSM or the VAM fungus. These increases were higher on combined inoculation of PSM and the VAM fungus with MRP amendment. In general, a larger population of PSM was maintained in the rhizosphere of wheat in treatments with VAM fungal inoculation and MRP amendment. The results suggest that combined inoculation with PSM and a VAM fungus along with MRP amendment can improve crop yields in nutrient-deficient soils. Received: 4 September 1997  相似文献   

16.
Summary Wheat seedlings were inoculated with rhizosphere nitrogen-fixing bacteria and grown gnotobiotically for 15 days. The growth medium consisted of semisolid agar with or without plant nutrients. The bacteria, isolated from roots of field-grown wheat, were three unidentified Gram-negative rods (A1, A2, E1), one Enterobacter agglomerans (C1) and two Bacillus polymyxa (B1, B2). A strain of Azospirillum brasilense (USA 10) was included for comparison.Nitrogenase activity (acetylene reduction activity, ARA) was tested on intact plants after 8 and 15 days of growth. In semisolid agar without plant nutrients, five isolates showed ARA of 0.01–0.9 nmol C2H4 plant–1 h–1, while the two strains of B. polymyxa had higher ARA of 3.3–10.6 nmol C2H4 plant–1 h–1.Plant development was not affected by inoculation with bacteria, except that inoculation with B. polymyxa resulted in shorter shoots and lower root weight.Transmission electronmicroscopy of roots revealed different degrees of infection. A. brasilense, A1 and A2, occurred mainly in the mucilage on the root surface and between outer epidermal cells (low infectivity). B. polymyxa strains and E1 were found in and between epidermal cells (intermediate infectivity) while E. agglomerans invaded the cortex and was occasionally found within the stele (high infectivity).  相似文献   

17.
Abstract

Effluent from the baker's yeast industry was experimented on as a culture medium for the growth and biomass production of diazotrophs. The effluent supported good growth of Azotobacter chroococcum, Enterobacter agglomerans and Klebsiella pneuomoniae, Azospirillum brasilense, Bacillus polymyxa and Pseudomonas putida and strongly proposed for biofertilizers production of associative diazotrophs. Slurry preparations containing natural polymers, e.g. Arabic gum (5%), pero-dextrin (20%), starch granules (10%) or gelatine (20%) were impregnated with cells of tested diazotrophs. With storage, entrapped cells of B. polymyxa were viable up to 160 days, while gradual decreases in Azospirillum numbers were recorded. Pero-dextrin, a by-product of the starch industry, was selected as the appropriate biocarrier accommodating diazotroph cells and maintaining prolonged survival rates and nitrogenase activity. Cell cultures of A. brasilense, A. chroococcum, B. polymyxa, E. agglomerans and P. putida were equally mixed and entrapped into pero-dextrin slurry biofertilizer formulation named as “BIOGRAMINA”. Tested diazotrophs successfully survived (ca. 108 cfu ml?1) in such formulation up to 6 months at both ambient and cold temperatures. The response of wheat and barley to “BIOGRAMINA” in the presence or absence of N fertilizers was evaluated in greenhouse and field trials. Highest total biological yields were recorded for inoculated plants simultaneously supplemented with rational N fertilizer dose.  相似文献   

18.
Twelve Azospirillum brasilense strains isolated from wheat (Triticum aestivum L.) roots were compared for root colonization, growth stimulation, and nitrogen (N) supply to young wheat plants cv. Klein Chamaco grown in sterile nutrient solutions without N. All the strains inoculated colonized both the root surface and interior, and most strains stimulated root and shoot growth, although the degree of stimulation was different for the different strains. Some strains increased the total N content of roots and tops at the end of the experiment, in one case up to 80% of the uninoculated plants, while others produced no effect on N content. No correlation could be found between growth stimulation or the amount of N supplied to the plant with the degree of root colonization. When the most efficient strain for N fixation was inoculated to different wheat cultivars, it stimulated growth and supplied N to the five cultivars tested, although the degree of root colonization, growth stimulation and N supply showed differences among the cultivars. Our results suggest that there exists the potential of A. brasilense to supply N to wheat plants in considerable amounts, although an adequate strain are still to be identified.  相似文献   

19.
 The effects of inoculation with Azospirillum brasilense Cd on root morphology and growth of common bean (Phaseolus vulgaris L.) were studied under different growth systems and water regimes. The root systems were evaluated by image analysis. In a PVC-tube growth system, inoculation with A. brasilense at 107 colony forming units (CFU) ml–1 increased root length, root projection area, specific root length (m g–1) and specific root area (cm2 g–1), as compared with non-inoculated controls, resulting in root systems with longer and thinner roots. Water stress induced similar root responses to those observed after inoculation with A. brasilense. No increase in plant biomass was observed in inoculated plants, suggesting that under the tested growth conditions, a relatively larger amount of resources is required for the maintenance of the thinner roots. In water-stressed potted plants, the effect of A. brasilense on tap root length was inoculum-concentration dependent. At 107 CFU ml–1 this effect was significant as compared to non-inoculated controls. In a pouch system without water stress, inoculation with A. brasilense at a concentration of 105–107 CFU ml–1 2 days after germination resulted initially (2 days after inoculation) in an increase in root length (95%) and root fresh weight (66%), but reduced root diameter (20%), compared to controls. At this early stage of growth the distribution of root length among the different root diameter classes changed: the thinner-root classes had the largest proportion of longer roots. Received: 3 January 2000  相似文献   

20.
Abstract

This study was conducted to evaluate the effect of vesicular‐arbuscular mycorrhizal (VAM) fungus Glomus etunicatum on growth, absorption, and distribution of calcium (Ca), magnesium (Mg), phosphorus (P), and aluminum (Al) in one Al‐tolerant and one Al‐sensitive barley cultivar. The plants were grown in sand daily irrigated with nutrient solution containing 0 or 600 μM Al at pH 4.8. Significant interaction (P=0.05) among variety, mycorrhiza, and aluminum (VxMxAl) were noted for both shoot and root dry matter (DM); shoot concentration and content of Al, P, Ca, and Mg; root concentration of Al, P, and Mg; and root content of Al, P, Ca, and Mg. With VAM inoculation: i) root colonization degree was about 50% in all treatment, ii) shoot DM yield increased between 30 and 70%, iii) Al concentration and content decrease down to a half both in shoots and roots of sensitive barley, iv) Ca concentration in shoots of sensitive barley showed a high increase at 600 μM Al, and v) P concentration and content in shoots of both varieties increased significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号