首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
基于PLSR方法的马铃薯叶片氮素含量机载高光谱遥感反演   总被引:1,自引:0,他引:1  
作物氮素状况是评价土壤肥力和作物长势的重要指标,叶片氮素状况的实时无损估测对合理氮素管理、提高产量和改善品质具有重要意义。本文选择不同氮处理条件下的马铃薯作为研究对象,利用AISAEagle机载高光谱成像系统获取试验区的高光谱图像,在对图像进行精确的几何、辐射校正和反射光谱重建基础上,提取每个处理马铃薯冠层的高光谱数据。选取波长430-910nm范围内原始光谱R及其D1(R)、D2(R)、Log(1/R)、DLog(1/R)、D2Log(1/R)5种变式数据,根据田间同步采样叶片的氮素含量数据,利用偏最小二乘回归法(PLSR)构建了马铃薯叶片氮素含量的光谱预测模型,并进行全氮含量填图。结果表明:基于一阶导数光谱D1(R)的偏最小二乘回归模型的效果最优,决定系数(R2)和校正均方差(RMSEC)分别为0.82、0.38%。将该最优估算模型应用到整个高光谱图像上,得到试验区马铃薯叶片全氮分布图,图像上氮的值域为3.35%~5.95%,与地面实测结果3.59%~5.89%基本一致,且叶片全氮值的大小分布与马铃薯长势分布一致。研究结果可为研制和开发基于高光谱成像技术的马铃薯叶片氮素预测方法提供理论和技术支持。  相似文献   

2.
基于无人机多光谱影像的夏玉米叶片氮含量遥感估测   总被引:6,自引:6,他引:0  
利用无人机平台搭载多光谱相机组成的遥感监测系统在农业上已取得了一些成果,但利用无人机多光谱影像开展作物氮素估测研究少有尝试。基于此,该文利用国家精准农业基地2017年夏玉米3个关键生育期无人机多光谱影像和田间实测叶片氮含量数据,开展夏玉米叶片氮素含量的无人机遥感估测研究。对该研究选用的15个光谱变量,通过相关性分析解析光谱变量与LNC的相关关系,筛选出对玉米叶片氮素含量敏感的光谱变量;应用后向逐步回归方法分析不同变量指数下估测精度变化,最终确定不同生育期夏玉米LNC估测的光谱变量,实现对夏玉米叶片氮含量的较高精度监测。研究发现:1)在3个生育时期,GRE和GNDVI与LNC都有很强的相关性,表明绿波段可以很好地进行夏玉米生物理化参数的反演;2)在喇叭口期和灌浆期,OSAVI、SAVI与LNC具有高度相关性,证明在夏玉米生长前期和后期选择控制土壤因素的光谱变量可以提高对氮素估测的能力。在筛选最优光谱变量建模过程中发现,喇叭口期选取5个光谱变量(GNDVI、GRE、OSAVI、REG、SAVI)建模效果最好,估测模型的R~2、RMSE和nRMSE分别为0.63、27.63%、11.62%;抽雄吐丝期选取6个光谱变量(REG、GRE、GNDVI、MNLI、RED、NDVI)建模效果最好,估测模型的R~2、RMSE和n RMSE分别为0.64、20.50%、7.80%;灌浆期选取5个光谱变量(GRE、GNDVI、RED、NDVI、OSAVI)建模效果最好,估测模型的R~2、RMSE和n RMSE分别为0.56、31.12%、12.71%;在不同生育期选取最优光谱变量进行夏玉米LNC估测具有很好的效果。应用无人机多光谱遥感影像数据可以很好地监测田块尺度夏玉米LNC的空间分布,可为玉米田间氮素精准管理提供空间决策服务信息支持。  相似文献   

3.
基于高光谱的寒地水稻叶片氮素含量预测   总被引:2,自引:2,他引:2  
为快速、无损和准确地诊断水稻营养状况,开展了基于高光谱成像技术的寒地水稻叶片氮素含量预测研究。以不同施氮水平下的水稻叶片为研究对象,利用高光谱成像技术,分析拔节期水稻叶片光谱,采用全波段高光谱数据、连续投影算法及分段主成分分析(segmented principal components analysis,SPCA)与相关分析(correlation analysis,CA)相结合的方法建立多种回归分析模型,并对模型进行检验和筛选。结果表明:随着施氮水平提高,水稻叶片反射率在可见光区域降低,在近红外区域升高。在校正集决定系数上,基于多元逐步回归分析的全波段模型较好,校正集决定系数为0.821,校正集均方根误差RMSEC=0.079;在预测集决定系数上,基于SPCA-CA结合多元回归分析的多变量单波段指数、差值指数、双差值指数模型较好,预测集决定系数为0.869,预测集均方根误差RMSEP=0.085。该研究结果为快速检测水稻叶片氮素含量及水稻生长期间精确施肥管理提供了参考。  相似文献   

4.
通过不同氮素水平的水稻田间试验,在分析测定了水稻叶片叶绿素、氮素等农学参数后,采用傅立叶中红外光谱仪测定了水稻孕穗期叶片干样的透射光谱,利用协同偏最小二乘算法(siPLS)分析选取了傅立叶变换红外光谱估测水稻氮素含量的敏感波段及其组合。结果表明,其最优主成分数是9个,最佳估测建模的波段组合分别为1350.89~1586.57, 1587.53~1822.40 和 3709.41~3943.72 cm-1;建立的水稻氮素预测模型的精度较高,交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.1538和0.1933,预测值与化学分析获得的叶片总氮浓度之间的交互相关系数和独立检验相关系数分别为0.9393和0.6649,高于中红外光谱指数NFS和NFSA的预测精度。说明利用傅立叶红外光谱作为水稻氮含量的诊断技术是可能的,值得进一步验证和完善。  相似文献   

5.
水稻叶片氮素及籽粒蛋白质含量的高光谱估测模型   总被引:4,自引:0,他引:4  
研究水稻叶片氮素和籽粒蛋白质含量的高光谱快速、无损监测方法,对于水稻营养诊断、籽粒品质监测及氮肥高效利用具有重要意义。本文通过水稻盆栽试验,测定水稻叶片氮素、籽粒蛋白质含量和冠层光谱,采用不同的光谱建模方法来提高氮素、籽粒蛋白质含量的估测精度。先用主成分分析(PCA)方法进行特征波段的提取,再用多元线性回归(MLR)、人工神经网络(ANN)和偏最小二乘回归(PLSR)进行建模。结果表明,水稻叶片氮素和籽粒蛋白质含量与特征光谱存在很好的模型关系,3种模型预测的决定系数(R2p)均在0.847以上,并以PLSR模型的预测效果为最好,可以实现水稻氮素营养和籽粒品质的高光谱估测。  相似文献   

6.
基于高光谱的冬小麦氮素营养指数估测   总被引:14,自引:7,他引:7  
为了准确定量诊断氮素状况,为施肥和产量、品质的估测提供参考,该文通过设置不同氮素水平和品种类型的冬小麦田间试验,分析孕穗至灌浆初期不同光谱参数在小麦氮素营养状况监测上的差异,筛选叶片氮素含量和冠层氮素密度反演效果较好的参数,建立其与氮营养指数(NNI,nitrogen nutrition index)的经验模型。研究表明,线性内插法红边位置(REPLI)、修正红边单比指数(mSR705)、比值指数(RI-1dB)、简单比值色素指数(SRPI)、红边指数(VOG)等光谱参数与氮素营养指标具有良好的相关性(r0.85),且不受生育期影响,可用来反演评价冠层氮素营养状况;研究对筛选的光谱参数与各氮素指标进行回归建模,并用独立试验数据对所建模型进行验证,结果显示,REPLI在氮营养指数估测方面表现较好(r=0.93),估测模型精度较高(决定系数R2=0.86,均方根误差RMSE=0.08)。NNI在氮素营养状况诊断方面有一定的优势,通过高光谱反演氮营养指数进行氮素营养状态的定性定量诊断有一定的可行性。  相似文献   

7.
基于无人机平台的柑橘树冠信息提取   总被引:2,自引:1,他引:1       下载免费PDF全文
为了快速获取柑橘树冠信息,提升柑橘园精准管理,该研究基于无人机平台获取了柑橘数码和多光谱影像,分析了无人机影像反演柑橘树冠信息的效果。首先利用无人机数码影像及分水岭算法进行柑橘单木分割,然后构建柑橘树冠层高度模型,提取柑橘株数、株高、冠幅投影面积等结构参数信息,进而利用无人机多光谱影像获取柑橘的8种常用植被指数,采用全子集分析法筛选柑橘冠层氮素含量的敏感植被指数,构建基于多元线性回归的冠层氮素遥感反演模型,进行以冠幅为基本单元的柑橘树冠层氮素含量遥感制图。研究结果表明:柑橘的单木识别准确率在93%以上,召回率在95%以上,平均F值为96.52%;柑橘树的反演株高与实测株高具有较强的相关性,决定系数R2为0.87,均方根误差为31.9cm;单株冠幅投影面积与人工绘制的冠幅面积的决定系数,除果园A在12月的结果较低(R2为0.78)外,其余均在0.94及以上;采用全子集分析法筛选的柑橘冠层氮素敏感植被指数为归一化植被指数(NDVI)、绿色归一化植被指数和冠层结构不敏感指数,所建立的多元回归模型的决定系数R2达0.82,均方根误差为0.22%,相对误差为6.59%。综上,无人机影像在柑橘树冠参数信息提取方面具有较好的应用效果,能够快速有效地提取柑橘树冠参数信息。该研究可为使用无人机平台进行果园精准管理提供技术支撑。  相似文献   

8.
为探索不同生理物候期苹果树叶片氮素含量的快速检测方法。分别在果树坐果期、生理落果期和果实成熟期,使用光谱仪测量了果树叶片在可见光和近红外区域的反射光谱,同时在实验室测定了果树叶片的全氮含量。研究首先将实验所得的光谱反射率与氮素含量以果树为单位进行聚类,利用小波包分析技术对每棵果树的光谱信息进行分解,提取出的低频信号和去除高频噪音后的信号分别组成了低频全光谱和去噪全光谱。针对这两个全光谱均实施了主成分分析,利用提取主成分分别建立了果树不同生长阶段的氮素含量多元线性回归模型。对比基于归一化植被指数(NDVI)建立的氮素含量估测模型发现,利用全光谱信息建立的氮素含量预测模型精度更高;在坐果期和果实成熟期,使用去噪全光谱提取的主成分建立的氮素预测模型最优;而在生理落果期,使用低频全光谱提取的主成分建立的模型最优。结果表明,利用小波包分析技术能够有效地提高苹果果树叶片氮素含量的光谱预测能力。  相似文献   

9.
为了评价国产星载高分五号(GF-5)高光谱影像估测土壤有机质(SOM)含量的潜力,以及不同土壤类型对SOM含量光谱估测精度的影响,本研究以黑龙江省建三江农垦区为研究对象,获取了覆盖研究区域的GF-5高光谱影像和188个土壤样本。对提取的样点GF-5光谱反射率数据进行了反射率倒数、对数、一阶微分等9种光谱数学变换,并采用相关系数法确定了SOM含量的光谱敏感波段。采用偏最小二乘回归(PLSR)线性统计建模方法,对研究区域全部土壤类型以及草甸土、沼泽土、黑土等主要土壤类型,分别构建了光谱全波段和敏感波段的SOM含量估测模型,并进行了精度评价。结果表明,基于GF-5光谱数据的研究区域全部土壤类型的SOM含量估测精度不理想,最优模型精度决定系数(R2)为0.265,均方根误差(RMSE)为4.647%,相对分析误差(RPD)为1.135;不同类型土壤在SOM含量光谱估测精度差异较大,草甸土和沼泽土的SOM含量估测精度不高,但黑土的SOM含量估测精度较高,其中全波段光谱反射率对数一阶微分(LnR)′的SOM含量估测精度最高,R~2=0.729,RMSE=1.065%,RPD=1.850,SOM含量估测模型可用。按照不同土壤类型构建SOM含量估测模型可以进一步挖掘GF-5高光谱遥感估测SOM含量的潜力。  相似文献   

10.
基于多源无人机影像特征融合的冬小麦LAI估算   总被引:3,自引:3,他引:0  
为探讨无人机多源影像特征融合估测作物叶面积指数的能力,该研究以冬小麦为研究对象,利用多旋翼无人机搭载高清数码相机和UHD185成像光谱仪获取研究区冬小麦关键生育期(扬花期、灌浆期)的可见光和高光谱影像。综合考虑可见光、高光谱影像特征与冬小麦叶面积指数的相关性及影像特征重要性进行特征筛选,然后,以可见光植被指数、纹理特征、可见光植被指数+纹理特征、高光谱波段、高光谱植被指数及高光谱波段+植被指数分别作为输入变量构建多元线性回归、支持向量回归和随机森林回归的叶面积指数估测模型(单传感器数据源);以优选的两种影像特征结合支持向量回归、随机森林回归构建叶面积指数估测模型(两种传感器数据源),比较分析单源与多源影像特征监测冬小麦叶面积指数的性能。进一步地,考虑到小区土壤空间异质性会影响冬小麦叶面积指数估测结果,该研究探讨了不同影像采样面积下基于单源遥感数据构建的小麦叶面积指数估测模型精度。研究结果表明:在扬花期和灌浆期,使用两种影像优选特征构建的随机森林回归估测模型精度最佳,验证集决定系数分别为0.733和0.929,均方根误差为0.193和0.118。可见光影像采样面积分别为30%和50%,高光谱影像采样面积为65%时,基于单源影像特征构建的随机森林回归估测模型在扬花期和灌浆期效果最好。综上,该研究结果可为无人机遥感监测作物生理参数提供有价值的依据和参考。  相似文献   

11.
旨在阐明双季稻分蘖数与冠层反射高光谱间的定量关系,构建基于高光谱的双季稻分蘖数监测模型。基于不同早、晚稻品种和施氮水平的田间试验,于关键生育期(分蘖期、拔节期和孕穗期)测定早、晚稻分蘖数,同步使用FieldSpec HandHeld 2型高光谱仪采集早、晚稻冠层反射高光谱数据,分别利用光谱指数法和连续小波变换构建新型光谱指数和敏感小波特征对双季稻分蘖数进行监测,建立双季稻分蘖数光谱监测模型,并用独立试验数据进行检验。结果表明,新型光谱指数和敏感小波特征对双季稻分蘖数的监测效果优于其他类型光谱参数(植被指数和“三边”参数),其中位于红边区域的小波特征db7(s9,w735)监测早稻分蘖数时表现最优,监测模型R2为0.754,模型检验相对均方根误差RRMSE为0.128;位于红边区域的小波特征mexh(s6,w714)监测晚稻分蘖数时表现最优,监测模型R2为0.837,模型检验RRMSE为0.112。研究结果可为双季稻分蘖数快速无损监测和群体质量精确调控提供理论基础与技术支持。  相似文献   

12.
玉米叶片氮含量的高光谱估算及其品种差异   总被引:11,自引:4,他引:7  
准确、快速、及时地对玉米氮营养状况做出判断是氮肥合理施用的基础。该研究在水培条件下对3个玉米品种(组合)叶片氮含量(LNC)的高光谱敏感波段、估算模型及其品种差异进行了探讨。结果表明,LNC与不同波段叶片光谱反射率的相关性存在品种差异,但3个品种(组合)都在500~649 nm和691~730 nm表现极显著的负相关关系,并在同一波长获得最高的相关系数,说明可以利用统一的波段来预测不同品种的LNC。依品种建立了LNC与归一化差值光谱指数(NDSI)或比值光谱指数(RSI)的定量关系模型,NDSI(714,554)和RSI(714,554)所建模型的拟合度最好,直线和指数模型拟合度均达到极显著水平,可以用来估算玉米LNC。玉米LNC估算中,以该品种数据所建模型的估算偏差最低,利用综合模型或其他品种模型则加大了估算偏差,高估与低估的最高偏差分别为35.6%和32.7%。在利用高光谱技术进行玉米氮营养状况诊断的研究及应用中,应考虑品种间差异。  相似文献   

13.
砂姜黑土有机质含量高光谱估测模型构建   总被引:1,自引:1,他引:0  
为快速估测砂姜黑土有机质含量,该研究以河南省商水县砂姜黑土为对象,采用光谱指数和遗传算法结合支持向量机构建砂姜黑土有机质估测模型。结果表明,以Savitzky-Golay(SG)平滑后的一阶导数光谱792和1 389 nm两波段组合构建的比值指数表现最好,建模集决定系数为0.81。利用独立的样本验证,预测决定系数和均方根误差分别为0.91和1.56 g/kg。而相同样本经遗传算法筛选敏感波段结合支持向量机回归构建的模型以SG平滑的一阶导数光谱表现最好,建模集和验证集决定系数分别为0.95和0.91,均方根误差分别为1.01和1.69 g/kg。基于遗传算法结合支持向量机回归和光谱指数2种方法构建的有机质含量估测模型均表现出较高的精度,前者稍优于后者,可用于对砂姜黑土有机质含量的有效估测。该研究成果可为砂姜黑土有机质含量的快速定量估算提供依据和参考。  相似文献   

14.
基于综合指标的冬小麦长势无人机遥感监测   总被引:10,自引:7,他引:3  
作物长势监测可以及时获取作物的长势信息,该文尝试建立新型长势指标,监测小麦总体长势情况。将反映小麦长势的叶面积指数(leaf area index,LAI)、叶片叶绿素含量、植株氮含量、植株水分含量和生物量5个指标按照均等权重综合成一个指标,综合长势指标(comprehensive growth index,CGI)。利用450~882 nm范围内单波段和任意两个波段构建归一化光谱指数(normalized difference spectral index,NDSI),比值光谱指数(ratio spectral index,RSI)和简单光谱指数(simple spectral index,SSI),计算CGI与光谱指数的相关性,筛选出相关性好的光谱指数,结合偏最小二乘回归(partial least squares regression,PLSR)建立反演模型。以CGI为指标,运用无人机高光谱影像对2015年小麦多生育期的长势监测。结果表明:1)冬小麦各生育期,总体上CGI与光谱指数的决定系数R~2均好于各项单独指标与相应光谱指数的R~2。仅孕穗期CGI和RSI(754,694)的R~2比叶绿素和RSI(486,518)的R~2低,开花期的CGI和R570的R~2比生物量和R834的R~2低以及灌浆期CGI和SSI(582,498)的R~2比植株含水量和SSI(790,862)的R~2低。2)拔节期,孕穗期,开花期,灌浆期和全生育期PLSR模型的建模R~2分别为0.70,0.72,0.78,0.78和0.61。拔节期,孕穗期和开花期的无人机CGI影像验证模型的均方根误差RMSE(root mean square error)分别为0.050,0.032和0.047。CGI与相应光谱指数的R~2高于单独各项指标与相应光谱指数的R~2,光谱指数能够很好反映CGI包含的信息。无人机高光谱影像反演CGI精度较高,能够判断出小麦总体的长势差异,可为监测小麦长势提供参考。  相似文献   

15.
基于光谱变换的高光谱指数土壤盐分反演模型优选   总被引:13,自引:7,他引:6  
该文探索基于光谱变换建立光谱指数,进而建立土壤盐分反演模型的可行性。运用倒数、导数、对数等15种光谱变换对土壤含盐量进行反演,并利用原始光谱的波段反射率构造光谱指数对土壤盐分进行建模。在15种高光谱变换中,一阶微分R'和一阶对倒数(log1/R')变换下土壤盐分估算模型的精度较高。但总体而言,基于单一光谱变换和光谱指数的模型模拟精度均较低。采用光谱变换建立光谱指数,并进一步建立土壤盐分反演模型,结果表明,基于(log1/R')光谱变换构建归一化植被指数,然后建立的土壤盐分精度最高,经验证,其R2为0.89,均方根误差为3.34 g/kg,高于单一方法构建的模型,可为半干旱地区土壤盐分反演提供参考。  相似文献   

16.
  【目的】  叶绿素含量高低反映植被的健康状况与光合能力。研究准确、有效地将冠层影像反演为叶绿素含量的技术参数,以便经济快速、实时地监测作物生长状况。  【方法】  田间试验于2018—2020年在内蒙古阴山北麓马铃薯主产区进行,设置氮肥梯度处理,在马铃薯块茎膨大期和淀粉积累期,测定试验地马铃薯植株SPAD值,通过线性关系将其转化成叶绿素含量。利用无人机为平台搭载S185成像光谱仪获取马铃薯试验区高光谱影像,并从中提取马铃薯冠层光谱反射率。将3年田间试验所获取的125个样本点数据按80%、20%的比例随机划分为训练集与验证集。用训练集数据建立了8个比率、归一化光谱指数,通过波段优化算法建立优化光谱指数和马铃薯关键生育期叶绿素含量的相关性与估测模型,并用验证集数据检验所建立模型的精度,最后利用所构建的估测模型制作马铃薯叶绿素含量分布图。  【结果】  根据训练集数据,马铃薯植株叶绿素含量分布范围在10.58~23.14 mg/g,平均叶绿素含量为19.80 mg/g,变异系数为14.9%;根据验证集数据,马铃薯植株叶绿素含量分布范围在12.80~23.73 mg/g,平均为19.59 mg/g,变异系数为17.0%。基于绿光波段建立的叶绿素光谱指数(CIgreen)和归一化光谱指数550 (ND550)均与马铃薯叶绿素含量具有较好相关性(R2分别为0.48、0.61),但作物种类及生育时期的影响降低了估测的准确性。通过优化波段586、462 nm和586、498 nm计算的优化比率光谱指数(RSI)和优化归一化光谱指数(NDSI)能够明显提高模型准确性,具备良好的线性拟合效果,决定系数R2分别由0.48和0.61提高到0.82和0.83。经验证后,估测模型预测值与实测值接近1∶1线,决定系数R2分别为0.77和0.79,均方根误差RMSE较低。通过反演马铃薯叶绿素含量分布图可知,优化光谱指数(NDSI)模型反演效果较好,叶绿素含量分布范围为18~21 mg/g,与实测值相符合。  【结论】  本研究优化光谱指数RSI和NDSI最佳敏感波段分别为586、462和586、498 nm,此波段范围内RSI和NDSI与马铃薯关键生育期叶绿素含量相关性最优,通过波段优化算法重新构建的优化光谱指数预测模型可靠性及精度显著高于已有光谱指数,决定系数分别为0.82和0.83,且验证效果较好。应用两种光谱指数对研究区高光谱影像进行叶绿素反演估测,生成的田间马铃薯叶绿素含量分布图显示优化光谱指数NDSI估测效果最好,为光谱指数估测马铃薯关键生育期叶绿素含量提供了理论支持。  相似文献   

17.
Soil salinization is a land degradation process that leads to reduced agricultural yields. This study investigated the method that can best predict electrical conductivity (EC) in dry soils using individual bands, a normalized difference salinity index (NDSI), partial least squares regression (PLSR), and bagging PLSR. Soil spectral reflectance of dried, ground, and sieved soil samples containing varying amounts of EC was measured using an ASD FieldSpec spectrometer in a darkroom. Predictive models were computed using a training dataset. An independent validation dataset was used to validate the models. The results showed that good predictions could be made based on bagging PLSR using first derivative reflectance (validation R2 = 0.85), PLSR using untransformed reflectance (validation R2 = 0.70), NDSI (validation R2 = 0.65), and the untransformed individual band at 2257 nm (validation R2 = 0.60) predictive models. These suggested the potential of mapping soil salinity using airborne and/or satellite hyperspectral data during dry seasons.  相似文献   

18.
最优权重组合模型和高光谱估算苹果叶片全磷含量   总被引:8,自引:5,他引:3  
为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片全磷含量的最优权重组合模型。首先分析了苹果叶片全磷含量和原始光谱的相关关系,确定了以553和722 nm为苹果叶片全磷含量的诊断波段;根据叶片全磷含量与400~2 500 nm范围两两组合的决定系数等值线图,确立了对苹果叶片全磷含量敏感的546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数;最后以553和722 nm的反射率以及546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数为自变量,构建了基于苹果叶片全磷含量的最优权重组合模型,实现了对苹果叶片全磷含量的高光谱估算。结果表明,最优权重组合模型无论是建模集还是验证集,其预测能力(R2=0.94)要优于该文中的6种统计方法(平均R2=0.82),研究结果为快速无损诊断苹果叶片的磷素状况提供新的技术途径。  相似文献   

19.
廖钦洪 《农业工程学报》2015,31(Z2):159-163
Recent advances in optical remote sensing led to improved methodologies to monitor crop properties.The red-edge-based vegetation index considered to be one of the most powerful tools for estimating the chlorophyll content(Chl) was usually constructed from in-situ hyperspectral reflectance.In this paper, we present the work done to compare the Chl predictive quality by various red-edge-based vegetation indices based on the CASI data.The results indicated that among the selected vegetation indices, TCARI/OSAVI-based model estimated Chl(R2=0.46, RMSE =0.60 and P<0.01) with the best accuracy.To search the optimal vegetation index for Chl estimation, the normalized difference spectral index(NDSI) and ratio spectral index(RSI) were developed by using the waveband combination algorithm.A high linear correlation(R2=0.79, RMSE=0.38 and P<0.01) was acquired by combining the 869.20 and 754.90 nm wavebands, then NDSI(869.20, 754.90) was applied to the CASI image to generate the Chl distribution map.It suggests that more fertilizer should be provided for the southwest areas due to the lower Chl.  相似文献   

20.
Recent advances in optical remote sensing led to improved methodologies to monitor crop properties.The red-edge-based vegetation index considered to be one of the most powerful tools for estimating the chlorophyll content(Chl)was usually constructed from in-situ hyperspectral reflectance.In this paper,we present the work done to compare the Chl predictive quality by various red-edge-based vegetation indices based on the CASI data.The results indicated that among the selected vegetation indices,TCARI/OSAVI-based model estimated Chl(R2=0.46,RMSE=0.60 and P0.01)with the best accuracy.To search the optimal vegetation index for Chl estimation,the normalized difference spectral index(NDSI)and ratio spectral index(RSI)were developed by using the waveband combination algorithm.A high linear correlation(R2=0.79,RMSE=0.38 and P0.01)was acquired by combining the 869.20 and 754.90 nm wavebands,then NDSI(869.20,754.90)was applied to the CASI image to generate the Chl distribution map.It suggests that more fertilizer should be provided for the southwest areas due to the lower Chl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号