首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A set of experimental introgression lines of Triticum aestivum L. cv. Novosibirskaya 67 (N67)—Triticum polonicum L. line IC 12196 was developed using a small-scale bulk breeding method. The linkage map in chromosome 7A was constructed using F2 hybrids of N67/IC12196 and 34 microsatellite markers. The P gene was flanked by the centromeric markers, Xgwm890 (18.6 cM) and Xbarc108 (20.0 cM) on the long arm of chromosome 7A. Among 124 introgression lines, 118 lines were hexaploid (2n = 6x = 42), and 6 were tetraploid (2n = 4x = 28). Among hexaploid accessions, 68 were long-glumed, whereas 50 were normal-glumed. Thirty-four polymorphic microsatellite markers were scored for either the N67 alleles or IC 12196 alleles in 124 introgression lines derived from N67/IC 12196. The UPGMA dendrogram showed five clusters; Cluster 1 mainly contained hexaploid introgression lines with long glumes. Although the alleles around the P locus were recombined with IC1296 alleles, the distal end of the chromosome contained N67 alleles. Cluster 2 mainly contained normal glumed, hexaploid introgression lines. These predominantly had the N67 alleles on the long arm of chromosome 7A and the short arm proximal to the centromere. Cluster 3 contained long-glumed, hexaploid wheat lines with relatively high level of recombination. Cluster 4 contained non-parental alleles. Cluster 5 contained the group of tetraploid wheat lines. These tetraploid lines have IC12196 alleles on both arms of chromosome 7A. The frequency spectrum of parental alleles and chromosomal blocks among introgression lines suggested that T. aestivum – T. polonicum hybridization can rapidly give rise to a new landrace due to selective introgression of the P gene.  相似文献   

2.
Carbon isotope discrimination (Δ) has been proposed as physiological criterion to select C3 crops for yield and water use efficiency. The relationships between carbon isotope discrimination (Δ), water use efficiency for grain and biomass production (WUEG and WUEB, respectively) and plant and leaf traits were examined in 20 Iranian wheat genotypes including einkorn wheat (Triticum monococcum L. subsp. monococcum) accessions, durum wheat (T. turgidum L. subsp. durum (Desf.) Husn.) landraces and bread wheat (T. aestivum L. subsp. aestivum) landraces and improved cultivars, grown in pots under well-watered conditions. Carbon isotope discrimination was higher in diploid than in hexaploid and tetraploid wheats and was negatively associated with grain yield across species as well as within bread wheat. It was also positively correlated to stomatal frequency. The highest WUEG and grain yield were noted in bread wheat and the lowest in einkorn wheat. Einkorn and bread wheat had higher WUEB and biomass than durum wheat. WUEG and WUEB were significantly negatively associated to Δ across species as well as within bread and durum wheat. The variation for WUEG was mainly driven by the variation for harvest index across species and by the variation for Δ within species. The quantity of water extracted by the crop, that was closely correlated to root mass, poorly influenced WUEG. Environmental conditions and genetic variation for water use efficiency related traits appear to highly determine the relationships between WUEG and its different components (water consumed, transpiration efficiency and carbon partitioning).  相似文献   

3.
Aegilops neglecta Req. ex Bertol. is a forage goatgrass that has tetraploid and hexaploid forms. No morphological trait is known to distinguish between the two forms. Accessions of Ae. neglecta representing diverse germplasm were characterized for stomatal frequency and size on the adaxial surface of leaves. Stomatal frequency among tillers within a plant and among leaves on a tiller was measured. Significant variation was found in stomatal frequency between the ploidy levels for basal leaves 2 and 3 and the penultimate and flag leaves. Mean stomatal frequency for basal leaves ranged from 50.24 to 54.80 per mm2 for tetraploid and from 39.24 to 40.50 per mm2 for hexaploid accessions. For upper leaves, it varied from 52.88 to 53.50 per mm2 for tetraploid and from 46.12 to 46.40 per mm2 for hexaploid accessions. The two ploidy forms also exhibited clear differences for stomatal size on the basal and upper leaves of the main tiller. Mean stomatal size for the basal leaves ranged from 41.42 to 46.09 m for tetraploid and from 53.59 to 54.97 m for hexaploid accessions. For upper leaves, stomatal size varied from 47.29 to 53.29 m in tetraploid and from 64.76 to 66.84 m for hexaploid accessions. None of the individual accession ranges overlapped between the ploidy levels. Stomatal frequency and size were highly negatively correlated. Increased ploidy in Ae. neglecta has resulted in fewer but larger stomata per unit leaf area. Stomatal size and/or frequency on the adaxial surface of leaves could be used to distinguish tetraploid from hexaploid cytotypes in Ae. neglecta in fresh material from Turkey collected in the field.  相似文献   

4.
Wheat (Triticum spp.) landrace populations in Ethiopia are mostly species mixtures. However, no quantitative data is available with regard to their species components. We studied here 32 wheat landrace populations originating from two regions (Bale and Wello). A total of 2559 individual plants, 45–110 plants representing each population, were classified into their species components. Five tetraploid (2n = 4x = 28) and one hexaploid (2n = 6x = 42) wheat species were found in mixtures of varying proportions. These included the tetraploids Triticum durum Desf., Triticum turgidum L., Triticum aethiopicum Jakubz., Triticum polonicum L., Triticum dicoccon Schrank and the hexaploid Triticum aestivum L. Also found, however in a rare frequency, in two populations from Wollo was T. durum Desf. convar. durocompactoides Flaksb. (Triticum pyramidale Percival), which is a very dense spiked durum. Discriminant analysis using seven qualitative traits revealed 91.5% correct classification of the wheat species, beak awn and awn length with the most significant importance. Single species were found in eight of the populations; six were for T. durum and two for T. aethiopicum. Two to three species-combinations were the most frequent; a maximum of four species was recorded in one population. The highest diversity index (H′) observed was 0.44. T. durum was the most predominant species. The hexaploid T. aestivum was found in nine of the Wollo populations and, in one population, its frequency reached up to 35.5%. On altitudinal basis, no clear trend of clinal variation was observed both from the frequency distributions and H′ estimates. The results confirmed that Ethiopian wheats, despite the morphological overlaps, could be classified into their species components with high degree of certainty. For the future, therefore, genetic diversity estimations should be dissolved into their species components for more expeditious utilization and conservation of this important genetic resource.  相似文献   

5.
Emmer wheat (Triticum dicoccon Schrank, 2n = 4x = 28) consists in a hulled wheat; its cultivation has been drastically reduced during the last century as a consequence of its low yield. Recently, its agronomic and nutritive values, as well as the increase of popularity of organic agriculture, have led to a renewed interest making its cultivation economically viable in the marginal lands with an increase of the cultivated areas. In Italy, it mainly survives in few marginal lands of central and southern Italy, where local varieties, adapted to the natural environment from where they originate, are used; moreover, some selected lines have also been developed. In the present work, agro-morphological and qualitative traits, together with molecular analyses of 20 emmer accessions consisting of Italian landraces, breeding lines, and cultivars, were performed. The field experiments were conducted for two consecutive years (2001/2002–2002/2003) in two locations: Viterbo in central Italy, and Foggia in south Italy. The analyzed emmer wheat accessions showed a good amount of genetic variability for both evaluated agro-morphological and molecular traits. This study illustrates an increase in earliness, GY, TW, TKW, and YI going from landraces, breeding lines to cultivars, while the variability does not change proportionally.  相似文献   

6.
Portuguese wheat landraces, ‘Arrancada’ were collected from the Aveiro region, Portugal before the 1950s. We found in eight accessions of `Arrancada' hexaploid wheat with the long glume phenotype. We assessed the comparative genetic diversity among Portuguese `Arrancada' wheat and Triticum petropavlovskyi Udacz. et Migusch. using AFLP assays and discuss the origin of long glumed `Arrancada' wheat. With the four primer pairs a total of 4885 visible bands were scored corresponding to 99 AFLP markers as putative loci, of which 55 markers (54%) were polymorphic. UPGMA clustering and PCO grouping showed that long glumed ‘Arrancada’ wheat and T. petropavlovskyi were genetically diverse. Long glumed ‘Arrancada’ hexaploid wheat separated into two clusters (groups) in both the UPGMA dendrogram and in PCO analysis. Four long glumed accessions fell in the cluster of tetraploid wheat. A similar argument could be made for another four accessions which belong to the cluster of hexaploid wheat. The substantial level of genetic variation indicated that long glumed ‘Arrancada’ wheat and T. petropavlovskyi originated independently. It is most likely that the P-gene of long glumed ‘Arrancada’ hexaploid wheat was introduced from T. turgidum ssp. polonicum (L.) Thell. to T. aestivum via natural introgression or breeding. We suggest that the long glumed ‘Arrancada’ hexaploid wheat did not originate from T. aestivum through spontaneous mutation at the P locus  相似文献   

7.
Accurate and reliable means for identification are necessary to assess the discrimination between landraces of tetraploid wheat [T.␣turgidum L. subsp. durum (Desf.) Husn.] and hexaploid wheat (T. aestivum L. em. Thell.). In Afghanistan, farmers usually cultivate mixed landraces, and thus distinction between bread and durum is difficult. A set of 18 microsatellites derived from the DuPont EST-database were used to describe genetic diversity in a sample of 82 Afghan wheat landraces. A total of 101 alleles were detected, with allele number per locus ranging from 2 to 13, and a mean allele number of 6.31. The percentage of polymorphic loci was 89%. The EST-SSRs markers showed different level of gene diversity: the highest Polymorphism Information Content value (0.921) was observed with DuPw 221. Our results demonstrated that with a reasonable number of expressed sequences target microsatellites (EST-SSRs) it is possible to discriminate between T. durum and T. aestivum species of wheat germplasm. Our results showed that EST-databases could be a useful source for species-specific markers and have the potential for new genic microsatellites markers that could enhance screening germplasm in gene banks.  相似文献   

8.
The genus Aegilops L. comprises 22 annual wild species that are closely related to wheat (Hammer in Kulturpflanze 28: 33–180, 1980). Aegilops neglecta Req. ex Bertol. is a member of the Aegilops section of this genus and is distributed from Morocco and Spain in the west to Transcaucasia and western Iran in the east. This species includes tetraploid (2n = 28, genome UUMM) and hexaploid forms (2n = 42, UUMMNN). However, the geographical distributions of the two cytological forms remain unclear. Clarifying the distribution of the two cytological forms is essential for a better understanding of the diffusion of Ae. neglecta and its tetraploid and hexaploid forms. In the present study, chromosome numbers were determined for accessions of Ae. neglecta from a total of 137 populations, located in the western area of the species distribution from the Aegean Islands to Morocco. Taken together with previous studies, the present data reveal a difference in the geographical distribution of tetraploid and hexaploid forms: tetraploid form is distributed in the eastern part of the species area and hexaploid form predominantly occurs in the western part with their border on the western margin of the Aegean Sea. Near the border, tetraploid and mixed populations are sporadically found among hexaploid populations in the Balkan and Peloponnesus Peninsulas, while a few hexaploid and mixed populations are found among tetraploid populations in the East Aegean Islands and West Anatolia.  相似文献   

9.
The wild diploid goat grass (Aegilops tauschii Cosson), and the cultivated tetraploid emmer wheat (Triticum turgidum L. subsp. dicoccon (Schrank) Thell.) may be important sources of genetic diversity for improving hexaploid bread wheat (Triticum aestivum L.). Through interspecific hybridization of emmer wheat and Ae. tauschii, followed by chromosome doubling, it is possible to produce homozygous synthetic hexaploid wheat. Fifty-eight such synthetic hexaploids were evaluated for grain quality parameters: grain weight, length, and plumpness, grain hardness, total protein content, and protein quality (SDS-Sedimentation volume, SDS-S). Most synthetics showed semi-hard to hard grain texture. Results showed significant genetic variation among the synthetic hexaploids for protein content, SDS-S values, and grain weight and plumpness. Quality measurement values of synthetic hexaploids were regressed on corresponding values of the emmer wheat parents. With this offspring-parent regression, protein content and SDS-S values explained 8.7 and 28.8%, respectively, of the variation among synthetics, indicating a significant contribution from the emmer wheat parents for these traits. The synthetic hexaploids, in general, had significantly higher protein content (15.5%, on average) and longer grains than ‘Seri M82’, the bread wheat control (13.1% protein content). Synthetics with SDS-S values and grain weights higher than those of ‘Seri M82’ were also identified. Protein content among synthetics showed significantly negative correlations with grain weight and plumpness, but no correlation with SDS-S values. Despite these negative correlations, 10 superior synthetic hexaploid wheats, derived from nine different emmer wheat parents and with above average levels of protein content, SDS-S values, and either grain weight or plumpness, were identified. This study shows that genetic variation for quality in tetraploid emmer wheat can be transferred to synthetic hexaploid wheats and combined with plump grains and high grain weight, to be used for bread wheat breeding.  相似文献   

10.
The genetic variations of high-molecular-weight (HMW) glutenin subunits in 1051 accessions of 13 Triticum subspecies were investigated using sodium dodecyl sulfate polyacrylamide-gel electrophoresis. A total of 37 alleles were detected, resulting in 117 different allele combinations, among which 20, 68 and 29 combinations were observed in diploid, tetraploid and hexaploid wheats, respectively. Abundance and frequency of allele and combinations in tetraploid wheats were higher than these in hexaploid wheats. Allele Glu-A1c was the most frequent subunit at Glu-A1 locus in tetraploid and hexaploid wheats. Consequently, the results also suggested that the higher variations occurred at Glu-B1 locus compared to Glu-A1 and Glu-D1. Therefore, carthlicum wheat possessing the allele 1Ay could be presumed a special evolutional approach distinguished from other tetraploid species. Furthermore, this provides a convenient approach of induction of the 1Ay to common wheat through direct cross with carthlicum wheat. Alleles Glu-B1c and Glu-B1i generally absent in tetraploid wheats were also found in tetraploid wheats. Our results implied that tetraploid and hexaploid wheats were distinguished in dendrogram, whereas carthlicum and spelta wheats and however displayed the unique performance. In addition, founder effect, no-randomness of diploidization, mutation and artificial selection could cause allele distribution of HMW-GS in Triticum. All alleles of HMW-GS in Triticum could be further utilized through hybrid in the quality improvement of common wheat.  相似文献   

11.
The polymorphism of gliadins was studied in 98 Bulgarian durum wheat (Triticum durum Desf.) landraces and classified according to the existing catalogues of blocks of gliadin components. In total, 31 alleles, including 12 new ones, were revealed for five gliadin-coding loci. Nine allele families, which included several alleles coding similar blocks differed only by minor components, were found. The gliadin loci had a high genetic diversity (H = 0.70), and Gli-A2 d was the most polymorphic locus. Significant differences in allele distribution were observed through the Bulgarian region under study. The results made it possible to explain the distribution by historical factors. Presumably, the genetic material flew into the country via two different ways and different durum wheat subgroups contributed to the formation of Bulgarian landraces. The landraces were a result of long-term selection and, probably, had a close association with the history of the human populations of the region.  相似文献   

12.
Somatic chromosome numbers of 131 accessions belonging to 55 Paspalum species from subtropical South America have been determined. All species had x = 10 as a basic chromosome number, except P. almum which had x = 6. Six ploidy levels were found among species with tetraploidy as the most frequent condition. New diploid and octoploid counts were reported. For Paspalum lilloi and P. glabrinode (both 2n = 2x = 20), and for P. ellipticum, P. erianthoides, P. ovale and P. remotum (all 2n = 8x = 80) sporophytic chromosome numbers are presented for the first time. Records that differ from previously reported counts are given for the following species: P. paucifolium (2n = 2x = 20), P. ceresia (2n = 6x = 60), P. conjugatum (2n = 6x = 60), P. alcalinum (2n = 6x = 60) and P. aff. arundinellum (2n + 1 = 5+ 1 = 51). These chromosome data are discussed in light of ploidy-level variation and implications for breeding systems within and among species.  相似文献   

13.
Field and controlled environmental tests indicated that the 49 accessions of closely related species and 12 landraces of wheat (Triticum aestivum L. em. Thell.) from the National Gene Bank of China showed different reactions to powdery mildew (Blumeria graminis (DC.) E. O. Speer. f. sp. tritici) and stripe rust (Puccinia striiformis Westend f. sp. tritici) at adult and seedling stages. Unknown Pm genes or alleles were postulated with Triticum baeoticum Boiss. accessions BO 3 and Triticum monococcum L. MO 4 and MO 5 when inoculated with 21 powdery mildew isolates at seedling stage. Fourteen accessions of T. baeoticum, T. monococcum, Triticum durum, and wheat landraces were inoculated with 30 stripe rust isolates at seedling stage. Unknown Yr genes or alleles were postulated with T. baeoticum Boiss. accession BO 5, as well as wheat landraces Xiaobaimai, Laomangmai, and Shaanxibai. Heterogeniety in reaction to powdery mildew isolates and stripe rust races were observed in related species and landraces of wheat.  相似文献   

14.
Summary Esterase isozymes of tetraploid wheat landraces originating from four localities in the central highlands of Ethiopia were studied using the horizontal starch gel electrophoresis. The landraces studied consisted of 60 Triticum turgidum L., one T. dicoccon Schrank, one T. polonicum L. and an improved local cultivar. One introduced durum cultivar was also included for comparison.A total of 12 esterase zymograms were detected in the landraces. Among these, the types C, A and G were found to be the most prevalent. The esterase isozymes exhibited high variation in the landraces. The esterase zymograms of the introduced durum cultivar and T. dicoccon differed from those of the landraces while the patterns attained in T. polonicum and the improved local cultivar were identical to those of the other landraces.The total number of bands detected was 10, of which 2 were rare, being displayed by only 1 pattern each. The band content of zymograms was in the range of 3–6 and the average was 4. The unique bands were observed in zymograms with both high and low prevalences in the landraces. Two zymograms, including zymogram C which had the highest frequency, occurred in all the localities. The high yielding landraces displayed 4 of the zymograms, one of which belonged to two of the zymograms with widest distribution.  相似文献   

15.
The recent emergence of wheat stem rust race Ug99 (TTKSK) and related strains threaten Ethiopian as well as world wheat production because they overcome widely used resistance genes that had been effective for many years. The major cause which aggravates the ineffectiveness of Ethiopian wheat varieties against stem rust is the narrow genetic base on which the breeding for resistance has been founded, however, little is known about the resistance genotypes of Ethiopian durum wheat varieties and tetraploid wheat landraces. The objective of the study was to identify stem rust resistance genes that are present in the Ethiopian tetraploid wheat landraces and improved durum wheat varieties using molecular markers and assess which genes are effective for current Ethiopian stem rust races of Puccinia graminis f. sp. tritici including Ug99. The investigated 58 tetraploid wheat accessions consisted of 32 (Triticum durum s.l. incl. Triticum aethiopicum Jakubz., Triticum polonicum) landraces and 22 registered T. durum varieties released in Ethiopia between 1966 and 2009 and four T. durum varieties from ICARDA. A total of 17 molecular markers (SSR, EST and InDel) linked or diagnostic for stem rust resistance genes Sr2, Sr13, Sr22 and Sr35 were used for genotyping. Haplotype analysis indicated that only few of the Ethiopian durum wheat varieties carried Sr13. The resistant variety ‘Sebatel’ showed a haplotype for Sr2 and Sr22 and variety ‘Boohai’ for Sr22, however further evaluation is needed for the diagnostic value of these haplotypes. This study is the first report on the presence of stem rust resistance (Sr) genes in Ethiopian durum wheat varieties and tetraploid wheat landraces based on linked or associated molecular markers. Thus it might help in the identification of varieties carrying resistant alleles that provide valuable genetic material for the development of new improved varieties in further breeding programmes.  相似文献   

16.
The practical applications of flour from waxy (amylose‐free) hexaploid wheat (Triticum aestivum L.) were assessed. The applications evaluated were bread, cakes, white salted noodles, and pasta for gyoza. An excessive addition of waxy hexaploid wheat flour to total wheat flour (>20%) resulted in poorer functional properties (sticky, lumpy, or less crispy textures) in almost every end use product. However, incorporation of <20% waxy hexaploid wheat flour, produced considerable improvement in shelf‐life characteristics. After one day of storage, the bread from flour including waxy hexaploid wheat flour maintained moistness, softness, and stickiness. This application of waxy hexaploid wheat flour as an antistaling ingredient was also confirmed in cake products. Tests were also conducted on alimentary pasta products. In alimentary pasta, waxy hexaploid wheat flour was most effective when utilized for frozen fried dumplings (gyoza). By using flour including 30 or 50% waxy hexaploid wheat flour, the problem of firmness was solved without other ingredients. In conclusion, flour from waxy hexaploid wheat may be useful in developing more increased staling‐ and freezing‐tolerant grain‐based foods. Starch properties could be responsible for these improved characteristics.  相似文献   

17.
Lima bean (Phaseolus lunatus L.) is an important crop in traditional Mayan agriculture of the Yucatan Peninsula, Mexico, its Mesoamerican center of diversity. Genetic erosion in this species is currently a threat in this region out of 3 of 21 landraces dominate 71.24% of the cultivated area, and 12 are rare landraces grown only in 6.29%. Using 90 ISSR loci, we estimated the diversity and genetic relationships for 21 landraces to analyzing their risk of genetic erosion, and generate data for their in situ conservation. Total genetic diversity was high (h = 0.29), however it was lower than wild gene pool reported (h = 0.69). The abundant landraces had genetic diversity values lower (h = 0.13, I = 0.17) than the common (h = 0.26, I = 0.33) and rare landraces (h = 0.24, I = 0.27). However, the rare landraces are in a higher risk of genetic erosion due to local extinction. The cluster analysis showed no groups corresponding to morpho-phenological characteristics, geographic origin or traditional classification, which resulted from high inter-landraces gene flow levels. The molecular data confirmed that the domesticated Lima bean pool of the Yucatan Peninsula has a high risk of genetic erosion. If current tendencies in landrace cultivation continue, many will no longer be planted within two to three generations, with a consequent loss of their alleles. Programs urgently need to be established for in situ conservation of Lima bean landraces in this region.  相似文献   

18.
The new branched spike form of wheat was synthesized from a cross between a complex wheat line 171ACS {[(T. durum Desf. × Ae. tauschii Coss.) × S. cereale L. ssp. segetale Zhuk.] × T. aestivum L. ‘Chinese Spring’} (2n = 6x = 42, AABBDD) and durum wheat variety T. durum Desf. ‘Bereketli-95’ (2n = 4x = 28, AABB). This branched spike form is distinguished significantly from the other branched spike forms known so far. Later on basis of these plants have been developed the branched spike lines. This study was aimed to generate the segregating populations from reciprocal (F1–F3) and backcross (BC1F1–BC1F3) crosses between one of such lines—166-Schakheli (2n = 4x = 28, AABB) and tetraploid wheat species (T. polonicum L., T. turanicum Jakubz., T. durum Desf.) for revealing the inheritance character of this branching trait and study meiotic behavior in reciprocal (F1, F2) and backcross (BC1F1) progenies. Results showed that this trait is controlled by a single recessive gene despite certain irregularity against Mendelian law in F2 generations and does not depend on gene dosage, i.e., number of chromosomes.  相似文献   

19.
Hexaploid bread wheat (Triticum aestivum L. ssp. aestivum) is assumed to have originated by natural hybridization between cultivated tetraploid Triticum turgidum L. and wild diploid Aegilops tauschii Coss. This scenario is broadly accepted, but very little is known about the ecological aspects of bread wheat evolution. In this study, we examined whether T. turgidum cultivation still is associated with weedy Ae. tauschii in today’s Middle Eastern agroecosystems. We surveyed current distributions of T. turgidum and Ae. tauschii in northern Iran and searched for sites where these two species coexist. Ae. tauschii occurred widely in the study area, whereas cultivated T. turgidum had a narrow distribution range. Traditional durum wheat (T. turgidum ssp. durum (Desf.) Husn.) cultivation associated with weedy Ae. tauschii was observed in the Alamut and Deylaman-Barrehsar districts of the central Alborz Mountain region. The results of our field survey showed that the T. turgidumAe. tauschii association hypothesized in the theory of bread wheat evolution still exists in the area where bread wheat probably evolved.  相似文献   

20.
Bread wheat Triticum aestivum L. possesses a genetic variation for the ability to survive and reproduce under salt stress conditions. Durum wheat (T. durum Desf.) is in general more sensitive in comparison to bread wheat, however, exceptions can be found showing the same extent of salt tolerance. Endemic wheats in general are characterised by a high adaptability to their environment. The level and variability of salt tolerance were assessed in a germplasm collection of 144 winter and spring wheat accessions from Georgia comprising Triticum aestivum L., T. durum Desf., T. dicoccon Schrank, T. polonicum L. and Georgian endemics: T. carthlicum Nevski, T. karamyschevii Nevski, T. macha Dekapr. et Menabde, T. timopheevii (Zhuk.) Zhuk. and T. zhukovskyi Menabde et Ericzjan. The accessions were tested for salt tolerance at the germination stage. Large variability in salt tolerance within the Georgian germplasm was found among the different wheat species. The endemic hexaploid winter wheat T. macha and the endemic tetraploid wheat T. timopheevii were among the most tolerant materials, thus presenting promising donors for salt tolerant traits in future breeding efforts for salinity tolerance in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号