首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采用单项与综合污染指数法,以海南省农产品为研究对象,开展了农产品中重金属Cu、Zn、Pb、Cd、Ni、As、Cr和Hg含量的抽样调查分析与评价。结果表明,全省农产品中重金属的平均含量均低于食品中规定的限值,各重金属的单项与综合污染指数均≤1,综合污染指数为0.57;全省农产品未受重金属污染,属于安全水平,适宜发展无公害农产品。同时发现,个别监测点的农产品中重金属含量有超标现象,新鲜水果中个别样品Pb、Cd、Hg超标,超标率在2.17%~10.87%之间;豆类蔬菜中个别样品Ni超标,超标率为9.09%;瓜果类蔬菜中个别样品Pb、Cd超标,超标率为12.24%~24.49%;叶菜蔬菜中个别样品Pb超标,超标率为6.67%;谷物中个别样品Pb、Cd、As超标,超标率在2.11%~7.37%之间。农产品中重金属含量间多呈正相关,其中Zn与Ni、As与Hg之间差异达到极显著水平,Cu与Zn、Cu与As、Cu与Hg、Zn与As、Zn与Hg、Cd与As、Cd与Cr、Cd与Hg、Ni与As、Ni与Hg、As与Cr之间差异达到显著水平。结合主成分分析结果,推测Cu、Zn、Ni、As、Hg含量主要受农业生产和人类活动的影响,而Cr、Pb和Cd含量受土壤母质的影响比较大。  相似文献   

2.
《土壤通报》2015,(3):721-727
对海口市四大蔬菜基地土壤-蔬菜系统重金属积累及污染状况进行了评价。结果表明,四个蔬菜基地中,新坡基地土壤中Cd、Cr、Zn、As、Ni最高,桂林洋土壤中Cu的含量在各基地中最高,坡博土壤中的Pb和Hg含量最高。叶菜中Pb、Cd、Cr、Ni等元素含量明显高于果菜,说明叶菜较果菜更易吸收和富集重金属。土壤中的Cd全部超过国家土壤环境质量二级标准(GB15612-1995),其中新坡基地土壤Cd污染指数最大。新坡土壤中的Ni超标率为66.7%。各基地土壤中Hg、As、Cr、Ni、Cu、Zn和Pb的含量均未超标,符合蔬菜种植用地要求。单项污染指数的评价结果表明,青菜、油菜、小白菜、大白菜、生菜、芹菜、西红柿均受到Pb轻度污染。综合污染指数结果表明,芹菜重金属轻微超标;青菜、油菜、小白菜、大白菜、生菜、西红柿的重金属污染处于警戒级水平;芥菜、薯叶菜、空心菜、辣椒、苦瓜的重金属属于安全水平。整体来看,叶菜类蔬菜中重金属的污染指数大于果菜类。仅Cr含量在蔬菜与土壤中呈显著负相关关系,说明蔬菜中重金属含量的高低受到除土壤之外的众多因素的影响。  相似文献   

3.
上海市延安高架道路沿线绿地土壤中重金属的分布与评价   总被引:2,自引:1,他引:2  
以上海市延安高架道路沿线绿地为研究对象,按照建设时间的差异将其分成3个路段,并对其表层土壤进行分段采样,用原子吸收光谱法分析土壤中的重金属Pb、Cd、Cu、Zn、N i,然后再采用单项污染指数法和综合污染指数法对各种重金属元素和各路段的污染情况进行评价,研究结果表明:该区域土壤中重金属Pb、Cd、Cu、Zn、N i平均值分别为93.61mg kg-1、0.70mg kg-1、80.78 mg kg-1、452.20 mg kg-1和31.09 mg kg-1,除N i以外,其余重金属均超过上海市土壤背景值,分别为上海市土壤背景值的3.68倍、5.30倍、2.83倍和5.25倍。单项污染指数评价结果表明:重金属Pb、Cd、Zn已经形成重污染,Cu处于中等污染程度,N i尚未形成污染。综合污染指数评价结果表明:整条延安高架道路以及三个分段路段均已形成重污染。  相似文献   

4.
冶炼厂综合堆渣场周边菜地重金属分布特征与污染评价   总被引:1,自引:0,他引:1  
通过对冶炼厂综合堆渣场菜地土壤和蔬菜中重金属的测定,分析了该区土壤和蔬菜中Cu、Zn、Pb、Cd、As的污染状况。结果表明,Cu和Cd为该区菜地的主要污染元素,其超标率均为100%;其最高含量分别为对照的5.3倍和4.3倍。蔬菜可食部分重金属Cu、Cd和Pb含量均不符合国家无公害蔬菜的标准,超标率均达100%,且不同的重金属元素在不同蔬菜品种中的累积各异。  相似文献   

5.
对山东省露地蔬菜产地的土壤进行了重金属Cd、Hg、As、Pb、Cr、Cu、Zn和Ni含量的抽样调查分析,并采用单项质量指数与综合质量指数相结合的方法对重金属的环境质量状况进行了评价。结果表明,莱阳露地蔬菜产地、金乡大蒜、章丘大葱产地土壤各重金属的平均含量均低于"食用农产品产地环境质量评价标准"(HJ332—2006)规定的限值,三地土壤重金属的单项质量指数均≤0.7,综合质量指数分别为0.56、0.50和0.43,土壤环境质量均为1级,属于清洁水平,适宜发展无公害蔬菜。同时发现,部分地区有重金属含量超标现象,莱阳Cu的样本超标率为13.64%,金乡Cd、Cu和Hg的样本超标率分别为5.41%、5.41%和2.70%,章丘Ni的超标率为4.76%。重金属含量之间多呈正相关关系,其中Cd与Zn,Cu与Zn,Pb与Cr之间的相关性达到极显著水平(P〈0.01),As与Ni,Ni与Zn,Zn与Pb,Pb与Cu,Cu与Cr之间的相关性达到显著水平(P〈0.05)。大部分监测点的重金属含量均高于山东农业土壤自然背景值,表明在监测点土壤中产生了重金属累积。对山东省其他露地蔬菜产区土壤的随机调查,没有发现重金属含量超标。  相似文献   

6.
运城市村级农业土壤重金属的空间分布与原因分析   总被引:1,自引:1,他引:0  
通过检测运城市南薛村农业土壤8种重金属(Cu、Zn、Cr、Cd、Pb、Ni、As、Hg)含量,分析研究区内重金属空间分布特征和原因。与国家土壤环境标准的二级标准相比,Hg和Ni的超标率分别为16.50%和12.62%,Cd、Pb、As均未超标。按单项污染指数进行评价,主要污染物是Hg,污染指数为1.58,处于轻度污染级别,其余重金属的单项污染指数均小于1,处在安全域内。按内梅罗综合污染指数评价,61.65%的农业土壤重金属污染程度处于安全水平,18.45%的土壤处在警戒线上,15.53%的土壤为中度污染和严重污染,只有个别土壤属轻污染。Zn、Cr、Ni和As的块金效应介于25%~75%之间,同时受农药、化肥和母质因素的影响;Cu、Cd、Pb和Hg的块金效应大于75%,分别受粪肥、污水、汽车尾气和居民生活的影响。8种重金属含量空间分布差异显著,主要原因是不同地块间的生产方式不同,该研究对于试验区农业资源的合理配置、农业生产的科学管理和农产品的安全生产具有重要的指导意义。  相似文献   

7.
典型城市城郊土壤重金属含量对比研究   总被引:4,自引:0,他引:4  
选取成都经济区内成都、德阳、蒲江彭山3类典型城市作为研究对象,对其城郊土壤中Cd,Hg,As,Zn,Cr,Cu,Pb 7种重金属元素含量作了对比研究.与国家土壤二级质量标准比较,成都、德阳、彭山蒲江Cd含量均超标,超标率分别为11.67%,70.67%,39.00%,彭山蒲江Cr含量超标,超标率为20.25%,其它元素含量均未超标.比较3类不同城市城郊土壤重金属含量.成都城郊Hg,As,Zn,Pb含量最高,Cd,Cr含量相对最低;德阳Cd,Cu最高;蒲江和彭山Cr相对最高,Hg,As,Zn,Cu,Pb含量则相对最低.与国内其他城市比较,成都、德阳城郊土壤Hg含量,彭山蒲江、德阳Cr含量在全国处于较高水平;成都的As,Cd含量,德阳的Cd,Zn含量,蒲江彭山的Hg,As,Zn,Pb含量处于全国较低水平.  相似文献   

8.
不同栽培方式菜田耕层土壤重金属状况   总被引:6,自引:2,他引:4  
【目的】评价不同栽培方式(温室、大棚和露地)菜田土壤重金属状况,为菜田土壤质量改善和蔬菜高效安全施肥提供一定的理论依据。【方法】针对我国北方3个区域(东北、黄淮海、西北地区)和南方4个区域(华中、西南、华东、华南地区)主要蔬菜种植区不同栽培方式的典型菜田耕层土壤展开调查,选择的主要菜区不同栽培方式的菜田均为远离城郊的未受到工业“三废”、汽车尾气等污染的农村菜田,取样时间是2013年作物收获后或蔬菜施肥前或生长后期,共采集503个土壤样品,对温室、大棚和露地三种栽培方式下土壤重金属状况进行了研究。【结果】1)采样区设施(温室和大棚)菜田土壤重金属Cu、Zn和Cd总量总体上均高于露地菜田土壤,较露地菜田土壤平均分别高12.2%、21.7%和30.4%。2)随着种菜年限的增加,菜田土壤重金属Cu、Zn和Cd总量呈显著增加的趋势。不同栽培方式菜田土壤中均可能存在几种重金属同时污染的复合污染现象,土壤Cu、Zn、Cd等之间的相关性均达到极显著水平。3)采样区不同栽培方式菜田土壤Cd的二级超标率在19.2%~22.3%之间,温室、大棚和露地菜田土壤Cd的单项污染指数平均分别为0.97、0.98和0.70;土壤Cu、Zn、Pb、Cr、As和Hg的二级超标率在0~14.6%之间,单项污染指数在0.06~0.52之间。【结论】设施菜田N、P2O5和K2O总量及有机肥用量均显著高于露地菜田,可能是造成设施菜田土壤中重金属Cu、Zn和Cd积累显著高于露地菜田的重要原因。采样区设施(温室和大棚)菜田土壤Cd总体上处于污染警戒级状态,露地菜田土壤总体上未受到Cd的污染;设施和露地菜田土壤Cu、Zn、Pb、Cr、As和Hg总体上均未构成对土壤的污染。  相似文献   

9.
县域尺度土壤重金属污染特征及源解析——以赵县为例   总被引:2,自引:0,他引:2  
研究采集赵县表层土壤样品,检测其Cr、Cd、Hg、Pb、Ni、Zn、Cu和As含量,采用单因子污染指数法和内梅罗指数法对赵县土壤的重金属污染状况进行评价,引用受体模型UNMIX模型对土壤中重金属来源进行解析。结果表明:(1)土壤中Cr、Cd、Hg、Pb、Ni、Zn、Cu和As平均含量分别为69.29、0.17、0.06、22.21、27.75、71.73、34.07、8.58 mg kg~(-1);(2)单因子污染指数结果表明,Cu元素的超标率为24.10%,且有3个重度污染位点,污染程度最严重;内美罗指数结果表明赵县东北部谢庄乡和范庄镇是污染主要区域,北部前大章乡和韩村镇处于安全水平,其余地区处于警戒水平;(3)土壤中重金属污染源包括"土壤源"、"农药源"、"交通-污灌源",其中,"交通-污灌源"是赵县土壤重金属污染的主要污染源,各类重金属元素含量均较高,"农药源"对东北部地区影响较大,说明污灌、交通和大量使用农药等人为活动是造成赵县表层土壤重金属污染的主要因素。  相似文献   

10.
华北地区饲料和畜禽粪便中重金属质量分数调查分析   总被引:20,自引:3,他引:20  
为加强重金属的源头控制,进一步形成农产品产地有机肥源重金属阻控体系,该文对华北地区畜禽饲料和粪便中重金属质量分数进行采样调查分析,结果表明,华北地区畜禽粪便超标以Cu、Zn为主,Pb、Cr和As次之,Cd、Ni和Hg不超标。各种畜禽粪便以猪粪和肉鸡粪的超标情况最为严重,肉牛粪、蛋鸡粪次之,奶牛粪不超标。猪粪的Cu、Zn超标率分别高达100%、91.67%,肉鸡粪主要以Cr、Cu、Zn污染为主,超标率分别为50%、66.67%和50%,而蛋鸡粪仅有Cu超标,超标率为11.11%。不同畜禽饲料中重金属的超标情况以猪饲料和肉牛饲料最为严重,肉鸡饲料及奶牛饲料次之。按照农业部1224公告对Cu、Zn的标准,猪饲料中Cu、Zn超标率为66.67%、80.00%,肉鸡饲料中Zn超标62.50%;按照饲料卫生标准对Cr、Pb的标准,肉牛中Cr、Pb超标83.33%、66.67%,奶牛饲料中Cr超标60.00%,蛋鸡饲料中Pb超标53.85%,不同畜禽饲料中Cd的质量分数均不超标。畜禽粪便中重金属Cd、Cr、Cu、Zn的质量分数与饲料中重金属质量分数呈极显著正相关(P0.01),Pb、As与饲料中重金属呈显著相关性(P0.05)。该调查研究有助于掌握华北地区重金属饲料-畜禽粪便污染现状,揭示了对于畜禽粪便或有机肥的重金属超标问题应从源头控制。  相似文献   

11.
新乡市大棚菜田土壤重金属积累特征及污染评价   总被引:4,自引:0,他引:4  
采用微波消解-ICP-AES技术,测定不同种植年限大棚菜田土壤样品中As、Pb、Zn、Cd、Cr、Mn、Ni、Cu等重金属的含量,研究不同种植年限与大棚菜田土壤重金属累积的相关性以及大棚菜田土壤重金属累积特征,并利用地积累指数法进行污染评价。结果表明:大棚菜田土壤重金属Zn、Pb、Ni、Mn和Cu的含量与种植年限具有极显著相关性;大棚菜田土壤中重金属Cd和Cr的含量与种植年限不相关。重金属元素间相关性分析表明,Zn与Pb、Cd、Ni、Mn、Cr、Cu,Pb与Cd、Ni、Mn、Cr、Cu,Cd与Ni、Mn、Cr,Ni与Mn、Cr、Cu,Mn与Cr、Cu具有污染同源性,Cu与Cd、Cr不具有污染同源性。地积累指数法污染评价结果显示Cd的污染等级达到了6级,已构成了极严重污染;Zn和Cu的污染等级达到2级,已构成了中度污染;Pb、Mn的污染等级达到1级,已经构成了轻~中度污染;As、Ni、Cr均未构成污染。  相似文献   

12.
重庆市蔬菜地土壤重金属特征研究   总被引:8,自引:1,他引:8  
研究结果表明重庆市蔬菜地0~20cm和20~40cm土层土壤重金属Cr、Ni、Cu、Zn、As、Pb含量无显著差异,Cd、Hg含量差异显著。不同土壤类型平均重金属含量和变异系数差异均较小。城郊区、工矿区和一般农区重金属Ni、Cu、Zn、As、Pb含量及阳离子代换量无显著差异。不同土壤类型和不同区域重金属间均具较强相关性,重金属Cu、Ni、Cr间具有较强伴生关系。重庆市蔬菜地土壤重金属Cd污染较重。  相似文献   

13.
农业废弃物中重金属含量特征及农用风险评估   总被引:10,自引:2,他引:8  
为了解江西省主要农业废弃物中重金属污染状况和评估其再利用产物农用的安全性,在江西省内采集了水稻秸秆、蔬菜废弃物、猪粪和牛粪等样品,对样品中铬、镍、铜、锌、砷、镉、汞和铅重金属含量进行了测定与风险评估。结果表明,动物性废弃物中重金属含量和超标率明显高于植物性废弃物,其中猪粪属于重度污染,牛粪为轻度污染,植物性废弃物尚处于安全水平。若以江西省农业废弃物为原料制成有机肥,并长期施用于设施菜地,猪粪有机肥施用8.4、15.3和23.9 a后土壤中Cu、Cd和Zn将陆续超标,牛粪有机肥施用23.3 a后土壤中Cu将超标,水稻秸秆、蔬菜废弃物有机肥施用约29a后土壤中Cd将超标,故农业废弃物有机肥须严格控制原料中重金属含量,其农用的长期安全性有待加强监测。  相似文献   

14.
北京东南郊农田土壤重金属含量与环境质量评价   总被引:9,自引:2,他引:7       下载免费PDF全文
采集北京市大兴区长子营镇58份土壤耕层样品,分析其中Cu、Zn、Cr、Pb、Ni、As、Cd和Hg 8种重金属含量,其平均含量分别为23.1、59.6、61.8、19.5、23.8、4.7、0.16和0.07 mg·kg-1,8种重金属元素含量平均值均未超出土壤环境质量一级标准,但Cu、Zn、Cr和Cd的平均含量由于受人类活动的影响已经高出北京地区环境背景值。皮尔逊相关系数分析结果表明,Cu、Cr、Zn、Ni与Cd 5种重金属,Zn与Hg,Cr与Pb具有相同来源的可能性较大。在国家土壤环境一级标准下各元素的单因子污染指数均小于1,顺序为CdCrCuZnNiPbHgAs,综合污染指数为0.70。分析不同土地利用类型的土壤重金属单因子指数与内梅罗指数,设施菜田、露地菜田、粮田和果园的内梅罗指数分别为0.88、0.91、0.61和0.59。长子营镇重金属的空间分布特征为中、北部含量高于南部,尤其以中部地区含量最高。总体来说,研究区域内土壤环境质量总体安全,部分地区土壤重金属含量接近临界处于警戒水平。  相似文献   

15.
A total of 50 farmland soil samples were collected from the Yanqi County, Xinjiang, China, and the concentrations of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) were determined by standard methods. The spatial distribution, pollution level and ecological risk status of heavy metals were analyzed based on GIS technology, the Geo-accumulation Index (Igeo), the Pollution Load Index (PLI) and the Potential Ecological Risk Index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn of farmland soils exceeded the background values of irrigation soils in Xinjiang by 1.5, 1.40, 1.33, 2.63, and 4.92 times, respectively. Cd showed a no-pollution level, Zn showed a partially moderate pollution level, Pb showed a slight pollution level, and Cr, Cu, As, Mn, and Ni showed no-pollution level, compared to the classification standard. The PLI values of heavy metal elements of farmland soils varied from 0.83 to 1.89, with an average value of 1.29, at the moderate pollution level. (2) The Individual Potential Ecological Risk Index for heavy metals in the study area was ranked in the order of: As > Ni > Cu > Cd > Pb > Cr> Zn. The RI values of heavy metals of farmland soils varied from 3.45 to 11.34, with an average value of 6.13, at the low ecological risk level. (3) Cu and Mn of farmland soils were mainly originated from the soil parent material and topography of the study area. As, Cd, Ni and Pb were mainly originated from human activities, and Cr and Zn may originated from both natural and anthropogenic factors in the study area.  相似文献   

16.
为探讨有机种植与常规种植两种不同种植方式对土壤重金属含量和污染特性的影响,本文在华北5个地区选取典型的有机蔬菜和有机小麦种植基地及附近相似条件的常规种植地块,比较了土壤中Cu、Zn、Pb、Cr、Cd、As共6种重金属含量的差异,并采用不同评价方法对不同种植方式下土壤中重金属的污染程度进行了评价。结果表明:与常规种植相比,有机种植减轻了土壤酸化和盐渍化,提高了土壤有机质含量和阳离子交换量,在一定程度上有利于降低土壤中重金属的生物有效性。与土壤背景值相比,所有调查地区的土壤重金属均有不同程度的增加和积累。与常规种植相比,有机种植模式能有效降低土壤中Cd、Cr含量,有机小麦种植地块因长期施用大量有机肥导致土壤中Cu、Zn、As大量富集;而常规温室菜田同时施用大量的有机肥、化肥及农药,土壤中Cu、Zn、As富集的风险比有机种植模式高;露天蔬菜有机种植地块土壤中Cu、Zn、As含量与常规地块差异不明显。综合污染指数评价结果显示,调查地区土壤均属于轻污染程度,主要贡献因子为Cd、Cu、Zn,有机种植降低了土壤中重金属的综合污染水平;地累积指数法评价结果表明,调查地区处于无污染到中等污染水平,最明显的污染元素是Cd,有机种植降低了土壤中重金属污染的程度和风险;潜在生态危害指数评价结果表明,所调查地块存在轻微潜在生态风险,其中产生较大生态危害的是Cd,表现出轻微生态危害程度。本研究表明,有机种植减轻了土壤中重金属综合污染水平和污染风险,并减轻了土壤重金属的潜在生态危害。  相似文献   

17.
南宁市郊部分菜区土壤和蔬菜重金属污染评价   总被引:31,自引:0,他引:31  
对南宁市郊 1 2个主要菜区土壤和蔬菜中重金属 ( Cu、Zn、Cd、Pb)含量调查和分析测定 ,采用重金属污染单因子评价方法对土壤重金属污染状况进行评价 ,以国家规定的蔬菜卫生标准评价蔬菜重金属污染状况 ,结果表明 :南宁市郊部分蔬菜区土壤不同程度地受到了 Cu、 Zn、 Cd、 Pb的污染 ,依次是 :Cd>Pb>Zn>Cu;蔬菜中 Cd、 Pb积累较 Cu、 Zn高 ,供试点中大部分蔬菜 Cd、 Pb含量超出了国家规定的蔬菜卫生标准  相似文献   

18.
蔬菜产地土壤重金属含量空间分布研究   总被引:2,自引:1,他引:1  
以浙江省湖州市长兴县为例,应用GIS技术研究了蔬菜产区土壤重金属污染状况及空间分布规律。结果表明:长兴县蔬菜产地平均土壤汞和镉含量明显大于本地背景值,锌平均含量也超过背景值,而砷、铬、铅、铜4种重金属的平均含量则低于或接近背景值。长兴县大部分蔬菜产区土壤重金属含量在国家无公害蔬菜基地标准以下,汞、镉超标的样点分别占总样点的10.4%和4.5%,分别有43%和58.0%的样点超过当地汞、镉背景值,土壤汞、镉含量的最大值分别达到945.85 ng/g和478.88 ng/g。蔬菜产区土壤汞、镉污染呈明显的区域空间分布特征,且与乡镇工业区分布相一致,表明工业污染是引起蔬菜产区土壤重金属超标的主要原因。在长兴县部分地区还存在铬、锌、铜区域性积累趋势。  相似文献   

19.
为了研究珠三角滩涂围垦农田土壤和农作物重金属污染状况,采集了广州南沙、中山一带围垦农田农作物及其根际土壤样品,测定重金属的质量分数。结果表明,围垦农田土壤样品中Cu、Ph、Cd、Ni、Cr和Zn含量均大于广东省相应土壤环境背景值,其中Cu(56.06mg·kg^-1)、Pb(48.30mg·kg^-1)、Cd(0.72mg·kg^-1)、Ni(41.15mg·kg^-1)、Cr(115.1mg·kg^-1)和Zn(200.1mg·kg^-1)分别为背景值的3.30、1.34、12.82、2.26、2.28和4.23倍。与《土壤环境质量标准》(GB15618-1995)中Ⅱ级标准(pH〈6.5)比较,土壤样品中Cu、Cd、Ni和Zn的超标率分别为73.7%、88.6%、59.6%和28.9%。以GB15618-1995中Ⅱ级标准为评价标准,采用Nemerow指数法进行评价,土壤重金属平均综合污染指数为1.86,属3级轻污染。与《食品中污染物限量》(GB2762-2005)等相关标准比较,农作物中Cu、Pb、Cd、Ni、Cr和Zn含量的样品超标率分别为0、28.9%、2.6%、48.3%、12.3%和6.1%。由此可见,珠三角滩涂围垦农田土壤和农作物重金属污染问题已经比较突出,土壤污染以Cd为主,而农作物污染则以Ni、Ph、Cr为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号