首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
High‐intensity ultrasound was evaluated as an alternative method to isolate rice starch without the use of chemicals as in the traditional alkaline steeping method. Surfactants, including sodium dodecyl sulfate (SDS), sodium stearoyl lactylate (SSL), and Tween 80, at 0.1, 0.3, or 0.5% combined with high‐intensity ultrasound were also investigated for rice starch isolation. A rice flour slurry (33%) was subjected to sonication for 15, 30, or 60 min at an amplitude of 25, 50, or 75% and at 40 or 50°C. The starch yield was not significantly affected by the treatment temperature and ranged from 46.7 to 76.2% (starch dry basis) after the sonication treatment; the protein and damaged starch contents of the isolated starches were 0.9–1.7% and 3.1–3.5% (dry basis), respectively. The combination of 0.5% SDS and high‐intensity ultrasound improved the starch yield to 84.9% with low residual protein, however, little improvement was observed with SSL or Tween 80. The pasting properties of isolated starch as measured by a Rapid Visco‐Analyser were affected by the treatment temperature and by the amount of residual protein and damaged starch. The thermal properties of the isolated starch were not changed by sonication and the amylose content remained unchanged. The surface of the isolated starch was not damaged by sonication as shown by scanning electron microscopy. High‐intensity ultrasound, alone or combined with SDS, showed a great potential for rice starch isolation in a short period of time without generating alkaline effluent.  相似文献   

2.
In this study, the structure and selected properties of zeins extracted from corn gluten meal (CGM) pretreated by extrusion and removal of starch were investigated. The structure and properties of the zeins from pretreated CGM changed significantly. Pretreatments can decrease the extraction yields of zeins and change the granule shape and size of zein aggregates. The studies indicated that extrusion and removal of starch can significantly decrease the thermal enthalpy (ΔH1 and ΔH2) of zein from 1.94 ± 0.20 to 0.19 ± 0.10 and from 107.20 ± 0.80 to 78.62 ± 2.30 and J/g, respectively. The SDS‐PAGE results confirmed that the molecular weight of zeins from CGM was 24,000 and 27,000, and the molecular weight of zeins did not change with the pretreatment. On the other hand, the circular dichroism spectroscopy results showed that the processing of extrusion and removal of starch can change the secondary structure content of β‐sheets and β‐turns; these results indicated that extrusion and removal of starch can significantly break the secondary structure of zeins. Furthermore, extrusion and removal of starch can change the sulfhydryl content of zeins. The obtained results provided some fundamental information that is useful for further modification of CGM to improve its functional properties and industrial applications.  相似文献   

3.
The objectives of this research were to develop a rapid method for extracting proteins from mashed and nonmashed sorghum meal using sonication (ultrasound), and to determine the relationships between the levels of extractable proteins and ethanol fermentation properties. Nine grain sorghum hybrids with a broad range of ethanol fermentation efficiencies were used. Proteins were extracted in an alkaline borate buffer using sonication and characterized and quantified by size‐exclusion HPLC. A 30‐sec sonication treatment extracted a lower level of proteins from nonmashed sorghum meal than extracting the proteins for 24 hr with buffer only (no sonication). However, more protein was extracted by sonication from the mashed samples than from the buffer‐only 24‐hr extraction. In addition, sonication extracted more polymeric proteins from both the mashed and nonmashed samples compared with the buffer‐only extraction method. Confocal laser‐scanning microscopy images showed that the web‐like protein microstructures were disrupted during sonication. The results showed that there were strong relationships between extractable proteins and fermentation parameters. Ethanol yield increased and conversion efficiency improved significantly as the amount of extractable proteins from sonication of mashed samples increased. The absolute amount of polymeric proteins extracted through sonication were also highly related to ethanol fermentation. Thus, the SE‐HPLC area of proteins extracted from mashed sorghum using sonication could be used as an indicator for predicting fermentation quality of sorghum.  相似文献   

4.
The size‐exclusion (SE) HPLC profile of total protein extract obtained by sonication of flour samples at ambient temperature showed marked instability on reinjection. Instability was related to the presence of flour proteases that were inactivated by thermal treatment of flour samples at 60°C. Extraction of flour protein by sonication was a function of ultrasonic energy (sonication time × power product) delivered to flour sample. As protein solubility increased, the proportions of the earliest eluted SE‐HPLC fractions (F1 and F2) increased. Oversonication of proteins evidenced by a decrease in F1 amount at the benefit of F2 occurred below the sonication energy level needed for total protein extraction. Ultrasonic energy level was adjusted to allow total protein extraction while limiting oversonication. The sonication procedure was applied on 27 flour samples of contrasting dough strength to extract total proteins. Absolute amount of protein extractable by sonication, determined from SE‐HPLC area, was strongly correlated with flour protein content. Very significant and equivalent relationships were found between alveographic W index and absolute amount of either unextractable protein extract or F1 of SE‐HPLC profile from total protein extract.  相似文献   

5.
High‐intensity ultrasound (sonication) was investigated as a method to rapidly purify starch from sorghum and other cereal grains. To improve the process, buffers were optimized to solubilize sorghum proteins in combination with the sonication. Protein content and starch color were determined to evaluate the efficiency of the extraction process. Sonication times, SDS concentration, different types and concentrations of reducing agents (sodium metabisulfite, dithiothreitol, and β‐mercaptoethanol), and centrifugation speeds of the starch washing procedure were tested. Protein content of isolated sorghum starch was reduced to 0–0.14% (db) after 2 min of sonication (using any of the reducing agents tested). Sodium metabisulfite was chosen as the preferred reducing agent because of its lower toxicity and odor compared with other reducing agents tested. The optimum conditions for producing high‐purity sorghum starches (0.06% protein) were obtained using the following conditions: 2 min of sonication time with 12.5 mM sodium borate buffer, pH 10, containing 0.5% SDS (w/v) and 0.5% sodium metabisulfite (w/v) using 1,500 rpm centrifugation speed during starch washing. Starches separated by this method showed significantly less protein content and b values (yellowness) compared with starches separated by enzymatic methods or methods using NaCl solutions and protein extraction buffers with multiple washing steps, both of which take several hours to complete. Differential scanning calorimetry thermogram values for starches isolated by three different methods showed similar patterns, except that starches obtained with the enzymatic method had slightly higher values of To, Tp, and ΔH. Other cereal starches from whole wheat meal, wheat flour, corn, rice, and barley were also obtained rapidly using sonication.  相似文献   

6.
A quick method for the separation of the main size classes of wheat endosperm proteins using size‐exclusion HPLC is presented. Separations achieved in a 10‐min run showed high correlation with the reference method of our laboratory (35‐min) using the same type of column. The clear separation obtained allows a quick analytical determination of important parameters such as the proportion of the main classes of wheat endosperm protein, the glutenin‐to‐gliadin ratio, and the percentage of unextractable (SDS‐soluble with sonication) polymeric protein, all of which have been closely correlated with breadmaking quality parameters. The improved method offers the advantages of better utilization of valuable resources such as HPLC equipment, quicker analysis of large sample sets, and collection of eluted fractions.  相似文献   

7.
Extraction protocols for β‐glucan from oat flour were tested to determine optimal conditions for β‐glucan quality testing, which included extractability and molecular weight. We found mass yields of β‐glucan were constant at all temperatures, pH values, and flour‐to‐water ratios, as long as sufficient time and enough repeat extractions were performed and no hydrolytic enzymes were present. Extracts contained about 30–60% β‐glucan, with lower proportions associated with higher extraction temperatures in which more starch and protein were extracted. All commercial starch hydrolytic enzymes tested, even those that are considered homogenous, degraded β‐glucan apparent molecular weight as evaluated by size‐exclusion chromatography. Higher concentration β‐glucan solutions could be prepared by controlling the flour‐to‐water ratio in extractions. Eight grams of flour per 50 mL of water generated the highest native β‐glucan concentrations. Routine extractions contained 2 g of enzyme‐inactivated flour in 50 mL of water with 5mM sodium azide (as an antimicrobial), which were stirred overnight, centrifuged, and the supernatant boiled for 10 min. The polymer extracted had a molecular weight of about 2 million and was stable at room temperature for at least a month.  相似文献   

8.
This study was conducted to improve yields and qualities of corn protein co‐products produced by the sequential extraction process (SEP), a process using ethanol to fractionate corn in producing fuel ethanol. A two‐stage extraction protocol was evaluated to recover zein and subsequently recover a glutelin‐rich fraction (GRF). After the simultaneous oil‐extraction and ethanol‐drying step of SEP, zein was extracted from the anhydrous‐ethanol‐defatted, flaked corn by using 70% (v/v) ethanol at 60°C for 1.5 hr in a shaking water bath. Zein was recovered by ultrafiltering and then drying in a vacuum‐oven. Zein yield was 65% of the available zein in the flaked corn. SDS‐PAGE band patterns of the recovered zein closely resembled that of commercial zein. After zein extraction, the GRF was extracted using 45% ethanol and 55% 0.1M NaOH at 55°C for 2 hr. The extract was concentrated by ultrafiltration and then freeze‐dried. GRF yield was ≈65% of the available protein. Freeze‐dried GRF contained 90% crude protein (db), which classified the protein as a protein isolate. As with the protein concentrate from the original SEP, the GRF isolate was highly soluble in water at pH ≥ 7, had good emulsifying and foaming properties, formed stable emulsions, and was heat‐stable.  相似文献   

9.
Relationships between flour functional properties and protein composition were studied using a set of 138 Argentinean wheat samples. Among different protein groups, the incremental increase of gliadin with increasing grain protein content was highest followed by polymeric protein with albumin‐globulin content much lower. Functional properties could be divided into two groups based on dependence on protein composition. Properties such as dough extensibility and bake test loaf volume correlated highly with the percentage of polymeric protein in the grain. Properties such as mixograph dough development time were best correlated with the percentage of polymeric protein in the protein (PPP). Alveograph tenacity showed no significant dependence on PPP. as found previously for extensigraph maximum resistance, but it was correlated with the percentage of unextractable polymeric protein in the protein. Energy (W) appeared to be a more useful alveograph parameter for predicting flour quality.  相似文献   

10.
The polymer conformation structure of gluten extracted from a Polish wheat cultivar, Korweta, and gluten subfractions obtained from 2 U.K. breadmaking and biscuit flour cultivars, Hereward and Riband, was investigated using attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR). The results showed the conformation of proteins varied between flour, hydrated flour, and hydrated gluten. The β‐sheet structure increased progressively from flour to hydrated flour and to hydrated gluten. In hydrated gluten protein fractions comprising gliadin, soluble glutenin, and gel protein, β‐sheet structure increased progressively from soluble gliadin and glutenin to gluten and gel protein; β‐sheet content was also greater in the gel protein from the breadmaking flour Hereward than the biscuit flour Riband.  相似文献   

11.
Corn is one of the most important food and industrial crops in the United States. Zein constitutes about half of the endosperm proteins in corn. Potential applications of zein include use in fibers, adhesives, inks, cosmetics, textiles, and chewing gum. Recently, attempts have been made to utilize zein for food coatings and biodegradable materials. The new applications of zein require it to be resistant to water. Thus, we are interested in new routes for chemical modification of zein (Biswas et al, unpublished). 2‐Octenyl succinic anhydride (OSA) is extensively used in modifying food starches. Our objective was to take advantage of OSA hydophobicity, flexibility, and compatibility with nonpolar groups and incorporate OSA onto zein. This OSA‐modified zein would possess the best of both OSA and zein. A zein solution in dimethyl formamide (DMF) was reacted with various levels of OSA to give modified zein. In a microwave reactor, the reactions proceeded tremendously fast and they were over in 5 min. The anhydride group of OSA reacted with the hydroxyl/amine group of zein to form ester/amide of zein. The reaction of OSA‐modified zein was confirmed by proton nuclear magnetic resonance (NMR) and IR spectroscopy. The preliminary evaluation showed that zein and OSA‐modified zein had comparable mechanical properties.  相似文献   

12.
Batch extraction of zein from dry‐milled whole corn with ethanol was optimum with 70% ethanol in water, an extraction time of 30–40 min, and temperature of 50°C. High yields (60% of the zein in corn) and high zein contents in the extracted solids (50%) were obtained at a solvent‐to‐solids ratio of 8 mL of 70% ethanol/g of corn. However, zein concentration in the extract was higher at lower ratios. Multiple extraction of the same corn with fresh ethanol resulted in a yield of 85% after four extractions, whereas multiple extractions of fresh corn with the same ethanol resulted in high (15 g/L) zein concentration in the extract. Optimum conditions for batch extraction of zein were 45°C, with 68% ethanol at a solvent‐to‐solids ratio of 7.8 mL/g for an extraction time of 55 min. Column extractions were also best at 50°C and 70% ethanol; a solvent ratio of 1 mL/g resulted in high zein concentrations in the extract (17 g/L) but yields were low (20%).  相似文献   

13.
The conventional corn wet‐milling process requires a long steeping time and has environmental and health concerns from the use of SO2. A recently proposed two‐stage enzymatic milling procedure with the first stage of water soaking and coarse grinding of corn and the second stage of incubating with enzymes has been shown to reduce the soaking time and possibly eliminate the need for SO2 addition. This current work explored the applications of protease and high‐intensity ultrasound in the second stage of the two‐stage enzymatic milling for corn starch isolation to further shorten the process time without use SO2. of The starch yield from sonication alone was 55.2–67.8% (starch db) as compared with 53.4% of the water‐only control with stirring for 1 hr and 71.1% of the conventional control with SO2 and lactic acid steeping for 48 hr. Protease digestion alone for 2 hr was not effective (45.8–63.9% yield) in isolating corn starch, but the starch recovery was increased to 61.2–76.1% when protease was combined with sonication. The preferred combination was neutral protease digestion for 2 hr followed by sonication at 75% amplitude for 30 min. The results demonstrated that combinations of high‐intensity ultrasound and neutral protease could replace SO2 and shorten the steeping time in the enzymatic wet‐milling process for corn starch isolation.  相似文献   

14.
A modified procedure for the extraction of α‐zein from corn gluten meal was developed and compared against a commercial extraction method. The modification involved raising the concentration of alcohol in solvent and removing the precipitate by centrifugation. Five organic solvent mixtures were compared using the modified extraction procedure developed along with the reductant sodium bisulfite and NaOH. The modified procedure precipitated most of the non‐α‐zein protein solids by increasing the concentration of alcohol. The supernatant had α‐zein‐rich fraction, resulting in higher yield of α‐zein than the commercial method when cold precipitated. The commercial extraction procedure had a zein yield of 23% and protein purity of 28% using 88% 2‐propanol solvent. The three best solvents, 70% 2‐propanol, 55% 2‐propanol, and 70% ethanol, yielded ≈35% of zein at protein purity of 44% using the modified extraction procedure. Zeins extracted using the novel method were lighter in color than the commercial method. Densitometry scans of SDS‐PAGE of α‐zein‐rich solids showed relatively large quantities of α‐zein with apparent molecular weights of 19,000 and 22,000 Da. The α‐zein‐rich solids also had small amounts of δ‐zein (10,000 Da) because it shares similar solubility properties to α‐zein. A solvent mixture with 70% 2‐propanol, 22.5% glycerol, and 7.5% water extracted significantly less zein (≈33%) compared to all other solvents and had α‐zein bands that differed in appearance and contained little to no δ‐zein.  相似文献   

15.
《Cereal Chemistry》2017,94(2):325-332
Barley β‐glucan has cholesterol‐lowering properties and can be positively affected by heat treatments. The aim of this study was to examine the effects of heat treatments of whole‐grain barley on starch pasting, particle size, and color. Three heat treatments (micronization, roasting, and conditioning) were performed on three cultivars of barley (CDC Rattan, CDC McGwire, and CDC Fibar). All three heat treatments increased peak, breakdown, setback, and final viscosity of CDC Rattan and CDC Fibar. However, they had little effect on the starch‐pasting profile of CDC McGwire. Roasting and conditioning reduced the mean particle size compared with untreated particles, whereas micronization had minimal effect. Heat treatments reduced L* and increased a* and b* compared with no treatment. Overall, this research shows that heat treatments can change other properties of barley that may affect its function in food applications.  相似文献   

16.
Fortifying bread with β‐glucan has been shown to reduce bread quality and the associated health benefits of barley β‐glucan. Fortification of bread using β‐glucan concentrates that are less soluble during bread preparation steps has not been investigated. The effects of β‐glucan concentration and gluten addition on the physicochemical properties of bread and β‐glucan solubility and viscosity were investigated using a less soluble β‐glucan concentrate, as were the effects of baking temperature and prior β‐glucan solubilization. Fortification of bread with β‐glucan decreased loaf volume and height (P ≤ 0.05) and increased firmness (P ≤ 0.05). Gluten addition to bread at the highest β‐glucan level increased height and volume (P ≤ 0.05) to values exceeding those for the control and decreased firmness (P ≤ 0.05). β‐Glucan addition increased (P ≤ 0.05) extract viscosity, as did gluten addition to the bread with the highest β‐glucan level. Baking at low temperature decreased (P ≤ 0.05) β‐glucan viscosity and solubility, as did solubilizing it prior to dough formulation. Utilization of β‐glucan that is less soluble during bread preparation may hold the key to effectively fortifying bread with β‐glucan without compromising its health benefits, although more research is required.  相似文献   

17.
Nine hull‐less barley (HB) containing waxy (0–7% amylose), normal (≈25% amylose), or high amylose (≈42% amylose) starch with normal or fractured granule make‐up and 4–9% (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) were pearled to remove 70% of the original grain weight in 10% intervals. The pearled fractions were analyzed for β‐glucan distribution within HB grain. Protein content of the pearled fractions indicated that the three outermost fractions contained pericarp and testa, aleurone, and subaleurone tissues, respectively. For all HB, β‐glucan and acid‐extract viscosity were very low in the outermost 20% of the kernel. For low β‐glucan HB, β‐glucan content was the greatest in the subaleurone region and declined slightly toward inner layers. For high β‐glucan HB, however, more than 80% of grain β‐glucan was distributed more evenly throughout the endosperm. Acid extract viscosity was significantly (P < 0.01) correlated with total (r = 0.75) and soluble (r = 0.87) β‐glucan content throughout the kernel of all HB. Growing conditions, location and year, had significant effects on the concentration of protein, starch and β‐glucan. However, protein, starch, and β‐glucan distribution patterns were not affected by growing conditions. The difference in β‐glucan distribution between low and high β‐glucan HB may explain the difference in milling performance of HB with low or high β‐glucan.  相似文献   

18.
Barley β‐glucan concentrate shows great potential as a functional food ingredient, but few product applications exist. The objectives of this study were to formulate a functional beverage utilizing barley β‐glucan concentrate, and to make a sensory evaluation of beverage quality in comparison to pectin beverages and to assess shelf stability over 12 weeks. Three beverage treatments containing 0.3, 0.5, and 0.7% (w/w) barley β‐glucan were developed in triplicate. Trained panelists found peely‐ and fruity‐orange aroma and sweetness intensity to be similar (P > 0.05) for all beverages tested. Beverage sourness intensity differed among beverages (P ≤ 0.05). Panelists evaluated beverages containing 0.3% hydrocolloid as similar (P > 0.05), whereas beverages with 0.5 and 0.7% β‐glucan were more viscous (P ≤ 0.05) than those with pectin at these levels. Acceptability of beverages was similar according to the consumer panel. Shelf stability studies showed no microbial growth and stable pH for all beverages over 12 weeks. Colorimeter values for most beverages decreased (P ≤ 0.05) during the first week of storage, mostly stabilizing thereafter. With an increase in concentration, β‐glucan beverages became lighter in color (P ≤ 0.05) and cloudier, but these attributes for pectin beverages were not affected (P > 0.05). β‐Glucan beverages exhibited cloud loss during the first three weeks of storage. β‐Glucan can therefore be successfully utilized in the production of a functional beverage acceptable to consumers.  相似文献   

19.
Oat and barley (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) are readily extracted by hot water but rye β‐glucan is resistant to such extraction. This poor extractability might be due to entrapment within a matrix of arabinoxylan (AX) cross‐linked through phenolic constituents. AX are the major nonstarch polysaccharides of the rye kernel. In this study, several approaches were compared in an effort to determine optimum conditions for extraction of high yields, high molecular weight (MW), and high purity of β‐glucan from Canadian rye whole meal. Variables investigated included sodium hydroxide concentrations, extraction time, sample prehydration, extraction under low temperature, and prior extraction of AX with barium hydroxide. There was a linear relationship between the strength of NaOH and amount of β‐glucan extracted and because MW was essentially the same up to 1.0N NaOH, this extraction agent, at room temperature for 90 min, was selected to isolate rye β‐glucan. The β‐glucan was then purified and structure and molecular weight distribution studied.  相似文献   

20.
Despite much research, there are very few commercial prolamin bioplastics. The major reason, apart from their high cost, is that they have inferior functional properties compared with synthetic polymer plastics. The inferior functional properties are because the prolamins are complex, each consisting of several classes and subclasses, and the functional properties of their bioplastics are greatly affected by water. Prolamin bioplastics are produced by controlled protein aggregation from a solvent or by thermoplastic processing. Recent research indicates that aggregation occurs by polypeptide self‐assembly into nanostructures. Protein secondary structure in terms of α‐helical and β‐sheet structure seems to play a key but incompletely understood role in assembly. Also, there is inadequate knowledge as to how these nanostructures further assemble and organize into the various forms of prolamin bioplastics such as films, fibers, microparticles, and scaffolds. Many methods have been investigated to improve prolamin bioplastic functionality, including better solvation of the prolamins, plasticization, physical and chemical cross‐linking, derivatization, and blending with synthetic and natural polymers, and some success has been achieved. The most promising area of commercialization is the biomedical field, in which the relative hydrophilicity, compatibility, and biodegradability of, particularly, zein and kafirin are advantageous. With regard to biomedical applications, “supramolecular design” of prolamin bioplastics through control over inter‐ and intramolecular weak interactions and disulfide/sulfhydryl interchange appears to have considerable potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号