首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
生物质炭施用对马铃薯产量和品质的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
王贺东  吕泽先  刘成  刘晓雨  潘根兴 《土壤》2017,49(5):888-892
通过田间试验,观测分析不同生物质炭用量(0、20和40 t/hm~2)下马铃薯产量、品质和土壤肥力的变化及其年际效应,为生物质炭在马铃薯生产过程中的应用提供理论依据。结果表明,低剂量生物质炭施用(20 t/hm~2)显著提高了马铃薯总产量和商品率,生物质炭施用后第一年马铃薯总产量比对照提高了41.08%。当生物质炭用量为40 t/hm~2时,马铃薯产量与对照没有显著差异但降低了一些品质指标,其中2016年干物质和淀粉含量比对照降低了18.47%和24.03%。生物质炭施用显著提高了土壤有机碳、有效磷和速效钾含量,并增加了土壤C/N和电导率;而对土壤p H和全氮含量的影响与生物质炭施用年限有关。生物质炭施用量和施用年限显著影响马铃薯产量和品质。低剂量生物质炭施用能显著提高马铃薯产量,但第二年无增产效果;随着生物质炭用量增加马铃薯增产效果消失,还可能会降低马铃薯品质。生物质炭施用后马铃薯产量变化与土壤紧实度改善无必然联系。  相似文献   

2.
生物质炭对旱地红壤理化性状和作物产量的持续效应   总被引:6,自引:3,他引:3  
以江西进贤旱地红壤为供试土壤,连续3a观测施用生物质炭(0t/hm2,2.5t/hm2,5t/hm2,10t/hm2,20t/hm2,30t/hm2和40t/hm2)后土壤容重、孔隙度、饱和导水率、土壤pH、有机碳、阳离子交换量及油菜和红薯产量的变化。结果表明:生物质炭连续3a降低土壤容重,提高了土壤孔隙度和土壤饱和导水率,提升了土壤pH,增加了土壤有机碳和阳离子交换量;油菜和红薯产量均随生物质炭施用量的增加而增加,且红薯产量增幅大于油菜。随种植年限的延长,作物产量增幅越大。高施用量(40t/hm2)处理在旱地红壤上的改良效果和增产效应最好,施用生物质炭后第3a其土壤容重下降了0.17g/cm3,土壤孔隙度和饱和导水率分别增加了11.71%和126.57%,土壤pH、有机碳和阳离子交换量分别提高了7.25%,47.88%和44.61%,油菜和红薯产量分别增加了1.23t/hm2和14.83t/hm2。在连续3a内,旱地红壤施用生物质炭对改善土壤理化性状,维持作物增产具有持续效应,为生物质炭在红壤地区的大规模推广应用提供了科学依据。  相似文献   

3.
生物质炭对土壤养分及设施蔬菜产量与品质的影响   总被引:6,自引:0,他引:6  
【目的】 我国是世界最大的温室蔬菜生产国,但随着种植年限的增长,温室设施栽培中土壤次生盐渍化、蔬菜品质降低及作物减产等问题日益突出。本文以生物质炭为土壤改良剂施用于温室大棚蔬菜栽培中,分析其对蔬菜生长和土壤养分供应的影响,从而探索一种绿色可持续发展的设施农业生产方式。同时,也为生物质炭在大棚蔬菜栽培中的合理施用提供依据。 【方法】 采用田间试验方法,以温室大棚西芹和茄子为研究对象,试验共设5个生物质炭施用水平,分别为0、20、40、80和160 t/hm2,依次记为B0、B20、B40、B80和B160处理。分析了蔬菜产量、西芹植株硝酸盐含量、茄子维生素C含量及过氧化氢酶活性和土壤养分含量。 【结果】 与B0相比,B20和B160处理能够提高西芹产量,增产幅度分别达31.6%和30.3%,B40和B80处理对西芹产量无显著影响;B20处理对西芹硝酸盐含量无显著影响,B40、B80和B160处理显著降低了西芹植株硝酸盐含量,降低幅度分别达37.0%、37.2%和49.1%,但处理间差异不显著。施用生物质炭对茄子产量、茄子维生素C含量与过氧化氢酶活性影响不显著,当施用量达160 t/hm2时,反而抑制了茄子果实氮、磷养分积累。与B0相比,施用生物质炭有效增加了西芹收获后土壤速效钾含量,其中,B80和B160处理增加幅度分别为95.8%和196.2%;茄子收获后,B160处理土壤速效钾增加幅度达165.5%。施用生物质炭对土壤有效磷含量无显著影响,对土壤碱解氮含量的影响较为复杂,即对西芹收获后土壤碱解氮含量影响不显著,却降低了茄子收获后土壤碱解氮含量,其中,B40、B80和B160处理降低幅度分别达11.7%、10.0%和20.3%。经济效益分析表明,B20处理温室大棚经济收益最高,与B0相比纯收入增加9.4%;随着生物质炭施用量增多,肥料投入成本加大,B160处理收益最低。 【结论】 在本试验条件下,生物质炭用量为20 t/hm2时增产效果最好,且温室大棚收益最高,而对蔬菜品质无显著影响;当其施用量为40 t/hm2时能显著降低西芹硝酸盐含量。因此,需要继续研究生物质炭施用量在20~40 t/hm2之间的最适量,达到既能提高蔬菜产量又能改善品质的目的。   相似文献   

4.
分析生物质炭施用对潮土理化性状、酶活性及黄瓜产量的影响,为生物质炭在农业中的推广应用提供科学依据。以如皋市农业科学研究所大棚示范区为试验基地,通过田间小区试验,研究了不同生物质炭施用量(0,5,10,20,30,40t/hm~2)条件下土壤理化性状、酶活性及黄瓜产量变化。结果表明:生物质炭施用对土壤理化性状及土壤酶活性有显著的影响。高施用量(40t/hm~2)处理对土壤物理性状的改良效果最好,当生物质炭施用量为30t/hm~2时对土壤养分含量提升效果最好。与对照相比,施用生物质炭各处理土壤容重降幅为0.88%~10.52%,而土壤孔隙度、饱和含水量、田间持水量、饱和导水率、有机质、全氮、硝态氮、铵态氮和速效磷含量的增幅分别为3.68%~7.53%,27.96%~119.25%,30.73~55.05%,1.89%~224.61%,10.39%~54.56%,6.06%~22.58%,2.33%~45.63%,235.71%~414.29%和19.37%~77.76%。土壤脲酶和过氧化氢酶的活性及黄瓜产量随着生物质炭施用量的增加均呈先增加后降低的趋势,两种酶的活性分别在生物质炭施用量为30t/hm~2和20t/hm~2时最大,较对照分别提高了104.57%和15.38%;生物质炭施用量为30t/hm~2时对黄瓜增产效果最好,该处理下黄瓜产量较对照提高了21.80%。主成分分析结果表明,不同生物质炭施用量处理下的土壤质量次序为C4C5C3C2C1CK。在土壤中施用生物质炭不仅可以促进黄瓜增产,改善土壤理化性状,提高土壤养分含量,还可以改良土壤生物学性质,提升土壤酶活性。  相似文献   

5.
生物质炭输入减少稻田痕量温室气体排放   总被引:6,自引:2,他引:4  
为揭示不同水平生物质炭输入对稻田土壤理化性质、水稻产量及温室气体排放的影响,采用自制竹炭在4种不同施用水平下(0、10、20、40 t/hm2)输入稻田土壤,开展了水稻一个生长周期的田间试验。结果表明,生物质炭输入可显著提高土壤p H值和有机碳含量(P0.05),且有机碳含量增幅与生物质炭施用水平呈正比(相关系数为0.78,P0.01)。生物质炭施用可显著降低土壤容重(P0.05),最大降幅为0.25 g/cm3,土壤容重随着生物质炭施用量的增加而降低。不同处理水稻产量无显著性差异(P0.05)。CH4累积排放量与生物质炭施用量呈负相关性(相关系数为-0.24,P0.01),投加生物质炭可显著降低稻田CH4排放通量和累积排放量(P0.05),但过量施用生物质炭(超过20 t/hm2)并不能显著降低CH4累积排放量(P0.05)。相比对照处理(不输入生物质炭),生物质炭输入后一周内可显著性降低N2O排放通量(P0.05),并在排水烤田时升高,最终稳定于9.80 mg/(m2·h)。生物质炭输入可显著性降低N2O累积排放量(P0.05),但不同水平生物质炭输入处理之间差异不显著(P0.05)。该试验条件下,生物质炭施用量为20 t/hm2时可实现稻田稳产和固碳减排目标,该研究可为太湖地区苕溪流域稻田增汇和温室气体减排提供参考。  相似文献   

6.
【目的】 探讨不同生物质炭施用量对连作黄瓜根区土壤环境的作用效果,为用生物质炭修复黄瓜连作土壤以及在农业中的推广应用提供科学依据。 【方法】 以如皋市农业科学研究所大棚示范区为试验基地,一次性向设施农田土壤中添加0 (CK)、5 (C1)、10 (C2)、20 (C3)、30 (C4)、40 (C5) t/hm2的生物质炭,通过连续两年温室定位试验,测定生物质炭施用后黄瓜连作根区土壤的物理性状、养分含量及酶活性的变化状况,采用土壤质量指数 (SQI) 评价不同生物质炭施用量对黄瓜连作两季后土壤质量的影响。 【结果】 随着生物质炭施用量的增加,第一季与第二季黄瓜根区土壤的理化性状变化趋势一致,具体表现为容重不断降低,土壤孔隙度、饱和含水量、田间持水量、饱和导水率、有效磷及有机质含量不断升高,且当生物质炭施用量为30 t/hm2(C4处理) 时,土壤中全氮、硝态氮和铵态氮含量最高。与CK相比,生物质炭的施用可以减少黄瓜根区土壤 < 0.25 mm粒径的微团聚体含量,而增加 > 0.25 mm粒径的大团聚体含量,土壤中0.25~0.5 mm和0.5~1 mm粒径的团聚体含量都在高施用量 (40 t/hm 2) 处理中达到最大值。生物质炭施用后的连续两季,黄瓜根区土壤中脲酶与过氧化氢酶活性均随生物质炭施用量的增加呈先增加后降低的趋势,其活性分别在生物质炭施用量为30 t/hm2和20 t/hm2时最大。当生物质炭施用量为30 t/hm2时,两季黄瓜产量都达到最高,分别为3.24 × 104 kg/hm2和6.18 × 104 kg/hm2。通过土壤质量指数 (SQI) 对生物质炭施用后两季黄瓜土壤质量进行评价可知,不同生物质炭施用水平下土壤质量指数依次为C4 > C5 > C3 > C2 > C1 > CK,相应的土壤质量指数分别为0.774、0.740、0.728、0.650、0.635、0.583。 【结论】 施用生物质炭对黄瓜连作田土壤的理化性状和酶活性均有显著影响,高施用量 (40 t/hm2) 条件下对土壤物理性状改善效果最好,当生物质炭施用量为30 t/hm2 (C4处理) 时对黄瓜连作根区土壤的养分含量提升效果最佳。SQI可以客观定量地评价生物质炭施用对连作黄瓜根区土壤质量的影响,其分析结果表明改善黄瓜连作土壤环境的最佳生物质炭施用量为30 t/hm2。   相似文献   

7.
市政污泥直接施用对玉米生长和品质的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]研究市政污泥施用后对土壤和作物生长与品质的影响,为市政污泥的直接土地利用提供科学依据。[方法]以玉米为试验材料,利用田间试验研究了污泥不同的施用方式(沟施、撒施、表土下20 cm施用)和施用量(30,90,200 t/hm~2)对玉米生长和品质以及土壤重金属含量的影响。[结果]适量的污泥对玉米个体的生长有促进作用,施用量为30 t/hm~2时株高、单株生物量、叶片叶绿素含量、籽粒蛋白质含量均显著高于对照。表土下20 cm施用污泥在整体上较其他两种施用方式有更高的出苗率和籽粒产量,在施用量为30 t/hm~2时籽粒产量最高,为656.70 kg/667m~2,高出对照29.64%。3种施用方式下,土壤中的Cu,Zn,Pb含量及玉米籽粒中的Cu,Zn含量均随污泥施用量的增加而增加,而玉米籽粒中Pb含量与对照相比差异不显著,土壤和籽粒中重金属含量均未超过国家相关标准。以重金属浓度满足土壤环境质量标准为限制条件,推算出当地的市政污泥施用量为30 t/hm~2可以连续施用5 a。[结论]施用30 t/hm~2的污泥具有良好的效果和环境效应;为了降低污泥在土壤中的局部累积而导致的胁迫效应,表土下20 cm施用和地表撒施是相对较好的方式。  相似文献   

8.
生物质炭对冬小麦产量、水分利用效率及根系形态的影响   总被引:10,自引:3,他引:10  
为了探讨生物质炭对冬小麦产量、水分利用效率及根系形态的影响,该文利用田间小区试验研究了生物质炭不同施用水平对冬小麦产量、水分利用效率、根形态的影响及差异性。结果表明:生物质炭显著增加了冬小麦茎蘖数、有效穗数和产量(P0.05),与对照相比,其增加比例范围分别为1.6%~4.9%、0.7%~1.5%、1.0%~5.9%。冬小麦耗水量随着生物质炭施用量的增加而逐渐减小,水分利用效率由对照的17.06 kg/(hm2·mm)提高到17.69~19.57 kg/(hm2·mm)。生物质炭显著增加了冬小麦根系总根长和总表面积(P0.05),在0~20和≥20~40 cm范围内,总根长的增加比例范围分别为2.8%~14.6%、8.4%~21.2%;总表面积增加比例范围分别为5.6%~19.5%、1.9%~13.6%。冬小麦根系形态特征与冬小麦产量呈极显著正相关(P0.001)。各处理中以生物质炭施用量为40 t/hm2的处理对冬小麦产量、水分利用效率及根系生长的促进作用最为显著。该研究可为科学施用生物质炭提供参考。  相似文献   

9.
生物质炭(biochar,BC)施用具有改良土壤、提高作物产量等效应。本文探究了生菜产量、品质和土壤性质等对化肥氮(N)减施和生物质炭施用1年后的响应,以期为珠三角地区露地蔬菜生产中化肥合理减量和生物质炭科学施用提供依据。通过在佛山市三水区开展田间小区试验,观测了常规施氮(N100%)、减氮20%(N80%)、减氮40%(N60%)、减氮40%+生物质炭10 t/hm2(N60%+BC10)和减氮40%+生物质炭20 t/hm2(N60%+BC20)处理下生菜产量、品质、叶片SPAD值及土壤养分等指标的变化。结果表明:(1)较N100%处理,N60%处理生菜产量显著降低13.5%。减氮40%条件下,配施10~20 t/hm2生物质炭可提高生菜产量9.5%~22.7%,与N100%处理产量相当,说明生物质炭施用对生菜产量具有显著提升效果。(2)氮肥减量和生物质炭施用对生菜单株鲜重、直径和水分含量等均无显著影响,而对叶片SPAD值在不同生育期有不同影响。减氮条件下施用生物质炭处理生菜的氮和磷吸收量提高,是其增产机理之一。(3...  相似文献   

10.
司海丽  纪立东  李磊  勉有明  朱英  刘菊莲  尚红莺  杨洋 《土壤》2022,54(6):1124-1131
【目的】为了探讨生物有机肥长期施用对宁夏引黄灌区盐碱土壤化学和微生物特性的影响,明确生物有机肥的最佳施用量及施肥模式。【方法】以田间连续4年定位试验为依托,研究生物有机肥施用量0 t/hm2(CK)、4.5 t/hm2(T1)、9 t/hm2(T2)、13.5 t/hm2(T3)及生物有机肥9 t/hm2配施无机化肥360 kg/hm2(N)(T4)对玉米根系土壤养分含量、酶活性、微生物生物量和微生物群落多样性及玉米产量的影响。【结果】:(1)连续四年施用生物有机肥可明显降低土壤pH和全盐含量。土壤养分含量及土壤酶活性随着生物有机肥施用量增加呈递增趋势,且生物有机肥施用9 t/hm2时,增施无机化肥可显著增加土壤速效钾含量14.73%;(2)土壤微生物群落代谢AWCD值和土壤微生物种群代谢多样性指均随着生物有机肥施用量的增加而增加,单施生物有机肥13.5 t/hm2处理下土壤培养192 h时AWCD值为0.84,经Tukey检验分析,Shannon(H)和Mcintosh(U)指数较CK分别增加10.11%和62.67%。(3)随着生物有机肥施用量增加,土壤微生物生物量碳氮磷含量呈递增趋势,各处理分别比CK增加66.78%、59.19%和51.84%;(4)施用生物有机肥可明显增加玉米产量,提高玉米产值,其中以生物有机肥施用9 t/hm2配施无机化肥360 kg/hm2(N)时,玉米产量和净收入最佳,分别为11499 kg/hm2和8709元/hm2。【结论】长期施用生物有机肥可改善宁夏盐碱土壤质地,提高土壤质量,增加土壤生物活性及玉米产量,其中以生物有机肥施用9 t/hm2配施无机化肥360 kg/hm2(N)时综合效果最佳。  相似文献   

11.
生物炭用量对塿土微生物量及碳源代谢活性的影响   总被引:2,自引:0,他引:2  
目的研究果树树干、枝条制成的生物炭添加4~5年后,其添加量对土微生物量及碳源代谢活性的影响,为生物炭改良土的合理应用提供数据支撑和理论依据。方法基于陕西关中土的长期田间试验,采用氯仿熏蒸—浸提法及Biolog-ECO检测法,研究了生物炭不同添加量 (0、20、40、60、80 t/hm2) 下冬小麦不同生育期土壤微生物量C、N、P、C/N的动态变化及土壤微生物的碳源代谢活性。结果当生物炭添加量为40~60 t/hm2时,显著提高了土壤微生物量碳;当生物炭添加量 ≥ 40 t/hm2时,显著提高了土壤微生物量C/N;添加生物炭对土壤微生物量N、P没有显著影响。当生物炭添加量为20 t/hm2时,显著增加了土壤微生物量碳的季节波动;当生物炭添加量为40~60 t/hm2时,显著增加了土壤微生物量C/N的季节波动;当生物炭添加量为20~60 t/hm2时,显著降低了土壤微生物量P的季节波动;添加生物炭对土壤微生物量N的季节波动没有显著影响。添加生物炭对土壤微生物碳源代谢活性没有显著影响,但高量生物炭的添加有降低土壤微生物整体代谢活性的趋势。当生物炭添加量为60 t/hm2时,显著降低了土壤丰富度指数,显著提高了均匀度指数;当生物炭添加量 ≥ 60 t/hm2时,显著降低了Shannon-Wiener指数、Simpson指数。添加生物炭对土壤微生物利用糖类、氨基酸类、多聚物类、多酚化合物类、多胺类碳源的利用率没有显著影响,但生物炭添加量为60 t/hm2时,土壤微生物显著降低了对羧酸类碳源的利用率;糖类、羧酸类、氨基酸类是土中微生物比较偏好、利用率较高的碳源。结论生物炭添加4~5年后,在第7季作物冬小麦生育期内,其不同添加量对土壤微生物量及微生物功能多样性的影响依然有显著的差异。生物炭添加量为40 t/hm2时,可以显著提高土壤微生物量碳和C/N,显著降低土壤微生物量磷的季节波动;生物炭添加量大于40 t/hm2时,土壤微生物的整体代谢活性,表征土壤微生物功能多样性的丰富度指数、Shannon-Wiener指数、Simpson指数,土壤微生物对糖类、氨基酸类、多胺类碳源的利用率均呈现降低趋势。因此,生物炭添加量必须控制在合理的范围内,避免对土壤产生不良影响。  相似文献   

12.
生物炭配施氮肥改善表层土壤生物化学性状研究   总被引:4,自引:0,他引:4  
【目的】 探讨生物炭配施氮肥对土壤碳氮、生物学性质及春玉米产量的影响,阐明生物炭配施氮肥后,土壤碳氮含量及生化性质变化规律,旨在为合理培肥、改善土壤环境、增加春玉米产量提供科学依据。 【方法】 在内蒙古西部 (包头) 和东部 (通辽) 2个试验点进行大田试验,设生物炭用量0、8、16、24 t/hm2 4个水平 (分别记作C0、C8、C16、C24) ,设施氮量 0、150、300 kg/hm2 3个水平 (分别记作N0、N150、N300) ,于成熟期测产,并于收获后分3个土层 (0—10 cm、10—20 cm、20—40 cm) 测定土壤碳氮含量、微生物量及酶活性。 【结果】 生物炭和氮肥对2个试验点0—10 cm、10—20 cm和20—40 cm土层有机碳、碳氮比、微生物量及酶活性均有极显著影响 (P < 0.01) ,且两者交互作用极显著。3个土层有机碳含量以及0—10 cm和10—20 cm土层全氮含量在各施氮水平随生物炭施用量的增加而增加。施加生物炭和氮肥均能显著提高3个土层的微生物量碳、微生物量氮、蔗糖酶活性、脲酶活性以及总体酶活参数,且随炭、氮施入量的增加呈先增后减的趋势;施用生物炭后0—10 cm和10—20 cm土层的微生物量碳、微生物量氮以及蔗糖酶、脲酶活性均显著高于20—40 cm土层。生物炭配施氮肥可显著提高春玉米穗粒数、百粒重及产量,2试验点产量均以C 8N150最大,包头和通辽分别为15.51 t/hm2和16.43 t/hm2。通过相关分析可知,春玉米产量主要与0—10 cm和10—20 cm土层的微生物量及酶活性有关。 【结论】 适量生物炭配施氮肥能够增加土壤碳氮储量、微生物量和酶活性,改善土壤微生态环境。炭氮配施能够提高土壤肥力,减少氮肥用量,本试验中以8 t/hm2生物炭配施150 kg/hm2氮肥为最佳施肥量。   相似文献   

13.
生物炭和有机肥施用提高了华北平原滨海盐土微生物量   总被引:2,自引:0,他引:2  
【目的】研究施加不同量生物炭和有机肥对山东滨州滨海盐地土壤微生物量碳、氮 (MBC、MBN) 含量的影响,为改善盐地土壤环境质量和盐地的可持续利用提供科学依据。【方法】试验共设置6个处理:CK (无机肥)、C1[生物炭5 t/(hm2·a)]、C2[生物炭10 t/(hm2·a)]、C3[生物炭20 t/(hm2·a)]、M1[有机肥7.5 t/(hm2·a)]、M2[有机肥10 t/(hm2·a)]。各处理均施加等量的N[200 kg/(hm2·a)]和P2O5[120 kg/(hm2·a)],生物炭和有机肥处理不足部分由尿素和磷酸二铵补充。生物炭、有机肥和基肥均分为玉米、小麦两季人工施入,每个处理3次重复,小区随机排列。在玉米和小麦的不同生育期,取0—20 cm和20—40 cm土样,测定土壤MBC和MBN、土壤pH、土壤含水量、硝态氮和铵态氮含量。【结果】施加生物炭和有机肥均可增加土壤MBC和MBN。施用基肥5天后,生物炭和有机肥显著增加了土壤MBC和MBN含量,而追肥对土壤MBC和MBN的影响并不显著。生物炭处理土壤MBC变化范围在64.1~570.0 μg/g,有机肥处理变化范围在90.6~451.3 μg/g之间。C3、M1、M2处理均显著增加了0—40 cm土壤MBC (增幅在40.9%~118.4%之间) ,而C1、C2仅显著增加20—40 cm土层的MBC含量 (增幅分别为47.7%、60.0%) 。生物炭处理MBN含量在5.3~92.5 μg/g之间,与CK相比差异不显著;有机肥处理变化范围为4.2~163.9 μg/g,M1和M2显著增加了土壤MBN含量,增加幅度达56.4%~162.3%。生物炭和有机肥的施加对土壤pH影响显著,生物炭显著降低了20—40 cm的土壤pH,而有机肥显著降低了0—40 cm的土壤pH。相关分析表明,土壤pH与土壤MBC和MBN均呈极显著的负相关关系。土壤MBC和MBN均与土壤矿质氮表现出显著正相关关系。除M1处理玉米产量显著降低外,生物炭和有机肥的施加对玉米和小麦产量均没有产生显著影响。玉米季前期以细菌为主,后期则以真菌为主。小麦季MBC/MBN波动较大。【结论】施加生物炭和有机肥对土壤MBC和MBN含量影响显著,对盐地土壤MBC和MBN均具促进作用。土壤MBC和MBN与土壤pH具有显著的负相关关系,与土壤矿质氮呈显著正相关关系,说明生物炭和有机肥的施加能够降低盐地土壤pH,增加土壤矿质氮,有利于盐地土壤环境质量的改善。  相似文献   

14.
秸秆生物炭和鸡粪对铅胁迫下玉米生长和生理特性的影响   总被引:2,自引:1,他引:1  
通过盆栽模拟铅(Pb)胁迫试验,研究了不同秸秆生物炭添加量(20,40g/kg土壤)、不同鸡粪添加量(20,40g/kg土壤)、秸秆生物炭和鸡粪等量复配(各20g/kg土壤)处理对Pb胁迫下玉米生长和生理特性的影响。结果表明:施用生物炭和鸡粪不同处理均显著增加铅胁迫下玉米的株高、鲜重、光合色素含量、光合性能和抗氧化酶活性。生物炭和鸡粪等量复配处理较对照提高鲜重69.9%、株高50.0%、叶绿素b含量50.0%、净光合速率(P_n)97.9%、蒸腾速率(T_r)126.5%、气孔导度(G_s)132.6%、超氧化物歧化酶活性(Superoxide dismutase,SOD)68.4%、过氧化物酶活性(Peroxidase,POD)69.4%、过氧化氢酶活性(Catalase,CAT)115.3%、脯氨酸含量88.6%、可溶性糖含量48.6%。生物炭和鸡粪等量复配处理对促进铅胁迫下玉米的生长,提高叶片的光合能力和抗氧化能力效果最佳,为改善重金属铅污染的土壤质量和作物生长提供了经济有效的途径。  相似文献   

15.
通过田间试验研究了生物炭不同施用量(0、10、20、40、80 t/hm2)对玉米茎秆中的钾含量、茎秆形态特征、茎秆质量性状及产量的影响。结果表明:土壤中施加生物炭能够促进玉米茎秆各节的钾含量,并且生物炭的施入矮化了蜡熟期玉米茎基部3~5节的节间长,增大了玉米茎粗,增强了茎秆弹力和茎秆外皮穿刺力,增加了茎秆干物质积累,使茎秆粗壮、坚韧。随着生物炭施用量增加对玉米茎秆钾含量、茎秆性状及产量的影响均表现出先增大后降低的趋势。施炭量40 t/hm2为最优施用量,产量达13261 kg/hm2,较对照提高了25.99%。当施炭量为80 t/hm2时茎秆中的钾含量、茎秆形态特征、茎秆质量性状及产量的提高幅度略有下降。  相似文献   

16.
为明确施用生物炭对砒砂岩与沙复配土壤水分保持及肥力提升的影响,采用盆栽试验,研究了不同生物炭施用量(0,10,20,30,50g/kg(以风干土计))对砒砂岩与沙复配土壤理化性状及玉米生长的影响。结果表明:在种植玉米一季后,施用生物炭可显著降低复配土壤容重,尤其当生物炭施用量达到30g/kg时,土壤容重可降低至1.37g/cm3,但当生物炭施用量增加到50g/kg时,土壤容重又出现增加的趋势;土壤田间持水量随生物炭施用量的增加呈显著增加趋势,但当施用量增加到50g/kg时又会出现下降趋势;土壤pH、全盐量随生物炭添加量的增加显著增加,尤其当生物炭添加量为50g/kg时,土壤pH可达8.80,全盐量可达2.51g/kg;土壤有机质、有效磷、速效钾含量也随生物炭施用量的增加而显著增加,但有效磷在生物炭施用量增加至50g/kg时出现下降趋势。进一步分析不同生物炭处理对玉米生物量的影响,发现玉米根干重、地上部分干重、百粒重、单株产量均随生物炭施用量的增加呈显著增加趋势,但当生物炭施用量增加到50g/kg时,上述各指标反而显著降低。生物炭对于砒砂岩与沙复配土壤理化性状、水分保持、肥力提升、作物生长及产量等诸多方面都有明显改善效果,在施用过程中需要注意使用量,在本试验条件下,生物炭推荐施用量为30g/kg干土。  相似文献   

17.
Soil water and nutrient status are both of major importance for plant appearance and growth performance. The objective of this study was to understand the effect of biochar (1.5%) and a biochar-compost mixture (1.5% biochar + 1.5% compost) on the performance of Phragmites karka plants grown on a synthetic nutrient-poor sandy clay soil (50% sand, 30% clay, and 20% gravel). Indicators of plant performance, such as growth, lignocellulosic biomass, water status (leaf water potential, osmotic potential, and turgor potential), mineral nutrition status, leaf gas exchange, and chlorophyll fluorescence, and soil respiration (carbon dioxide (CO2) flux) were assessed under greenhouse conditions. Biochar-treated plants had higher growth rates and lignocellulosic biomass production than control plants with no biochar and no compost. There was also a significant increase in soil respiration in the treatments with biochar, which stimulated microbial interactions. The increase in soil water-holding capacity after biochar amendment caused significant improvements in plant water status and plant ion (K+, Mg2+, and Ca2+) contents, leading to an increase in net photosynthesis and a higher energy-use efficiency of photosystem II. Biochar-treated plants had lower oxidative stress, increased water-use efficiency, and decreased soil respiration, and the biochar-compost mixture resulted in even greater improvements in growth, leaf turgor potential, photosynthesis, nutrient content, and soil gas exchange. Our results suggest that biochar and compost promote plant growth with respect to nutrient uptake, water balance, and photosynthetic system efficiency. In summary, both the soil amendments studied could increase opportunities for P. karka to sequester CO2 and produce more fodder bio-active compounds and biomass for bio-energy on nutrient-poor degraded soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号