首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field study was conducted over two years on maize at Islam Abad Research Station at 34°7′42′′N and 46°27′23′′E and elevation of 1348 m a.s.l in Kermanshah Province, western Iran in order to compare the effects of different irrigation methods and treatments on irrigation water use efficiency, crop yield, yield response factor, pan and seasonal crop coefficients, and other maize parameters. The experiment was a complete randomized block design with three replicates. During the study, irrigation water was applied at 40, 60, 80 and 100% of the maize seasonal water requirement for different surface drip tape (SDT) treatments, and 100% only for conventional furrow irrigation treatments with and without soil and water monitoring. The results showed that by using the above-mentioned different drip tape and surface treatments with soil and water monitoring, maize seasonal irrigation water use savings of 81, 71, 61, 52 and 36% were achieved compared with local conventional furrow irrigation without any soil, water and root monitoring, respectively. The yield response factor (K y), seasonal crop (K c) and pan coefficient (K p) for maize were 0.80, 0.76 and 0.97, respectively.  相似文献   

2.
To examine the effects of cultivation and grazing on evapotranspiration (ET), continuous measurements of ET were conducted over almost two years, from December 2005 to September 2007, using the eddy-covariance technique in two paired ecosystems: a steppe and a cropland in Duolun and a fenced and a degraded steppe in Xilinhot, Inner Mongolia, China. The ET of the four ecosystems approached or exceeded precipitation in both years. During the growing season (May–September), cultivation reduced the ecosystem ET in Duolun by 15% in the wet year (2006) and 7% in the dry year (2007). Grazing reduced the ET of the steppe in Xilinhot by 13% during the growing season of 2006, while there was similar ET between the degraded and fenced steppes in 2007. The low soil moisture in the cropland and the degraded steppe compared with the steppe at each area was the reason for the decrease in ET of the steppe ecosystems. In addition, a shorter growing period during the growing season, due to the changes in type and phenology characteristics of the vegetation associated with cultivation, was suspected for the reduction in ET in Duolun. The low soil moisture, due to the low precipitation in the dry year, limited vegetation growth and decreased canopy surface conductance (gc), resulting in reduced plant transpiration. In addition, cultivation and grazing increased the sensitivity of ET to soil moisture in the dry year, suggesting that future changes in precipitation would not only affect ET by changing soil moisture directly, but would also influence the relationship between ET and soil moisture.  相似文献   

3.
西辽河平原覆膜和浅埋对滴灌玉米生长的影响   总被引:1,自引:0,他引:1  
为对比研究覆膜和浅埋对滴灌玉米生长的影响,以西辽河平原为研究区,设置膜下滴灌与浅埋滴灌2种灌溉方式和高、中、低3种灌溉水平,对滴灌玉米生长指标、根系分布、耗水量及产量等进行分析,寻求适宜试验区玉米高效节水灌溉模式。结果表明:(1)平均叶面积指数膜下滴灌较浅埋滴灌处理高13%~20%。膜下滴灌根系在30 cm土层内分布均匀,浅埋滴灌根系分布较膜下滴灌深10 cm。(2)膜下滴灌总耗水量较浅埋滴灌低9%,节水效果明显。(3)平水偏枯年膜下滴灌处理产量高于浅埋滴灌7%~15%,平水偏丰年膜下滴灌处理的产量低于浅埋滴灌处理6%~19%(p0.05)。(4)中水处理产量高,水分生产率最大,为最佳灌水处理。(5)对不同研究区通过多年平均降雨量和当年降雨预报推算生育期降雨量,对于268.32 mm的地方推荐使用膜下滴灌更佳,灌溉定额为186.1 mm,灌水7次。降雨量268.32 mm的地方推荐使用浅埋滴灌更佳,灌溉定额为228.0 mm,灌水8次。研究结果可为试验区及类似地区玉米高效灌溉生产提供理论依据。  相似文献   

4.
Abstract

Based on field experiments, changing patterns and affecting factors of soil evaporation and energy balance under crop canopy were studied. Soil evaporation under crop canopy was measured directly using the microlysimetry technique. The main factors affecting soil evaporation under crop canopy including surface net radiation, leaf area index, soil water content, and crop growth period were analyzed to give scientific proof for the soil evaporation control. The results showed that no soil evaporation occurred under the crop canopy when net radiation was reduced to a threshold of 230.57 w/m2. Under crop cover conditions, evaporation/evapotranspiration (E/ET) reduced with increases of crop leaf area index, followed by an exponential function to a leaf area index (LAI) threshold of 4. The cumulative evapotranspiration, transpiration, and evaporation under crop canopy conditions during the winter wheat growing season were 443.9 mm, 272.2 mm, and 171.7 mm, respectively, with E/ET having a relatively high value of 38.7%.  相似文献   

5.
An alternative water resource such as graywater could be used for irrigation on green roofs during hot, dry summers, although it contains salt. In this study, the response to high-salt stress of a C3–CAM (Crassulacean acid metabolism) intermediate species, Sedum kamtschaticum Fischer, was evaluated over a 2-month experiment in terms of evapotranspiration (ET) and chemical compounds in plant tissue in triplicate for both experiments. High ET (10–15 mm day?1) was observed under non-stressed conditions. On the day following the first saline irrigation, the peak ET at noon decreased as much as one-third of the maximum. After 9 days, ET remained below 3 mm day?1, corresponding mostly to evaporation from the wet soil surface. The balance of chemical component contents in leaves changed depending on the electrical conductivity of irrigation water electrical conductivity (ECi). The potassium to sodium (K+/Na+) ratio, which indicates levels of sodium toxic for plant growth, decreased with higher ECi, while it excluded sodium from roots. However, based on enhanced water use efficiency under higher ECi regardless of reduced carbon dioxide (CO2) assimilation under salinity stress, the plant’s method of photosynthesis shifted from C3 to CAM metabolism. These findings show that S. kamtschaticum could survive for more than 2 months under low or moderate salinity of irrigation water in hot conditions.  相似文献   

6.
In this study, we examined the efficiency of a kaolinite clayey soil to mitigate water repellency of a sandy soil with olive trees. The treatment was applied to the soil zone below the tree canopy, which displayed the highest degree of water repellency [average water drop penetration time (WDPT) value = 820 s]. Both dry (incorporated onto the top soil) and wet clay applications (after dispersion in irrigation water) were examined in a replicated experiment, with control trees being used for comparison. The application rate of the clayey soil was maintained in both cases (wet and dry mode) equal to 1 kg m−2, while the effect of subsequent wetting and drying cycles on the treatment performance was evaluated. The results of the study verify that clay application was effective to mitigate soil water repellency. Dry supplementation displayed low efficiency (26% reduction of the air‐dry WDPT compared with the control soil) within the first week of application. The efficiency of the dry‐clay treatment increased to 76% after applying three subsequent wetting and drying cycles. In comparison with the dry mode, the wet clay was efficient immediately after application (74% reduction of the WDPT), indicating that the limiting step in the overall process was clay dispersion. Based on the findings of this study, it was proposed that wet clay application is of interest for controlling soil water repellency in agricultural land. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
We have been making year-round measurements of mass and energy exchange in three cropping systems: (a) irrigated continuous maize, (b) irrigated maize–soybean rotation, and (c) rainfed maize–soybean rotation in eastern Nebraska since 2001. In this paper, we present results on evapotranspiration (ET) of these crops for the first 5 years of our study. Growing season ET in the irrigated and rainfed maize averaged 548 and 482 mm, respectively. In irrigated and rainfed soybean, the average growing season ET was 452 and 431 mm, respectively. On average, the maize ET was higher than the soybean ET by 18% for irrigated crops and by 11% for rainfed crops. The mid-season crop coefficient Kc (=ET/ET0 and ET0 is the reference ET) for irrigated maize was 1.03 ± 0.07. For rainfed maize, significant dry-down conditions prevailed and mid-season Kc was 0.84 ± 0.20. For irrigated soybean, the mid-season Kc was 0.98 ± 0.02. The mid-season dry down in rainfed soybean years was not severe and the Kc (0.90 ± 0.13) was only slightly lower than the values for the irrigated fields. Non-growing season evaporation ranged from 100 to 172 mm and contributed about 16–28% of the annual ET in irrigated/rainfed maize and 24–26% in irrigated/rainfed soybean. The amount of surface mulch biomass explained 71% of the variability in non-growing season evaporation totals. Water use efficiency (or biomass transpiration efficiency), defined as the ratio of total plant biomass (YDM) to growing season transpiration (T) was 5.20 ± 0.34 and 5.22 ± 0.36 g kg?1, respectively for irrigated and rainfed maize crops. Similarly, the biomass transpiration efficiency for irrigated and rainfed soybean crops was 3.21 ± 0.35 and 2.96 ± 0.30 g kg?1. Thus, the respective biomass transpiration efficiency of these crops was nearly constant regardless of rainfall and irrigation.  相似文献   

8.
基于叶面积指数改进双作物系数法估算旱作玉米蒸散   总被引:7,自引:3,他引:4  
为准确估算和区分黄土高原旱作春玉米蒸散(evapotranspiration,ET),该文基于实测叶面积指数(leaf area index,LAI)动态估算基础作物系数,利用LAI修正土壤蒸发系数,并基于修正后的双作物系数法估算和区分黄土高原地区旱作春玉米ET,并以2012、2013年寿阳站基于涡度相关系统和微型蒸渗仪实测的春玉米ET和土壤蒸发(soil evaporation)对修正后的双作物系数法的适用性进行评估。结果表明:修正后的双作物系数法能够较为准确的估算春玉米ET,2012年春玉米全生育期ET估算值、实测值分别为365.3、372.6 mm,2013年分别为385.6、369.4 mm;2012年全生育期改进双作物系数法决定系数、均方根误差、模型效率系数和平均绝对误差分别为0.824、0.561 mm/d、0.817和0.449 mm/d,2013分别为0.870、0.381 mm/d、0.871和0.332 mm/d;同时,修正后的双作物系数法可对春玉米各生育期ET进行准确区分,土壤蒸发估算值与实测值有较好的一致性,2012年全生育期估算和实测土壤蒸发分别为0.98和0.99 mm/d,分别占ET的38.12%和37.08%;2013年估算和实测土壤蒸发分别为0.86和0.89 mm/d,分别占ET的33.59%和35.90%。因此,修正后的双作物系数法能够较为准确地估算和区分黄土高原地区旱作春玉米ET。该研究可为黄土高原区农田水分精准管理提供科学指导。  相似文献   

9.
为精确测定、准确模拟阿克苏地区滴灌枣树腾发过程,基于大型称重式蒸渗仪测定枣树全生育期逐时及逐日腾发强度(ET),利用水量平衡方程、PM公式及经典统计原理,分析不同时间尺度下叶面积指数(LAI)、气象因素[温度(I)、风速(V)、净辐射(Rn)]、表层土壤含水率(W)与枣树腾发强度的相关关系并建立预测模型。结果表明:枣树日内腾发强度呈单峰型变化趋势,夜间变化幅度较小且腾发贡献率低。枣树全生育期逐日腾发强度变化呈先增大后减小的趋势,花期的腾发强度最大,为4.42 mm·d-1;全生育期腾发总量为640.83 mm,其中花期和果实生长发育期耗水量占比较大,分别为38.61%和32.72%。在小时和日时间尺度上,影响腾发强度的主要因素不完全相同,且影响程度有所差异。综合考虑各影响因素,以萌芽期、花期、果实发育期为基础,分别建立以小时、日尺度下估算腾发强度的经验模型ET1(h)=0.153+0.004T+0.012V+0.176Rn+0.002W+0.067LAI、ET2(d)=-3.325+0.081T+0.163Rn+0.069W+2.089LAI,拟合度R2均在0.7以上,以果实发育期与成熟期数据对模型进行检验,纳什效率系数分别达0.63、0.80。经偏相关检验,冠层净辐射(Rn)对两种尺度的腾发强度均影响最显著,因此以枣树全生育期数据量为基础,仅建立冠层净辐射(Rn)与腾发强度的回归模型ET1(h)=-0.063 3Rn2+0.361 2Rn—0.003 7、ET2(d)=-0.018 3Rn2+0.684 7Rn–1.642 1,R2分别为0.704 7与0.743 6,可满足缺少数据支撑情况下的腾发过程估算。这些模型明确了阿克苏地区滴灌枣树腾发机制及影响程度,可为水分管理精准化提供计算基础。  相似文献   

10.
Abstract

Full‐season determinate soybean [Glycine max (L.) Merrill] was grown in the field in a humid climate for three seasons (1979–81). The objective was to examine variability in several methods of determining basic relationships between soil and plant water status in a range of canopy configurations and to examine treatment effects on soil‐nutrient extraction. In each year, two cultivars, “Davis” (group VI) and “Coker 338” (group VIII) were planted in four row spacings. In 1980 and 1981 the experiment was expanded and split for irrigation and row orientation (N—S or E‐W). Post‐harvest soil samples were collected and analyzed to determine if irrigation, row spacing, or cultivar influenced K, Ca, and Mg extraction patterns.

During the growing seasons, parallel leaf diffusive resistance (Rs) was poorly correlated with xylem pressure potential (ψx), canopy s x temperature (Tc), canopy minus air temperature (?T), leaf vapor pressure deficit (LVPD), and atmospheric vapor pressure deficit (VPD) in single factor correlations. Xylem pressure potential was highly correlated with Tc , ?T, VPD, and LVPD, but was poorly correlated with soil water potential. Both ψx and Tc were significantly affected by the imposition of shade from a 60% shading cloth within as little as 1 minute of shade imposition. The impact of cultivar on seasonal ψx was significant and was nearly half the magnitude of the observed difference caused by irrigation. Irrigation raised ψx by only 2.2 bars over the two—year observation period, in spite of large differences in soil water potential when irrigation was imposed. The impact of canopy configuration was not measureable in any water relations parameter except infrared‐determined Tc. Correlation of T and ψx was significantly more reliable when limited to a single variety, row spacing, and row orientation. Aspect of infrared temperature measurement also significantly affected observed Tc.

Analysis of post‐harvest soil samples indicated that narrow (50 cm) row spacing in 1980 and irrigation in 1981 significantly decreased post—harvest Mehlich No. I extractable K, but none of the cultural practices influenced extractable Ca or Mg at P(0.05). In 1980, ex‐tractable K within soybean rows was significantly greater than between rows. Similar trends were observed for Ca and Mg in 1980 and for all 3 nutrients in 1981, but those differences were not significant at P(0.05). Overall, these measurements quantify the difficulty in relating soil and plant water status and identifying nutrient extraction patterns in sandy soils within the humid U.S. Southeastern Coastal Plain.  相似文献   

11.
构建华北地区设施茄子蒸散量估算模型,可为制定其优化灌溉制度提供理论依据。本研究设灌水定额15 mm(W1)、22.5 mm(W2)、30 mm(W3)和37.5 mm(充分灌溉, CK)4个处理,在设施茄子苗期、开花座果期和成熟采摘期土壤含水率分别达田间持水量的70%、80%和70%时进行灌溉,以保证土壤供水充足。基于修正后的Penman-Monteith方程,通过分析CK处理的作物系数与叶面积指数的关系,建立了基于气象数据与叶面积指数的蒸散量估算模型,利用W1、 W2和W3实测蒸散量对其进行验证。结果表明:修正后的Penman-Monteith方程可用于设施参考作物蒸散量的估算,W1、W2和W3蒸散量的实测值与新建模型的模拟值平均相对误差分别为17.81%、18.31%和17.97%。作物系数与叶面积指数呈显著线性关系,可通过叶面积指数确定作物系数。分析W1、W2、W3和CK处理的产量和水分利用效率(WUE)得出, W2与CK产量差异性不显著,而WUE差异性显著,较CK提高31.59%,表明W2兼顾产量和WUE。W2处理下茄子的作物系数,苗期为0.21~0.46,开花座果期为0.62~0.94,成熟采摘期为0.70~0.92。本研究认为,新建模型在估算设施茄子实际蒸散量上具有较好适用性,计算出的作物系数在节水灌溉条件下具有实际应用价值。  相似文献   

12.
Water shortage is a serious environmental and agricultural problem and saline underground water has been widely used to make up the fresh water shortage in northwestern China. An open-field experiment was conducted to establish a proper irrigation scheme with saline water for cherry tomato in the Minqin oasis, where very severe salinization occurs. The experiment had four treatments including fresh or saline irrigation over the crop season (control, C, T3), fresh/saline-water irrigation change on days after thinning 50 (DAT 50, T1) and saline/fresh irrigation change on DAT 50 (T2). Leaf area index (LAI), photosynthesis rate (Pn), transpiration rate (Tr), leaf dry matter (LDM), stem dry matter (StDM), yield, marketable fruit and total soluble solids (TSS) of tomato were measured. Saline irrigation, irrespective of the timing, significantly decreased maximum LAI, LDM and StDM, Pn, Tr and stomatal conductance but significantly stimulated water use efficiency. The reduction in maximum LAI, LDM and StDM was lower in T2 than in T1 and T3. Harvest index (HI) and TSS were higher in T2 and T3 than in T1 and C. Marketable fruit had no significant change in T2 but significantly declined in T1 and T3. Maximum saturated soil conductivity without yield reduction (the salt tolerance threshold) was 3.69?dS m?1. Total yield of tomato would decrease by 9.85% with one unit increase of soil salinityhigher than the threshold. Final yield significantly reduced by 24.6% and 23.1% in T1 and T3 treatments, respectively. Our results suggest that irrigation with saline water before DAT 50 and fresh water after DAT 50 should be advocated for cherry tomato plantation in water-scarce areas like the Minqin oasis.  相似文献   

13.
Vegetation patches in arid and semiarid areas are important in the regulation of surface hydrological processes. Canopy and ground covers developed in these fertility islands are a natural cushion against the impact energy of rainfall. Also, greater levels of organic matter improve the soil physicochemical properties, promoting infiltration and reducing runoff and soil erosion in comparison with the open spaces between them. During the 2006 rainy season, four USLE-type plots were installed around representative vegetation patches with predominant individual species of Huisache (Acacia sp), Mesquite (Prosopis sp), Prickly Pear or Nopal (Opuntia sp) and Cardon (Opuntia imbricata), to evaluate soil erosion and runoff, in semiarid Central Mexico. A comparative bare surface condition (Control) was also evaluated. Vegetative canopy and ground cover were computed using digital images. Selected soil parameters were determined. Soil erosion was different for the studied vegetation conditions, decreasing as canopy and ground cover increased. There were not significant differences in runoff and soil erosion between the Control and O.imbricata surfaces. Runoff was reduced by 87%, 87% and 98% and soil loss by 97%, 93%, and 99% for Acacia farnesiana, Prosopis laevigata and Opuntia sp, respectively, as compared to the Control. Soil surface physical conditions were different between the low vegetation cover conditions (Control and O.imbricata surfaces) and the greater vegetation cover conditions (A.farnesiana, P.laevigata and Opuntia sp), indicating a positive effect of vegetation patches on the regulation of surface hydrological processes.  相似文献   

14.
ABSTRACT

The present investigation was carried out to study the effect of irrigation intervals and fertigation on growth, yield, and quality of peanut as well as an account of fertilizer and water savings under drip irrigation combined with fertigation. Pod and haulm yields and economics of peanut with application of irrigation water at I1, i.e. 4 day interval through drip (10 day in surface irrigation) did not differ significantly compared with I2, i.e. 6 day interval through drip (15 day in surface irrigation). However, significantly higher kernel and oil yields were obtained at I1 and also recorded higher partial factor productivity (PFP). Our study showed that drip irrigation saved 37.2% irrigation water over surface method. Fertigation at 75% Nitrogen & potassium (NK) through drip with 75% P in soil (F3) significantly improved pod, haulm, kernel, and oil yields by 14.3%, 11.5%, 13.9%, and 12.3%, respectively, while net returns increased by INR 13,499 ha?1 over 50% NK through drip with 50% P in soil (F2) and at par with others. Fertigation at 50–100% NK with 50?100% P in soil (F2 to F4) could save 36.4–37.3% irrigation water over F1. Maximum PFP was recorded under F2.

Abbreviations: N: Nitrogen; P: phosphorus; K: potassium; M: million  相似文献   

15.
适宜的毛管埋深提高温室番茄品质及产量   总被引:2,自引:1,他引:1  
为探索地下滴灌条件下,毛管埋深对作物"地上部分-地下部分-产量和品质"相互作用的影响,合理配置滴灌措施,提高水分管理能力,该文研究了4种不同毛管埋深0、10、20和30 cm(CK、S10、S20和S30)对番茄植株生长、根系生长、光合产物分配、果实产量、品质和水分利用效率的影响,结果表明:与地面滴灌(CK)相比,毛管埋深为10 cm的番茄根系分叉数显著增加85.16%,但根长、根面积、番茄产量未显著提高,且番茄红素显著降低18.85%(P0.05);毛管埋深为20 cm,盛果期I番茄叶面积指数显著增加23.37%,根长、根面积、根系分叉数分别显著提高43.22%、20.82%、176.61%,番茄产量提高22.35%,番茄果实品质显著改善,如可溶性固形物、可溶性蛋白、维生素C、番茄红素含量和糖酸比分别提高10.86%、32.34%、35.66%、33.97%和53.01%,水分利用效率显著提高35.91%(P0.05);毛管埋深为30 cm,番茄根长、根系分叉数显著提高46.10%、122.37%,番茄产量显著提高19.53%,水分利用效率显著36.93%,但番茄红素显著降低34.02%。综合考虑番茄品质和产量,地下滴灌毛管埋深20 cm是较为适宜的布设方式。  相似文献   

16.
Savanna landscapes across north Australia are characterised by limited topographic variation, and in the Northern Territory, by a relatively constant decline in rainfall with distance inland. The North Australian Tropical Transect (NATT) traverses this 1000 km gradient of largely intact vegetation which provides an ideal ‘living laboratory’ and framework to investigate the influence of vegetation structural and floristic change and climate drivers on land-atmosphere exchange at a regional scale. We conducted a multidisciplinary program examining carbon, water and energy fluxes as a function of climate and vegetation change along a sub-continental environmental gradient. Initial findings are reported in this Special Issue. During the program, an intensive field campaign was undertaken during the dry season to characterise vegetation and soil properties of eight flux tower sites used to describe spatial and temporal dynamics of fluxes across this gradient. This paper provides an overview of the savanna landscapes of north Australia detailing vegetation structural and physiological change along this gradient. Above-ground woody biomass, stem density, overstorey LAI and canopy height declined along sites that spanned an 1100 mm annual rainfall gradient. Biomass ranged from 35 to 5 t C ha−1 with dry season LAI ranging from ∼1 to 0.05 across savanna sites both intact and cleared for grazing. Across open-forest and woodland savanna, basal area ranged from 9.7 to 5.3 m2 ha−1. While structural change was significant and correlated with rainfall, leaf scale physiological properties (maximal photosynthesis, Vcmax, ci/ca, light use efficiency) of the dominant woody species showed little variation, despite the significant environmental gradient. It is likely that changes in structural properties dominate spatial patterns of flux as opposed to physiological plasticity or species differences along this gradient.  相似文献   

17.
18.
蒸散发(ET)是陆地水循环过程的重要组成部分,同时也是区域能量平衡以及水量平衡的关键环节,精确估算ET,对于提高水分利用效率以及优化区域用水结构具有重要意义。本文利用黑河重大计划观测数据,对比了考虑CO_2浓度和不考虑CO_2浓度对玉米冠层影响的冠层阻力模型,分别将其耦合到双源的Shuttleworth-Wallace(S-W)模型中,并利用这两种模型分时段对玉米整个生育期内半小时尺度上的ET进行模拟,利用涡度相关实测数据对模型进行验证,最后分别对影响玉米冠层阻力的气象要素和影响ET的阻力参数进行敏感性分析,探寻大气CO_2浓度改变条件下黑河中游绿洲区玉米不同生长阶段的农田耗水规律。结果表明:本文所修正的考虑CO_2浓度对玉米冠层影响的冠层阻力模型耦合到S-W模型后,能够较精准地模拟玉米整个生育期不同生长阶段半小时尺度上农田耗水过程。敏感性分析表明:各生长阶段冠层阻力(r_s~c)和冠层面高度到参考面高度间的空气动力阻力(r_a~a)对ET的影响最为强烈,其他阻力参数对ET的影响不明显,ET的变化程度随着r_s~c和r_a~a的增大而减小。本文所修正的考虑CO_2浓度影响的分时段双源模型能够精准地模拟玉米整个生育期各生长阶段的ET,可为种植结构调整和土地利用方式改变以及CO_2浓度变化环境下的农田蒸散研究提供参考。  相似文献   

19.
Five microbial species (Aspergillus flavus, Trichoderma viride, Streptomyces sp., Arthrobacter sp., Achromobacter liquefaciens) were cultivated in liquid media containing 14C-labelled glucose. The decomposition of these microorganisms was recorded in four different soils after chloroform fumigation by a technique related to that proposed by Jenkinson and Powlson, to determine the mineralization rate of microbial organic matter (Kc coefficient). Three treatments were used: untreated soil, fumigated soil alone and fumigated soil supplied with 14C-labelled cells. Total evolved CO2 and 14CO2 were measured after 7 and 14 days at 28°C.The labelled microorganisms enabled the calculation of mineralization rate Kc (Kc = mineralized microbial carbon/supplied microbial carbon). The extent of mineralization of labelled microbial carbon depended on the type of soil and on the microbial species. Statistical analysis of results at 7 days showed that 58% of the variance is taken in account by the soil effect and 32% by the microorganism effect. Between 35 and 49% of the supplied microbial C was mineralized in 7 days according to the soil type and the species of microorganism. Our results confirmed that the average value for Kc = 0.41 is acceptable, but Kc variability according to soil type must be considered.The priming effect on organic C and native microbial biomass mineralization, due to microbial carbon addition was obtained by comparison between the amount of non-labelled CO2-C produced by fumigated soils with or without added labelled microorganisms: this priming effect was generally negligible.These results indicate that the major portion of the error of microbial biomass measurement comes from the Kc estimation.  相似文献   

20.
The magnitude of CO2 efflux pulses after rewetting a dry soil is highly variable and the factors regulating these pulses are poorly understood. In this field experiment, we aimed to study the C dynamics after simulated summer rainstorms in a Mediterranean open holm oak woodland (dehesa). We hypothesized that because the herbaceous cover is mostly dead during the summer in this ecosystem, the short-term CO2 efflux (SR) after rewetting could mainly be explained by different measurable soil C fractions: i) K2SO4-extracted soil C (EOC); ii) microbial biomass C (MBC); or iii) chloroform-fumigated extracted C (CFE). On both grazed and abandoned dehesa sites, we simulated three summer rain events at two-week intervals and we measured SR discontinuously in three plots under tree canopy and in another three plots in open grassland. In each plot, C fractions and water content were estimated before (2 h) and after (36 h) each irrigation event. Following rewettings, SR increased up to ten times compared with non-irrigated plots. The CFE actually increased after rewetting in the first two irrigations but not in the third event, suggesting that the capacity of the soil to release labile organic C from soil aggregates or litter was reduced after each irrigation event. Overall, the C released as CO2 in the first 24 h was related to the CFE existing before rewetting, which may help to explain the spatial variability in SR. However, the explained variability decreased after each irrigation, suggesting a change to a less labile composition of the CFE fraction as a consequence of multiple drying-rewetting cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号