首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

2.
Optimization of phosphorus (P) fertilization is important for balancing soil fertility especially in vertisol to support economic crop production. The objective of the study was to determine the impact of P fertilization (1998 to 2014) on crop yield and nutrient uptake, and soil fertility under continuous annually tilled corn (Zea mays L.)-wheat (Triticum aestivum L.) system in semi-arid Mediterranean conditions. The study was conducted on Arik clay (isohyperthermic, fine clay Typic Haploxerert) using randomized complete block design with four replications for each treatment at the research farm of the Dept. of Soil Science and Plant Nutrition, Çukurova University, Adana, Turkey. P fertilizer at 0, 50, 100, 200 kg P2O5 ha?1 as triple superphosphate (TSP), respectively was applied a week before planting corn. Results showed that increasing P fertilization rates significantly decreased the number of mycorrhizal spores associated with corn roots. Similarly, a 10% decrease in corn root mycorrhizal colonization was observed with 200 kg P2O5 ha?1 fertilization. In the control treatment, corn yield was 4.3 Mg ha?1 as compared to 5.6, 5.7 and 6.1 Mg ha?1 in 50, 100 and 200 kg of P2O5/ha, respectively. The relationship between P fertilization and relative yield showed that more than 95% of the corn yield was produced when P applied at 100 kg P2O5 ha?1. While P fertilization significantly increased the leaf N, P, and K contents but decreased the leaf Zn, Fe and Mn contents, as compared with the control. However, P fertilization did not consistently affect the grain N and P contents. Both physiological efficiency- and agronomic efficiency of P fertilization have shown a significant non-linear increase than that of the control. Total organic C (TOC) and total N (TN) concentrations were more than 34 and 26% higher in 100 and 200 kg P2O5 ha?1rates as compared with the control. Likewise, available P (AP), manganese (Mn) and zinc (Zn) concentrations increased with an increase in P fertilization rates. The AP, Mn and Zn contents significantly stratified by P fertilization. Our results suggested that 100 kg P2O5 ha?1 is optimum to sustain Vertisol fertility for supporting economic corn production in the Mediterranean climates of Turkey.  相似文献   

3.
A field experiment was conducted during the winter seasons between 2004 and 2006 to assess the role of balanced fertilization and bioregulators (foliar-applied brassinosteroid 0.5 mg I?1, thiourea 1000 mg I?1 and kinetin 10 mg I?1) in enhancing the productivity of wheat. Conjoint application of NPKSZn (120 kg N, 40 kg P2O5, 30 kg K2O, 40 kg S, 5.5 kg Zn ha?1) recorded maximum improvements in yield attributes and significantly out-yielded all the fertilization treatments with 14.90, 4.97 and 6.39% increments in grain yield compared with NPK, NPKS and NPKZn treatments, respectively. Nutrient (N, P, K, S, Zn) content and uptake were also improved significantly with balanced fertilization. Among the bioregulators, application of 0.50 mg I?1 brassinosteroid recorded maximum increments in grain yield (14.10%), followed by 10 mg I?1 kinetin (12.31%) and 1000 mg I?1 thiourea (9.92%), over control (4.99 t ha?1). Bioregulators significantly enhanced the uptake of nutrients (N, P, K, S, Zn) over control. NPKSZn treatment also gave the maximum net return (Rs. 51,209 ha?1). Among the bioregulators, brassinosteroid provided the maximum net return (Rs. 47,292 ha?1) and benefit:cost (B:C) ratio (3.37) followed by thiourea (Rs. 45,500 ha?1 and 3.35). Kinetin also provided yield advantage, however, it gave a significantly reduced B:C ratio compared with control.  相似文献   

4.
Maize (Zea mays L.) is generally low in bioavailable zinc (Zn); however, agronomic biofortification can cure human Zn deficiency. In the present experiment, Zn was applied in pots as ZnSO4 · 7H2O to maize cultivar DK-6142 as foliar spray (0.5% w/v Zn sprayed 25 days after sowing and 0.25% w/v at tasseling), surface broadcasting (16 kg Zn ha?1), subsurface banding (16 kg Zn ha?1 at the depth of 15 cm), surface broadcasting + foliar and subsurface banding + foliar in comparison to an unfertilized control. As compared to control, all treatments significantly (P ≤ 0.05) increased growth, yield and nutritional attributes in maize. Grain Zn and protein concentrations were correlated and ranged from 22.3 to 41.9 mg kg?1 and 9 to 12 %, respectively. Zinc fertilization also significantly reduced grain phytate and increased grain Zn concentration. Zinc fertilization, especially broadcasting and subsurface banding combined with foliar spray decreased grain [phytate]:[Zn] ratio to 28 and 21 and increased Zn bioavailability by trivariate model of Zn absorption to 2.04 to 2.40, respectively. Conclusively, broadcasting and subsurface banding combined with foliar spray is suitable for optimal maize yield and agronomic Zn biofortification of maize grain. This would also be helpful to optimize Zn and protein concentration in maize grain.  相似文献   

5.
A 2-year field trial was conducted in processing grade potato cv. Kufri Chipsona-3. The treatments comprised recommended dose of fertilizer (RDF) (200:150:150 N:P2O5:K2O kg ha?1) with or without boron (B) application (soil and foliar). The results revealed that B fertilization significantly increased tuber number and yield. Three sprays of 0.1% boric acid (at 40, 50 and 60 days after planting) produced the maximum number and yield of tubers and enhanced B uptake in potato tuber, haulm as well as in total plant accounting 85.8, 182.0 and 169.8% more than control, respectively. The same treatment came up with greatest net return and benefit: cost ratio. B fertilization exerted significant influence on available N and B status of post-harvest soil, while the effect was non-significant on available P and K. Results suggest that right dose and method of B application is vital for optimizing tuber yield and B-use efficiency for processing grade potato.  相似文献   

6.
A pot experiment was conducted to evaluate the foliar applied phosphorous with and without pre-plant dose (50 kg hac.?1) of phosphorous on growth, chlorophyll contents, gas exchange parameters and phosphorous use efficiency (PUE) of wheat. The experiment was conducted in net house at Department of Crop Physiology, University of Agriculture Faisalabad, Pakistan. Two promising wheat cultivar AARI 2011 and FSD 2008 were used as a test crop with 5 foliar phosphorus (P) rates (0, 2, 4, 6, 8 kg ha?1). The foliar applied P with pre-plant performed better than without pre-plant and control treatments. Foliar treatment of phosphorus at 6 kg ha?1 P proved to be the best among other foliar treatments followed by 8 kg ha?1 P. The foliar application of phosphorous at 6 kg hac.?1 with pre-plant soil applied P increased the shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight and root dry weight. The chlorophyll contents (Chl. a and b) were increased with the foliar application of phosphorous. The gas exchange parameters (net carbon dioxide (CO2) assimilation rate, transpiration rate, stomatal conductance and sub-stomatal CO2 rate) were significantly improved by foliar applied P. The maximum values of net CO2 assimilation rate (5.27 μ mol m?2 sec.?1), transpiration rate (3.44 μ mol m?2 sec.?1), stomatal conductance (0.81 μ mol m?2 sec.?1) and sub-stomatal CO2 (271.67 μ mol m?2 sec.?1), were recorded in the treatment where P was foliar applied at 6 kg hac.?1 with pre-plant soil applied Phosphorous. The foliar application of phosphorous with pre-plant soil applied P enhanced Phosphorous use efficiency (PUE) in both varieties. The maximum value of PUE (15.42%) was recorded in the treatment where foliar feeding of P was done at 6 kg hac.?1 with pre-plant soil applied P in both genotypes.  相似文献   

7.
The interaction between water availability in the soil and fertilizer application rates often strongly affects crop growth. In the current study, the quality of fresh fruit and antioxidant enzymes of tomato crops (Lycopersicon esculentum Mill) were investigated under different irrigation (low water content [Wl]: 50 ~ 60% field moisture capacity (FMC); moderate [Wm]: 70 ~ 80% FMC; and high [Wh]: 90 ~ 100% FMC) and fertilizer conditions (deficit fertilizer [Fl]: 195 kg ha?1 nitrogen (N) + 47 kg ha?1 phosphorus pentoxide (P2O5) and moderate [Fm]: 278 kg ha?1 N + 67 kg ha?1 P2O5) in a solar greenhouse. The results showed that the quality of fresh fruits and the antioxidant enzyme activities in the leaves and fruits were related to the water content in the soil. Deficit irrigation improved the fruit quality and 50 ~ 60% FMC combined with fertilizer application rates of 195 kg ha?1 N + 47 kg ha?1 P2O5 is recommended for tomato crop cultivation under greenhouse conditions.  相似文献   

8.
Leaf mineral content along the crop cycle may explain differences in response to fertilization among strawberry genotypes. A two year field experiment was conducted using responsive (‘Camarosa’, ‘Ventana’) and nonresponsive (‘Camino Real’, ‘Candonga’) to fertilization genotypes under proportional increases in nutrients supply: from a control dose “C” [120 kg nitrogen (N) ha?1, 70 kg phosphorus pentoxide (P2O5) ha?1, 220 kg potassium oxide (K2O) ha?1, 40 kg calcium oxide (CaO) ha?1 and 20 kg magnesium oxide (MgO) ha?1] to “1.33C” and “1.66C” in 2007 and to “1.5C” and “2C” in 2008. Response to fertilization was high (45–120%) at begining of harvesting and low (10-28%) at middle and end of harvesting. Correlation between leaf area and total yields was high (r ≈ 0.73) at begining of harvesting, except on ‘Camino Real’ (late and compact genotype). At begining of flowering and harvesting, responsive genotypes showed higher potassium (K) and lower calcium (Ca) leaf contents than nonresponsive genotypes, accentuated with the fertilization increase.  相似文献   

9.
Abstract

The ‘FHIA-18’ hybrid banana is an alternative for producers as it is resistant to Black Sigatoka and Panama disease. However, few studies report the nutritional requirement of this hybrid, especially phosphorus. It is known that the efficiency of phosphorus use can be improved, reducing the need for application, depending on the genotype cultivated. Therefore, this study aimed to evaluate the yield and mineral nutrition of ‘FHIA-18’ hybrid banana on phosphate fertilization. A banana orchard with the cultivar ‘FHIA-18’ was conducted on a Typical Red Latosol. Then, triple superphosphate fertilizer was applied on plants at 0, 20, 30, 40, 50, and 60?kg ha?1?year?1, over three productive seasons. At the time of flowering the macro and micronutrient contents of the leaves were evaluated. Subsequently, the nutrient contents of the fruits were evaluated. For this, fruit pulp samples from the third and fourth hands were collected. In addition, yield was estimated considering cluster mass and plant density. The following dose 36?kg ha?1 of P2O5 year?1 increased the content of phosphorus in the leaf, despite that banana hybrid cultivar FHIA 18 demanded 50% of the recommended fertilizer to achieve its maximum yield (29.4 t ha?1?year?1). Phosphate fertilization promoted significant changes in P, Ca, Cu, and Zn contents of leaves and fruits. Therefore, it is concluded that the mineral nutrition of banana ‘FHIA-18’ is affected by phosphate fertilization, as well as requiring less P than recommended to achieve higher yield.  相似文献   

10.
Nitrogen (N), phosphorus (P), and potassium (K) deficiencies are a widespread phenomenon throughout the world, and are one of the most common nutritional disorders in Turkish hazelnut (Corylus avellana L.) cultivation. In this research, the effects of macronutrient fertilizers on mineral contents and some biochemical contents of ‘Tombul’ hazelnut (Corylus avellana L.) variety cultivated in the Black Sea Region of Turkey were investigated, and the contribution of these nuts to human nutrition was determined. The trials were carried out at ‘Tombul’ hazelnut orchards, and the hazelnuts were fertilized with five different doses of nitrogen, phosphorus, and potassium in each year for three consecutive years. The basic fertilizers (N, P2O5, and K2O) significantly affected some biochemical contents and mineral compositions of the hazelnuts. In order to improve the biochemical and mineral compositions of hazelnut, 200 kg ha?1 and 400 kg ha?1 N fertilizations, 120 kg ha?1 and 160 kg ha?1 P2O5 fertilizations, and 400 kg ha?1 and 600 kg ha?1 K2O fertilizations could be recommended for practice. According to the daily mineral element requirements, 100 g of hazelnuts provided about 43.5% P, 13.2% K, 19.4% Ca, 37.0% Mg, 0.2% Na, 53.8% Fe, 24.5% Zn, 14.5% B, and 66.7% Mo of the recommended dietary allowances. Cu and Mn contents of 100 g hazelnut were higher than the respective daily requirements. These results indicated that the mineral composition of hazelnut depended not only on the variety but also on the cultivation techniques such as soil condition and especially basic fertilization practices.  相似文献   

11.
The scarcity of non-renewable fertilizers resources and the consequences of climate change can dramatically influence the food security of future generation. Introduction of high yielding varieties, intensive cropping sequence and increasing demand of food grains day-by-day, application of recommended dose of fertilizers could not fulfill our targets due to outdated fertilizers recommendations are yet in practice. It not only alters soil quality, nutrient balance, microbial and enzymatic ecology but also affected productivity and sustainability of rice in Gangetic alluvial soils of India. The effect of fertilizers application based on “fertilizing the soil versus fertilizing the crop” which insure real balance between the applied and available soil nutrient is urgently needed. Hence, the present study was conducted during three consecutive crop seasons (2010, 2011, and 2012) to assess the effect of imbalance and balance fertilization based on initial soil test values and targeted yields, and to determine the effect of farmyard manure (FYM) when superimposed with balanced fertilizers on identification of minimum data set for the development soil quality, nutrient acquisition, and grain yield of rice. The six fertilizer treatments were laid out in a randomized block design with three replications. The treatments were: T1-control (no fertilization), T2-farmyard manure @ 5 t ha?1, T3-farmers practice (60:30:30 kg N:P2O5:K2O ha?1), T4-precise application of mineral fertilizers based on initial soil test values (77:24:46 kg N:P2O5:K2O ha?1) for targeted grain yield of 4.0 t ha?1, T5-precise application of mineral fertilizers based on initial soil test values (74:23:43 kg N:P2O5:K2O ha?1) plus FYM (5 t ha?1) for targeted grain yield of 4.0 t ha?1 and T6-precise application of mineral fertilizers based on initial soil test values (135:34:65 kg N:P2O5:K2O ha?1) for targeted rice grain yield of 5.0 t ha?1. Result revealed that the targeted rice grain yield of 4.0 and 5.0 t ha?1 was achieved in T4 and T6 treatments with 1.59% (4.06 t ha?1) and –3.40% (4.83 t ha?1) deviations, respectively. T4, T5, and T6 significantly increased crop growth, nutrient uptake, available P (Pa) and K (Ka) and augmented rice grain yield by 10.6, 20.2 and 31.6%, respectively, over T3. Microbial biomass carbon, soil respiration and enzymatic activity were enhanced significantly in T5 as compared to T6. Highest soil quality index was found in T5 (0.95) followed by T6 (0.90) and, lowest was in T1 (0.63). The contribution of minimum data set (MDS) toward the SQI was in the descending order of ALP (30.6%) > SOC (21.5%) > Ka (11.3%) > PSM (9.68%) > Na (8.51%). Overall, rice yield and soil quality was improved by using balance fertilization based on fertilizing the crop Vs fertilizing the soil in alluvial soils of India.  相似文献   

12.
The study evaluated the effects of phosphorus (0, 20, 30, and 40 kg P2O5 ha?1) and biofertilizers [Rhizobium (Rhizobium leguminosarum bv viciae), plant growth promoting rhizobacteria (PGPR) (Pseudomonas fluorescens), Rhizobium + PGPR, and uninoculated control] in lentil. Application of 40 kg P2O5 ha?1 resulted in the highest number of nodules, nodule dry weight, leghemoglobin content in nodules, chlorophyll content, yield attributes, and grain yield. Coinoculated treatment performed better than uninoculated control, and individual inoculations of Rhizobium and PGPR in terms of all above mentioned parameters. Application of 20 kg P2O5 ha?1 + Rhizobium inoculation gave statistically similar and 20 kg P2O5 ha?1 + Rhizobium + PGPR inoculation gave significantly higher grain yield than that by 40 kg P2O5 ha?1 alone. The use of Rhizobium alone and Rhizobium + PGPR consortium can save not only 20 kg P2O5 ha?1 but also increase the grain yield of lentil.  相似文献   

13.
A field experiment with peppermint (Mentha piperita L.) was conducted in a sandy loam (Typic ustifluvent) soil during 2007 and 2008 at Lucknow, India. Ten treatments consisting of control (no synthetic or organic nitrogen fertilization), synthetic nitrogen fertilization (SN) 75, 150 and 225 kg ha?1 alone, vermicompost (VC) 3 t + 37.5 kg SN ha?1, VC 6 t + 75 kg SN ha?1 and VC 9 t + 112.5 kg SN ha?1 and intercropping of one, two and three rows of cowpea for green manuring in combination with 50, 100 and 150 kg SN ha?1, respectively, were evaluated in a randomized block design. Integrated use of VC 9 t with 112.5 kg SN ha?1 produced maximum essential oil (94.3 kg ha?1), increased the herb and essential oil yields by 104 and 89%, respectively, over control and reduced SN use by 50%, without affecting the quality of essential oil. Application of VC and intercropping of cowpea for green manuring significantly improved the organic carbon, available N, P and K content in soil over SN alone. To get sustainable production of peppermint, application of VC 9 t ha?1 along with 112.5 kg N ha?1 through synthetic fertilizer is recommended for light textured sandy loam soils.  相似文献   

14.
If soil solution phosphorus (P) optimum levels for plant growth (external P) are known, P adsorption isotherms or their equations could further be used to assess how much fertilizer P may be needed for optimum plants yield (QFPN) by adjusting this known external solution P requirement in the soil (ESPR). Surface soil samples were collected from a farmer's field area and research area. An adsorption study was conducted on Ustic Endoaquerts (S1 soil), Typic Calciargids (S2 soil), and Typic Torripsamments (S3 soil) to develop the two-surface Langmuir-type equations. Phosphorus adsorption data were obtained by equilibrating 10-g soil samples in 100 mL of 0.01 M calcium chloride (CaCl2) containing various amounts of monopotassium phosphate (KH2PO4). Thereafter, 11 P fertilizer rates were calculated by two-surface Langmuir-type equations to adjust different estimated soil solution P levels (EPAS) that were designated as treatments (0.05 to 0.90 mg L?1). Then field experiments on lentil (cv. Niab Masoor 2002) were conducted according to a randomized complete block design (RCBD) on these soils to determine internal (plant tissue), external (soil solution), and fertilizer P requirements. Maximum lentil seed yield (Mg ha?1) was 0.87 with T4 (0.17 mg P L?1) in S1 soil, 1.8 with T3 (0.20 mg P L?1) in S2 soil, and 0.73 with T7 (0.28 mg P L?1) in S3 soil, obtained by applying 170 kg P2O5 ha?1 in S1 soil, 110 kg P2O5 ha?1 in S2 soil, and 78 kg P2O5 ha?1 in S3 soil. Internal P concentrations (%) of the whole plant associated with 95% of maximum lentil seed yield at flowering stage were 0.245, 0.210, and 0.315 in S1, S2, and S3 soils, respectively. Internal P requirements of lentil seed were 0.290 in S1, 0.245% in S2, and 0.380% in S3 soil. The ESPRs for 95% of maximum yield of lentil were 0.16 mg L?1, in S1 soil, 0.23 mg L?1 in S2 soil, and 0.27 mg L?1 in S3 soil. The QFPN estimated from graphs corresponding to these ESPR values were 160 kg P2O5 ha?1 in S1 soil, 125 kg P2O5 ha?1 in S2 soil, and 74 kg P2O5 ha?1 in S3 soil. The QFPNs estimated from corresponding two-surface Langmuir-type equation by using respective ESPR values were 164, 127, and 75 kg P2O5 ha?1 in S1, S2, and S3 soil, respectively. Field-applied P2O5 amounts to adjust soil solution P levels (mg L?1) at 0.166 (T4), 0.229 (T4), and 0.281 (T7) were 170, 126, and 78 kg ha?1 in S1, S2, and S3 soil, respectively. Based on the results of these studies, we propose that QFPNs estimated by graphs against identified ESPR values or calculated by the use of corresponding two-surface Langmuir-type equations are in close proximity to the field-applied P to adjust desired EPAS value. Therefore, either of the two techniques may be used to estimate QFPN for optimum lentil yield. Close  相似文献   

15.
Field experiments were conducted to evaluate the effects of zinc (Zn) fertilization on yield potentiality and quality of promising wheat varieties during winter seasons of 2013–14 and 2014–15 at the research farm of the Indian Agricultural Research Institute, New Delhi. Among genotypes, HD 2967 genotype proved as best in realizing the highest grain yield (4.89 Mg ha?1), net returns and benefit–cost ratio besides increased protein (13.4%) and wet gluten (29.4%) content in grain. Highest grain Zn concentration and recovery efficiency (RE) recorded in HD 2851 and HD 2687, respectively. HD 2932 registered lowest grain hardiness index (GHI) followed by PBW 343, indicating their better bread-making quality. With respect to Zn fertilization, application of 1.25 kg Zn Zn–ethylene diamine tetra acetic acid (Zn–EDTA) + 0.5% foliar spray at maximum tillering and booting stages resulted in the highest yields, grain Zn concentration and RE followed by 2.5 kg Zn (ZnSO4·7H2O) + 0.5% foliar spray at both stages. These treatments are also superior most with respect to grain quality parameters such as protein, wet gluten and starch content. From profitability viewpoint, 2.5 kg Zn (ZnSO4·7H2O) + 0.5% two foliar sprays were most remunerative with maximum net returns and benefit–cost ratio.  相似文献   

16.
Rising soil salinity has been a major problem in the soils of Egypt in recent decades. Potassium fertilization and salicylic acid (SA) play an important role in promoting plants to tolerate salt stress and increased the yield of sugar beet crop. A field experiment on sugar beet (Beta vulgaris L.) grown on saline soil was carried out during 2014 growing season in Port Said Governorate, Egypt, to study the effect of potassium fertilization of the soil at applications of 0, 100, 150, and 200 kg potassium (K) ha?1 and foliar spray of SA by solution of 1000 mg L?1, twice (1200 L ha?1 each time) on yield and nutrient uptake. Application of 200 kg K ha?1 in combination with salicylic foliar spray gave the highest root length, root diameter, shoot and root yield, sucrose, juice purity percentage, gross sugar yield, and white possible extractable sugar, nitrogen (N), phosphorus (P), and potassium (K) content, and uptake of sugar beet. The highest increase in sucrose (20%) as well as white possible extractable sugar (184%) was obtained by 200 kg K ha?1 in combination with salicylic foliar spray compared with untreated soil with potassium fertilization and without salicylic foliar spray.  相似文献   

17.
The impact of soil (1, 2 kg ha?1) and foliar (100, 200 mg L?1) boron (B) with control (no B) was evaluated on phenology and yield formation of Camelina each applied at stem elongation and flowering stages. Foliar (200 mg L?1) or soil B (2 kg ha?1) resulted in earlier flowering and maturity, increased fruit bearing branches (19.68%), number of siliqua, seeds per siliqua (4.6%), biological yield (15%), seed yield (24%), harvest index (11.4%) and oil contents (23%) than no B. Increased fruit bearing branches, seed filled siliqua or seed numbers, harvest index and oil quality can be attributed to changes in dry matter accumulated of stem with simultaneous increase in siliqua dry weight with foliar or soil applied B. In crux, foliar (200 mg L?1) or soil applied (2 kg ha?1) B seems promising to improve seed and oil yield, harvest index of Camelina sativa under B deficient condition.  相似文献   

18.
A field study was conducted at the Research Farm of NWFP, Agricultural University, Pakistan. Chickpea (Cicer aeritinum L.) cultivar, ‘Hassan-2000’, was sown as a winter crop under conventional tillage (CT) or no-tillage (NT) dryland systems in a randomized complete block design with split plot arrangement using four replications. Three levels of phosphorus (P; 0, 80 and 120 kg P2O5 ha?1) were broadcast applied at the time of last plowing and were thoroughly mixed in subplot size of 1.8 × 5 m. About 20% less weed biomass and 2% higher grain yield was recorded under CT than in NT. Plots supplied with P2O5 had higher value of the all the parameters under study except number of plant m?2 when compared with control (no P applied). However, the grain yield response to P beyond 80 kg ha?1 was not positive. CT + 80 kg P2O5 ha?1 was identified as the optimum level for maximum chickpea production under the existing dryland condition where application of herbicides in NT is not possible. Further experiments to study the optimization of P in chickpea production under dryland conditions are required.  相似文献   

19.
A power plant that utilizes turkey manure as fuel to produce energy was built in Benson, Minnesota, and started full energy production in 2007. The plant was built to meet legislative requirements governing the use of renewable sources to generate energy in Minnesota. Although the use of turkey manure as biofuel generates energy, it also results in turkey manure ash (TMA) as a by‐product that contains phosphorus (P), potassium (K), sulfur (S), and zinc (Z) as well as other essential and nonessential elements. A 2‐year study was conducted to compare TMA with triple‐superphosphate and potassium chloride fertilizers as a source of nutrients for alfalfa (Medicago sativa) at three locations: Lamberton, Morris, and Appleton, Minnesota. The soils at Lamberton and Appleton were acidic with P and K concentrations ranging from medium‐high to very high, whereas the soil at Morris was alkaline with high concentrations of P and K. The experiment consisted of a control (0 P and 0 K) and annual and split applications of TMA and fertilizer. Annual TMA and fertilizer rates were 84 kg P2O5 ha?1, 118 kg K2O ha?1, and 34 kg S ha?1. Split rates were 42/42 kg P2O5 ha?1, 59/59 kg K2O ha?1, and 17/17 kg S ha?1. However, because of an overestimation of citrate‐soluble P in 2005 for the TMA, the total amount of available P applied with the TMA for the 2‐year study was 168 kg P2O5 ha?1 compared with 286 kg P2O5 ha?1 for the fertilizer. In the first year, fertilizer resulted in greater alfalfa biomass yield than TMA and the control, whereas in the second year, alfalfa yields with TMA and fertilizer were similar and both more than the control. In 2005, TMA resulted in more copper (Cu) and S tissue concentrations than the fertilizer. In 2006, application of both sources increased tissue P and S concentrations compared with the control. The TMA increased tissue Cu concentration and Zn plant uptake compared with fertilizer. Bray P1–extractable soil P concentrations were less with TMA and control treatments than with the fertilizer treatments. Ammonium acetate–extractable soil sodium (Na) concentrations were greater with TMA than with fertilizer and the control. By the second year, both ash and fertilizer treatments resulted in more K uptake than the untreated control with no difference in K uptake between the two sources or time of application. Both sources were effective in increasing P uptake compared with the untreated control. TMA was shown to be an effective source of nutrients for alfalfa production.  相似文献   

20.
Scientific management of nutrients along with several other crop management practices are required for sustainable production of maize (Zea mays L.). Zinc (Zn) status of maize grown in Potohar plateau, Pakistan was monitored. A two-year field study was conducted at two sites to assess the yield of maize cultivars, i.e., hybrid (cv. NARC-2704) and local (cv. Agaiti-2002) and Zn requirement of leaves and grain using various Zn application methods. Zinc was applied by three ways, i.e., broadcast and band placement each at 3, 6 and 9 kg Zn ha?1; and foliar at 0.5, 1.0 and 1.5 kg Zn ha?1 along with recommended basal fertilization. Cultivars' response varied to Zn rates, application techniques and sites. The maximum increase in grain yield (two-year mean) at NARC site was: broadcast – hybrid, 17% and local, 13%; band placement – hybrid, 18% and local, 16%; and foliar – hybrid, 15% and local, 13%. Corresponding response at Pindi Gheb site was: broadcast – hybrid, 20% and local, 16%; band placement – hybrid, 21% and local, 17%; and foliar – hybrid, 17% and local, 15%. Zn concentration in leaves and grain of both cultivars also increased to varying extent as a result of applied Zn rates and techniques. Fertilizer Zn requirement for near-maximum grain yield (kg ha?1) was: broadcast – hybrid, 4.6 and local, 1.9; band placement – hybrid, 1.8 and local, 1.5; and foliar – hybrid, 0.28 and local, 0.26.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号