首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
安徽省参考作物蒸散模型参数化   总被引:1,自引:1,他引:0  
模型参数优化是准确估算参考作物蒸散(reference crop evapotranspiration,ET0)的关键问题之一。该研究基于安徽省81个地面气象站点1961—2011年逐日气象数据和合肥、武汉、南京、杭州和南昌5个辐射站1993—2011年的逐日辐射数据,评估日尺度的净长波辐射、气压和水汽压模型在安徽地区的适用性;并结合已有研究获得的最优逐日太阳辐射参数化估算模型,建立安徽省本地化逐日ET0模型的最优参数化方案,探讨模型参数优化对ET0估算的影响。结果表明:7种净长波辐射估算参数化方案中,邓根云法的精度最高,在安徽地区的适用性优于其他方案,建议作为安徽本地化方案使用;FAO56 Penman-Monteith公式中推荐的气压估算模型和基于实测平均气温和相对湿度估算水汽压的模型在安徽省基本适用,但该研究认为在资料能够获取的情况下直接使用实测值为最优。与基于实测资料计算的ET0相比,该研究建立的本地化最优模型估算的ET0在日、月和年尺度上的相对误差分别为15.5%、9.05%和6.12%,能较好地适用于安徽地区。FAO56 Penman-Monteith公式推荐的参数化方案由于高估了安徽地区的太阳辐射,低估了净长波辐射,导致其与基于实测资料计算的ET0值相比,在日、月和年尺度上高估ET0达40.0%以上,不推荐安徽地区直接使用。研究可为安徽省准确估算作物需水量、农业旱涝评估和合理调度水资源等提供依据。  相似文献   

2.
用分时段修正双源模型估算南京地区冬小麦生育期蒸散量   总被引:4,自引:2,他引:2  
冬小麦是南京地区重要的粮食作物,模拟冬小麦蒸散量(evapotranspiration,ET)并研究其对气象因素的响应可为冬小麦田间水分管理提供参考。该文基于大型称重式蒸渗仪实际测定值分析了冬小麦ET变化规律,分别采用单源模型(Penman-Monteith,PM)和双源模型(Shuttleworth-Wallace,SW)模拟不同时期冬小麦ET,并探讨分时段修正SW模型的模拟方法,在此基础上,分析了ET对气象因素的响应。结果表明,生育初期,冬小麦的ET逐步增加,进入越冬期则逐步降低并保持在较低水平。返青期和拔节期ET迅速增加,开花和成熟期又保持稳定。2011-2012和2013-2014年分时段采用SW模型估算整个生育期冬小麦的蒸散量比整个生育期采用单一估算模型能够减小模拟平均绝对误差0.01~0.04 mm/h。小麦乳熟成熟期采用最小气孔阻力150 s/m计算的修正SW模型可以比整个生育期用单一最小气孔阻力的SW模型降低冬小麦蒸发蒸腾量的估算平均绝对误差0.03~0.13 mm/h。冬小麦蒸发蒸腾量与气象因素密切相关,与净辐射、空气温度和饱和水汽压差等环境因素决定系数顺序为净辐射饱和水汽压差空气温度风速。这表明南京地区冬小麦蒸发蒸腾量主要决定因素为净辐射。该研究能够为冬小麦蒸散量的模拟方法以及田间水分管理提供参考。  相似文献   

3.
多元自适应回归样条算法模拟川中丘陵区参考作物蒸散量   总被引:2,自引:2,他引:0  
参考作物蒸散量(reference crop evapotranspiration, ET_0)是作物精准灌溉管理与农业高效用水的核心参数。为提高川中丘陵区气象资料缺省下的ET_0预报精度,利用不同的气象因子组合,建立15种基于多元自适应回归样条算法(multivariate adaptive regression splines, MARS)的ET_0预报模型。选取11个代表性气象站点1961—2016年逐日气象资料进行分析,将其与其他ET_0预报模型进行对比,并利用可移植性分析评价MARS模型在川中丘陵区的适用性。结果表明:基于温度和风速项输入的MARS_5(输入大气顶层辐射、最高气温、最低气温、2m处风速)、MARS_9(输入最高气温、最低气温、2 m处风速)和MARS_(13)(输入最高气温、2 m处风速)模型,以及仅基于风速项输入的MARS_(15)模型都具有良好的模拟精度;大气顶层辐射和风速是决定机器学习模型地域性适应能力的关键;引入大气顶层辐射后,MARS_6(输入大气顶层辐射、最高气温、最低气温、相对湿度)、MARS_7(输入大气顶层辐射、最高气温、最低气温、日照时长)、MARS_8(输入大气顶层辐射、最高气温、最低气温)模型均优于相同气象因子依赖下的Irmak-Allen、Irmak、Hargreaves-M4模型;通过可移植性分析发现,在训练站点和测试站点的随机交叉组合下,MARS_5模型保持了较高的精度(纳什效率系数和决定系数均大于0.985),且输出较为稳定的模拟结果,均方根误差变化范围为0.121~0.193 mm/d,平均相对误差变化范围为2.7%~4.2%。因此,基于多元自适应回归样条算法的ET_0预报模型可作为川中丘陵区ET_0预报的推荐模型。  相似文献   

4.
参考作物蒸散量(ET_0)的准确估算是作物需水量及区域农业水分供需计算的关键,尽管已提出大量方法,但缺乏基于实测值的严格检验。本文利用北京小汤山2012年称重式蒸渗仪实测日值,检验16个ET_0模型,包括5个综合法、6个辐射法、5个温度法模型。依据均方根误差RMSE值,各模型估算效果的排序为FAO79 Penman=1963 Peman1996 Kimberly PenmanFAO24 PenmanFAO56 Penman-Monteith(PM)TurcFAO24 Blaney-Criddle(BC)DeBruin-KeijmanJensen-HaisePriestley-Taylor(PT)FAO24RadiationHargreavesMakkinkHamonMcloudBlaney-Criddle(BC)。总体而言,综合法表现最好,其RMSE在1.33~1.47mm·d~(-1),以FAO79 Penman和1963 Penman为最好;辐射法次之,其RMSE在1.48~1.77mm·d~(-1),以Turc最好;温度法检验效果最差,其RMSE在1.50~2.68mm·d~(-1),以FAO24 BC为最好。FAO79Penman和1963 Penman比最好的辐射法和温度法模型的精度分别高10%和13%。综合法、辐射法模型普适性好于温度法的原因在于其均含有影响ET_0的关键因子——辐射或饱和水汽压差VPD。所有模型均具有低蒸发条件下高估、高蒸发条件下低估的阈值特点,综合法及辐射法平均低估0.14mm·d~(-1)和0.33mm·d~(-1),而温度法平均高估0.52mm·d~(-1)。前两类方法 ET_0阈值相对较低,更适于低蒸发力条件,而温度法较适于高蒸发力条件。所有综合法、辐射法模型及温度法的Hargreaves和FAO24 BC法估算值与实测值变化趋势一致,说明模型结构合理,可通过参数校正提高精度;但对于与实测值趋势不吻合的温度法,模型结构尚需优化。VPD和最大湿度RHx是影响综合法、辐射法估算偏差的两大主要因子,其中VPD对低估类模型偏差影响最大,且偏差随着VPD增加而增大;而RHx对高估类综合法模型(1963 Penman、FAO79 Penman)偏差影响最大,且偏差随RHx增加而减小。校正后的PT(1.38)、Makkink(0.83)、Turc(0.014)及Hamon(1.248)系数大于原系数,而Hargreaves(0.0019)和BC(0.192)校正系数低于原系数。此外,PT与Hamon的系数利用最小相对湿度、Turc和Makkink系数利用VPD、Hargreaves和BC系数利用辐射或日照时数能得到最佳估算。FAO56 PM表现不佳(RMSE=1.47mm·d~(-1))的原因与站点气候干燥程度、较低的空气动力项权重有关。后人对原始Penman式的诸多修正并没有显著改善精度,因此建议在类似气候条件地区继续使用老版本Penman式。同时,对FAO56 PM的进一步检验将有助于回答"FAO56 PM是否真正比其它综合法具有优势,在何种气候下表现好,在高蒸发条件下低估是否为普遍现象"等科学问题。  相似文献   

5.
用统计降尺度模型预测川中丘陵区参考作物蒸散量   总被引:4,自引:2,他引:2  
区域蒸散量(evapotranspiration)预测对精准灌溉预报与农田水分管理意义重大。该文利用川中丘陵区11个气象站点1961-2013年逐日气象资料,采用FAO-56 Penman-Monteith公式计算参考作物蒸散量(reference evapotranspiration,ET0),基于Hadley Centre Coupled Model version 3(HadCM3)的输出和统计降尺度模型(statistical downscaling model,SDSM)分别对A2(高温室气体排放)、B2(低温室气体排放)情景下川中丘陵区2014-2099年ET0进行预测,并使用Mann-Kendall检验和反距离加权插值法对1961-2099年ET0的时空演变特征进行分析。结果表明:基准期(1961-2010年)川中丘陵区ET0整体呈现明显下降趋势,空间上呈现出东北部、西北部和东南部相对较大、中部相对较小的差异;与基准期相比,A2、B2情景下未来2020 s(2011-2040年)、2050 s(2041-2070年)和2080 s(2071-2099年)川中丘陵区ET_0月和年均值都呈增大趋势;A2情景下3个时期ET0将分别增加7.9%、10.9%和16.7%,B2情景下ET_0将分别增加7.1%、4.9%和12.8%;A2、B2情景下3个时期川中丘陵区ET_0空间分布均呈现西北部和南部较大、中部较小的空间差异,且3个时期的ET0相对变化率显示中部及其偏北、偏南区域ET_0增幅相对较大,北部和南部增幅相对较小。因此,未来川中丘陵区ET0的上升可能导致水资源短缺与季节性干旱进一步加剧。该研究可为川中丘陵区水资源优化管理和灌溉制度制定提供科学参考。  相似文献   

6.
基于阿勒泰地区7个气象站1961-2016年逐日气象数据和联合国粮农组织推荐的Penman-Monteith公式,估算该区域近56a参考作物蒸散量(ET_0),利用气候倾向率和反距离加权插值法分析ET_0及主要气象因子的时空变化特征,并采用相关系数和多元回归分析相结合的方法对不同尺度ET_0变化成因进行分析。结果表明:阿勒泰地区年平均ET_0为928.46mm,其气候倾向率为-10.90mm·10a~(-1)(P0.01)。季节ET_0平均值由大到小依次为夏季、春季、秋季和冬季,夏季、秋季ET_0呈极显著降低趋势(P0.01),冬季ET_0呈显著增加趋势(P0.05)。6-7月ET_0最大,1月和12月ET_0最小,年内变化呈抛物线形。总体来看,各时间尺度ET_0空间分布特征基本一致,且呈现中西部地区ET_0显著减少趋势,年ET_0减少是夏季ET_0减少所致。各尺度ET_0变化主要贡献因子不一,但平均风速的极显著降低对ET_0减少的影响最大。  相似文献   

7.
为找出适用于都江堰灌区参考作物蒸散量(ET_0)的简化计算模型,以灌区附近成都、都江堰、乐山、遂宁和雅安5个站点1961—2017年的逐日气象资料为基础,计算Penman-Monteith(PM)模型、极限学习机(ELM)模型、广义回归神经网络(GRNN)模型、Priestley-Taylor(PT)模型、Makkink(MK)模型、Ritchie(RC)模型的逐日ET_0数据,以相对均方根误差(RMSE)、决定系数(R~2)和模型效率系数(E_(ns))为评价指标体系比较不同模型计算精度,分析得出在仅有温度资料和辐射资料情况下适用于都江堰灌区的简化计算模型。结果表明:在计算ET_0时,GRNN模型和ELM模型表现出了较高的计算精度和一致性,ELM模型R~2,RMSE,E_(ns)分别为0.852 4~0.911 0,0.363~0.413 mm/d和0.856~0.903,GRNN模型R~2,RMSE,E_(ns)分别为0.835 7~0.886 3,0.366~0.497 mm/d和0.832~0.879,同时比较输入辐射前后2个模型的模拟精度可知,辐射是ET_0计算的关键因素。综上所述,ELM模型在计算ET_0日值和月值时的计算精度均较高,可作为都江堰灌区在气象资料缺失情况下的ET_0标准计算模型。  相似文献   

8.
尝试引入高维Copula函数对影响参考作物蒸散量ET_0的气象因素进行联合分布构建,揭示不同变量间的相关结构,建立多元气象因素对ET_0的联合分布模型,对逐日ET_0及短期干旱等级进行预测,并将枯季1—4月份的多维Copula联合分布预测模型的系统性偏差构造成修正函数,代回ET_0预报模型以改善预报效果,利用洱海流域内大理站1954—2018年逐日气象观测数据,以FAO Penman-Monteith方程为标准值对比分析。结果表明:1)平均气温(T)和最高气温(T_(max))2个气象因子组合时,二维Normal Copula模型对逐日ET_0预测的精度最高,叠加上修正函数项之后,相对误差小于10%、15%、20%、25%的样本比例分别提高到71.6%、84.4%、91.4%、96.5%,全年符合指数IA变化范围为0.98~0.99,平均偏差ME为0.17~0.30,均方根误差RMSE为0.54~0.64,Nash-Sutcliffe效率系数为0.90~0.98;2)将逐日ET_0预测方法应用于逐日气象干旱预测评估(以逐日SPEI指数为例),逐日SPEI指数预测值与标准值的相关系数为0.95~0.99,平均偏差ME为-0.10~0.35,均方根误差RMSE为0.20~0.30,符合指数IA为0.97~0.98,Nash-Sutcliffe效率系数NSE为0.91~0.97,在降水量多的季节,Copula函数模型预测ET_0的精度更高一些,且逐日SPEI预测的误差参数都优于逐日ET_0的预测结果。  相似文献   

9.
自寻优最近邻算法估算有限气象数据区潜在蒸散量   总被引:1,自引:1,他引:0  
FAO-56 Penman-Monteith估算ET0方法被广泛使用,但计算时需要输入多个气象数据。开发一种替代方法,在使用尽可能少的气象数据情况下,仍可以提供准确的或至少接近FAO-56 Penman-Monteith的ET0估算值是该领域研究热点之一。该文结合典型相关分析(canonical correlation analysis,CCA)和k最近邻算法(k-nearest neighbor,k-NN),提出自寻优最近邻算法的潜在蒸散量计算方法(CCA-k-NN),利用较少气象数据实现潜在蒸散量的估算。核心思想是用CCA算法寻找与潜在蒸散量最相关的气象数据,实现后续估算ET0时的气象数据降维,然后利用k-NN算法估算ET0。选择西北地区为例,将该区域气象数据分别从时间和空间尺度,分为训练数据集,验证数据集和测试数据集,分别在3类数据集上用该文方法估算ET0,并以FAO-56 Penman-Monteith作为参照,评估了该文CCA-k-NN方法的估算精度和适用性。结果表明,CCA-k-NN方法与FAO-56 Penman-Monteith保持了较高的相关性(相关系数大于0.9),有好的估算精度,均方根误差和平均绝对误差均小于1 mm/d,空间尺度上算法纳什效率系数均大于0.5,时间尺度上纳什效率系数均大于0.8,在时空尺度均适用。同时,相对于其他替代方法该文算法具有低的时间复杂度,在计算大量数据时可有效降低时间成本。  相似文献   

10.
为实现气象资料缺乏情况下参考作物蒸散量(reference crop evapotranspiration, ET0)高精度预测,以气象因子的不同组合为输入参数,利用FAO-56 Penman-Monteith公式计算的ET0作为预测标准值建立基于极限学习机(extreme learning machine, ELM)的ET0预测模型。选取川中丘陵区7个气象站点1963-2012年逐日气象资料进行模型训练与测试,并将模拟结果同Hargreaves、Priestley-Taylor、Makkink及Irmark-Allen等4种常用模型进行对比。结果表明:ELM模型能很好地反映气象因子同ET0间复杂的非线性关系,且模拟精度较高;基于最高和最低温度的ELM模型模拟精度(均方根误差和模型效率系数分别为0.504 mm/d和0.827)高于Hargreaves模型(均方根误差和模型有效系数分别为0.692 mm/d和0.741);基于最高、最低温度和辐射的ELM模型模拟精度(均方根误差和模型有效系数分别为0.291 mm/d和0.938)明显高于Priestley-Taylor(均方根误差和模型有效系数分别为0.467 mm/d和0.823)、Makkink(均方根误差和模型有效系数分别为0.540 mm/d和0.800)和Irmark-Allen模型(均方根误差和模型有效系数分别为0.880 mm/d和0.623)。因此基于最高、最低温度和辐射的ELM模型可以作为气象资料缺乏情况下川中丘陵区ET0计算的推荐模型。该研究可为川中丘陵区气象资料缺乏情境下ET0精确计算提供科学依据。  相似文献   

11.
The current study aims to improve the performance of simple methods for the estimation of daily reference evapotranspiration (ET0) in humid East China, namely Priestley–Taylor 1972 (P-T 1972), Hargreaves–Samani 1985 (H-S 1985) and Turc 1961 (TU 1961). These methods were evaluated and calibrated based on well-watered grass lysimeter experiments. The FAO-56 Penman–Monteith equation (FAO-56 PM) is the best method, and the radiation-based methods (TU 1961 and P-T 1972) perform much better than the temperature-based method (H-S 1985). In the simple methods, the coefficients are calibrated to: 1.34 for P-T 1972; 0.0186, 23.47 and 17.06 for TU 1961; and 0.0027 and 0.449 for H-S 1985. The locally calibrated TU 1961 and P-T 1972 perform much better than the original, with either the observed ET0r or the ET0c obtained by FAO-56 PM as standard. However, local calibration does not significantly improve the performance of the H-S 1985 method. In humid East China, FAO-56 PM is the best method for daily ET0 calculation. TU 1961, especially if locally calibrated, is the optimal choice as a simple substitute for FAO-56 PM when solar radiation is available. Otherwise, serious local calibration is strongly recommended before applying H-S 1985 for daily ET0 estimation.  相似文献   

12.
Reference evapotranspiration (ET0) can be estimated on basis of pan evaporation data (Epan), whose measurements have the advantage of low cost, simplicity of the measuring equipment, simple data interpretation and application as well as suitability for locations with limited availability of meteorological data. Epan values were converted to ET0 using the pan evaporation coefficient (Kpan). In this study, seven common Kpan equations were evaluated for prediction of ET0 in the growing season (April to October) in arid region of Iran. The Cuenca approach was best suited compared to the standard FAO Penman–Monteith method (FAO-56 PM).  相似文献   

13.
[目的]研究黑龙江省西部地区"三北"工程区不同类型土壤的水分动态特征及其与气象因子的相关性,为该地区土壤墒情预测提供科学参考。[方法]通过建立小型基准气象观测站定点观测土壤水分含量及气象因子,并利用回归分析建立了无降雨条件下土壤水分的预测模型。[结果](1)生长季土壤水分变化均呈现消退期的现象,其中以黑土和黑钙土表现最为显著。3种土壤类型水分含量的变异系数都随土壤深度增大呈递减趋势。(2)相关分析结果表明,土壤水分含量与光照强度和大气温度均表现为负相关,与空气湿度表现为正相关,与降雨量和风速相关系数较小。(3)黑土和黑钙土的土壤水分日消耗量可由光照强度(X1)、湿度(X2)、风速(X3)和大气温度(X4)的变化来解释。[结论]土壤水分受气象因子综合调控,根据气象因子建立的模型可以用来预测无降雨条件下土壤水分的变化。  相似文献   

14.
用气象资料计算参照作物腾发量(ET0)的方法需要各种气象(候)和物理参数,净辐射是其中的重要数据之一,而专业测量净辐射的设备在农业气象站里很少安装。为解决计算ET0时缺少太阳净辐射(Rn)测量值这一实际问题,该文采用浑善达克沙地东南缘南沙梁草甸草原区气象站观测的气象资料,用遗传算法模型对联合国粮农组织56号文本(FAO56)推荐值(as和bs)进行率定,计算了对应夏半年(4—9月)和冬半年(1—3月和10—12月)的太阳净辐射和参照作物腾发量,并将率定前后的模拟太阳辐射进行对比分析,用残差估计指数法对该方法模拟的参照作物腾发量模拟精度进行了分析。结果表明:在缺少太阳净辐射测量值的地区,采用FAO56参数(as和bs)推荐值与遗传算法模型率定参数(as和bs)相比,净辐射年内变化趋势一致,采用率定后参数计算的净辐射相对更不稳定,波动更大,但能有效提高参照作物腾发量计算精度。误差较大的模拟值均出现在降雨日前后,降雨虽然并未直接出现在Penman-Monteith公式中,但是降雨必然会对湿度和温度等气象条件造成一定影响,而as和bs是受湿度等因素影响而变化的,其深层次的原因有待进一步分析。  相似文献   

15.
纵向岭谷区参考作物腾发量变化的特点和趋势   总被引:3,自引:1,他引:3  
以Penman Montieth方程分析了西南纵向岭谷区大理、元江、保山、昆明、景洪站46~48年的逐日ET0及其余25个站1961~2000年逐月ET0系列。研究结果表明:日最高温度是年内ET0变化主导因素,年际变化主要受日照时数影响,个别站为最高气温或风速,短期ET0变化与雾无直接关系。利用Mann-Kendall法对各站年际、年内分季节ET0趋势检验,56.7%站点的年ET0呈显著增加趋势,分布于澜沧江耿马-思茅-勐海一带以及横断山区维西、福贡等地。分季节逐日ET0变化趋势为,昆明夏秋季显著下降,景洪冬春季显著增加,元江、保山、大理有增有减。降水量增加、气温升高,蒸发和日照时数减少,导致80%的站ET0呈下降趋势,湿润指数普遍增加。  相似文献   

16.
采用太子河流域内8个气象站1960~2005年间气象资料,应用Penman-Montieth公式计算了46年间逐月参考作物腾发量(ET0),对参考作物腾发量及气象要素的年际变化特征、月际变化特征及趋势进行了分析,应用统计检验方法分析了影响流域参考作物腾发量变化的主要气象因素。结果表明:近46年间太子河流域ET0值呈现缓慢下降趋势,年内ET0值分布以5、6月份最高,1月份最低。影响ET0的主要气候要素按影响程度强弱依次为日照、风速、温度、相对湿度。  相似文献   

17.
结合作物生产开展区域干湿演变及其影响因素研究,对农业可持续发展和粮食安全具有重要的科学意义。本文基于西南水稻种植区316个气象站点1961—2015年的观测资料,利用降水量与参考作物蒸散量(ET_0)的比值计算湿润指数,分析近55年西南区域单季稻生长季干湿演变特征;探讨ET_0对主要气候要素的敏感性及主要气候要素对ET_0的贡献率,对西南区域单季稻生长季干湿演变的影响因素展开研究。结果表明:西南区域单季稻生长季的半湿润区主要分布在四川攀西地区南部、云南中部和东北部,其余地区属湿润区。与1961—1990年相比,1991—2015年研究区域内的半湿润区面积增加、湿润区面积减小。近55年来,单季稻生长季内西南区域有40.8%的站点气候变湿,其余地区气候变干。四川盆地东北部、云南东北部由于降水量的增加和ET_0的减少,气候变湿;四川攀西地区由于降水量增加对湿润指数的正效应大于ET_0增加对湿润指数的负效应,气候变湿;重庆南部、贵州北部和西部由于降水量减少对湿润指数的负效应小于ET_0减少对湿润指数的正效应,气候变湿;云南大部由于降水量的减少和ET_0的增加,气候变干;西南其他区域由于降水量减少对湿润指数的负效应大于ET_0减少对湿润指数的正效应,气候变干。西南区域单季稻生长季ET_0随平均气温和相对湿度的增加而减小,而随日照时数和风速的增加而增加,日照时数和风速的显著下降是ET_0减小的主要原因。研究为气候变化背景下降低西南区域单季稻生长季可能的气候风险提供了科学依据。  相似文献   

18.
Accurate estimation of reference evapotranspiration (ETo) is essential for water resources management and irrigation systems scheduling, especially in arid and semiarid regions such as Iran. In the present research, constant coefficients of Hargreaves–Samani (CH–S) and Priestley–Taylor (CP–T) equations were locally calibrated to estimate the ETo based on the FAO–Penmen–Monteith (PM) method as standard method. For this purpose, meteorological data of eight synoptic stations located in the northwest of Iran were used during the period of 1997–2008. The outcomes showed that the values of CH–S and CP–T were 0.0026 (instead of 0.0023) and 1.68 (instead of 1.26), respectively. Also, at stations with high wind speed, the values of calibrated coefficients of CH–S and CP–T were maximum. Then, the estimated ETo values using adjusted CH–S and CP–T coefficients were compared to the obtained actual ETo values by PM method using root mean square error and mean bias error indices. The results indicated that the new calibrated H–S and P–T equations have good agreement with the PM method for estimation of the ETo. Moreover, the equation of Ravazzani et al. was calibrated in the studied region. It was concluded that in general, the mentioned equation was shown better performance than original H–S equation.  相似文献   

19.
Proper methods for estimating reference evapotranspiration (ET0) using limited climatic data are critical, if complete weather data are unavailable. Based on the weather data of 19 stations in Guizhou Province, China, several simple methods for ET0 estimation, including the Hargreaves, Priestley–Taylor, Irmak–Allen, McCloud, Turk, and Valiantzas methods, were involved in comparison with the standard FAO-56 Penman–Monteith (PM) method. The Turk equation performs well for estimating ET0 in humid locations. Both the Turk method and the Valiantzas method initially performed acceptably with mean root-mean-square difference (RMSD) of 0.1472 and 0.1282 mm d?1, respectively, with only requiring parameters of temperature (T), relative humidity (RH), and sunshine duration (n). The corresponding calibration formulas to Turk and Valiantzas method were suggested as the most appropriate method for ET0 estimation with the RMSD of 0.0098 and 0.0250 mm d?1, respectively. The local calibrated Hargreaves–Samani method performed well and can be applied as the substitute of FAO-56 PM method under the condition that only the daily mean, maximum, and minimum temperatures were available, and local calibrated McCloud method was acceptable if only the mean temperature was available.  相似文献   

20.
利用温度资料和广义回归神经网络模拟参考作物蒸散量   总被引:6,自引:2,他引:4  
参考作物蒸散量(reference evapotranspiration,ET0)精确模拟对水资源高效利用和灌溉制度制定具有重要意义,该文以四川盆地19个气象站点1961-1990年逐日最高、最低温度和大气顶层辐射作为输入参数,FAO-56 Penman-Monteith(PM)模型计算的ET0为标准值,建立基于广义回归神经网络(generalized regression neural network,GRNN)的ET0模拟模型,基于1991-2014年资料进行模型验证,将GRNN模型同Hargreaves(HS1)和改进Hargreaves(HS2)等简化模型的模拟结果进行比较,分析只有温度资料情况下不同模型模拟ET0误差的时空变异性。结果表明:GRNN、HS1和HS2模型均方根误差(root mean square error,RMSE)分别为0.41、1.16和0.70 mm/d,模型效率系数(Ens)分别为0.88、0.13和0.67。3种模型RMSE在时空上均呈现HS1HS2GRNN、Ens均呈现GRNNHS2HS1趋势;与PM模型模拟结果相比,GRNN、HS1和HS2模型模拟结果分别偏大0.8%、45.1%和17.3%。在时空尺度上的误差分析均表明利用温度资料建立的GRNN模型能够较为准确地模拟四川盆地ET0,因此可以作为资料缺失情况下ET0模拟的推荐模型。该研究可为四川盆地作物需水精确预测提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号