首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An incubation experiment was conducted to study N2O emissions from a Typic Ustochrept, alluvial soil, fertilized with urea and urea combined with different levels of two nitrification inhibitors, viz karanjin and dicyandiamide (DCD). Karanjin [a furano-flavonoid, obtained from karanja (Pongamia glabra Vent.) seeds] and DCD were incorporated at rates of 5, 10, 15, 20 and 25% of applied urea-N (100 mg kg-1 soil), to the soil adjusted to field capacity moisture content. The highest N2O flux (366 µg N2O-N kg-1 soil day-1) was obtained on day 1 after incubation from soil fertilized with urea without any inhibitor. The presence of the inhibitors appreciably reduced the mean N2O flux from the urea-treated soils. The application of karanjin resulted in a higher mitigation of total N2O-N emission (92-96%) compared to DCD (60-71%). Rates of N2O flux ranged from 0.9 to 140 µg N2O-N kg-1 soil day-1 from urea combined with different levels of the two inhibitors (coefficient of variation=24-272%). Karanjin (62-75%) was also more effective than DCD (9-42%) in inhibiting nitrification during the 30-day incubation period.  相似文献   

2.
Nitrous oxide (N2O) emissions were monitored for a period of 60 days in a pot culture study, from two kharif (June-September) and two rabi (October-March) season legumes, which were grown on a Typic Ustochrept, alluvial sandy loam soil. Black gram (Vigna mungo L. Hepper), var. T-9, and soybean (Glycine max L. Merril), var. Punjab 1, were taken up in kharif season whereas lentil (Lens esculenta Moench), var. JLS-1, and Bengal gram (Cicer arietinum L.), var. BGD-86, were grown in rabi season. All the crops were grown with and without urea and one pot (containing soil but with no fertilizer or crop) was used as a control. Nitrous oxide emissions were significantly higher in unfertilized cropped soil than in the control, while the addition of urea to the crops further increased the emissions. Significant emissions occurred during third and seventh week after sowing for all the treatments in both kharif and rabi seasons. In kharif, soil cropped with soybean had higher total N2O-N emission than soil sown with black gram both under fertilized and unfertilized conditions; while in rabi, lentil had a higher total N2O-N emission than Bengal gram under both fertilized and unfertilized conditions. In kharif, total N2O-N emissions ranged from 0.53 (control) to 3.84 kg ha-1 (soybean+urea), while in rabi it ranged from 0.45 (control) to 3.06 kg ha-1 (lentil+urea). Higher N2O-N emissions in kharif than in rabi was probably due to the favorable effect of temperature on nitrification and denitrification in the former season. The results of the study indicated that legume crops may lead to an increase in N2O formation and emission from soils, the extent of which varies from crop to crop.  相似文献   

3.
Reproduction, intrinsic rate of natural increase and population density of naidid worms were investigated in submerged paddy fields and the laboratory. No tillage plus legume-mulching increased the population density of naidid worms. Soil treatments with neither tillage nor legume mulch, and tillage practice alone, did not increase the number of worms. Dero dorsalis Ferronnière was dominant in soil of the no-tillage treatment. In laboratory experiments, legume-mulching with the proper amount of dissolved O2 accelerated asexual reproduction of D. dorsalis through zooid budding. For the legume and aeration treatment, (Ni+1-Ni) Ni-1 values (where Ni and Ni+1 are the populations at times t=i and t=i+1) were plotted against Ni+1. Utilizing this linear relation, this data fitted the logistic curve (r2=0.885, P<0.05). Based on the linear relation, the intrinsic rate of natural increase (r), carrying capacity (K), and doubling time (T) were calculated as 0.2125 day-1, 12,666 m-2, and 3.26 days, respectively. The amounts of legumes applied were highly correlated with the population of D. dorsalis, indicating that the weight of legume is a limiting factor with respect to carrying capacity. A literature review indicated a significant correlation (P<0.01) between intrinsic rate of natural increase and maximum body length of naidids with temperature conversion of the growth rate. Sexually mature worms were rarely found in submerged paddy fields. Sexual reproduction seems to be adopted in response to soil desiccation after paddy field drainage.  相似文献   

4.
Samples from topsoils (0-10 cm) of 16 Polish arable Cambisols developed from different parent materials (sand, silt, sandy gravel, loess, loam and clay), were incubated under flooded conditions with NO3-. Dehydrogenase activity, redox potential (Eh), and emissions of CO2 and N2O were measured. According to dehydrogenase activity, the soils were divided into two groups: those of low activity (I), where the final dehydrogenase activity was <0.03 nmol triphenylformazan (TPF) g-1 min-1, and those with high final dehydrogenase activity (II), >0.03 nmol TPF g-1 min-1. Generation of CO2 and of N2O under flooded conditions was shown to be significantly related to dehydrogenase activity. Soil dehydrogenase activity increased curvilinearly with organic matter content, showed a maximum at pH 7.1, and decreased curvilinearly with Eh. The final cumulative CO2 production increased linearly with soil organic matter content and curvilinearly with dehydrogenase activity and decreased linearly with Eh. The most significant relationship was found with dehydrogenase activity (R2=0.74, P<0.001). The final cumulative N2O production decreased linearly with Eh and increased curvilinearly with pH and dehydrogenase activity but linearly with organic matter content; the most significant relation being found with dehydrogenase activity (R2=0.69, P<0.001). The CO2:N2O ratio in the gases evolved increased curvilinearly with Eh and decreased with dehydrogenase activity and N2O and CO2 production.  相似文献   

5.
Use of renewable N and C sources such as green manure (GM) and crop residues in rice-wheat cropping systems of South Asia may lead to higher crop productivity and C sequestration. However, information on measurements of gaseous N losses (N2O+N2) via denitrification and environmental problems such as N2O and CO2 production in rice-wheat cropping systems is not available. An acetylene inhibition-intact soil core technique was employed for direct measurement of denitrification losses, N2O and CO2 production, in an irrigated field planted to rice (Oryza sativa L.) and wheat (Triticum aestivum L.) in an annual rotation. The soil was a coarse-textured Tolewal sandy loam soil (Typic Ustochrept) and the site a semi-arid subtropical Punjab region of India. Wheat residue (WR, C:N=94) was incorporated at 6 t ha-1 and sesbania (Sesbania aculeata L.) was grown as GM crop for 60 days during the pre-rice fallow period. Fresh biomass of GM (C:N.=18) at 20 or 40 t ha-1 was incorporated into the soil 2 days before transplanting rice. Results of this study reveal that (1) denitrification is a significant N loss process under wetland rice amounting to 33% of the prescribed dose of 120 kg N ha-1 applied as fertilizer urea-N (FN); (2) integrated management of 6 t WR ha-1 and 20 t GM ha-1 supplying 88 kg N ha-1 and 32 kg FN ha-1 significantly reduced cumulative gaseous N losses to 51.6 kg N ha-1 as compared with 58.2 kg N ha-1 for 120 kg FN ha-1 alone; (3) application of excessive N and C through applying 40 t GM ha-1 (176 kg N ha-1) resulted in the highest gaseous losses of 70 kg N ha-1; (4) the gaseous N losses under wheat were 0.6% to 2% of the applied 120 kg FN ha-1 and were eight- to tenfold lower (5-8 kg N ha-1) than those preceding rice; (5) an interplay between the availability of NO3- and organic C largely controlled denitrification and N2O flux during summer-grown flooded rice whereas temperature and soil aeration status were the primary regulators of the nitrification-denitrification processes and gaseous N losses during winter-grown upland wheat; (6) the irrigated rice-wheat system is a significant source of N2O as it emits around 15 kg N2O-N ha-1 year-1; (7) incorporation of WR in rice and rice residue (C:N=63) in wheat increased soil respiration, and increased CO2 production in WR- and GM-amended soils under anaerobic wetland rice coincided with enhanced rates of denitrification; and (8) with adequate soil moisture, most of the decomposable C fraction of added residues was mineralized within one crop-growing season and application of FN and GM further accelerated this process.  相似文献   

6.
Fertilization of wheat (Triticum aestivum, L.) residue applied to degraded soils has shown promise as an option to restoring soil organic C (SOC) stocks, but the impact of the practice on N2O and CH4 emissions is not clear. It was hypothesized that, in addition to the mulch-induced soil wetness conditions favorable for N2O and CH4 formation, emission of these gases will be stimulated due to increased availability of mineral N and interference of NH4+ with CH4 oxidation in soils. During the period February–November 2000, fluxes of N2O and CH4 were monitored in a plant-free central Ohio Crosby soil (fine, mixed, mesic Aeric Ochraqualf) amended for 4 years with wheat straw (bare, 0; low, 8 Mg ha–1 year–1; and high, 16 Mg ha–1 year–1) without and with N fertilization (244 kg N ha–1). The average annual N2O fluxes were 1.1 kg N2O-N ha–1 in the unfertilized and 4.1 kg N2O-N ha–1 in the fertilized treatments. Annual N2O emission (Y, mg N2O-N m–2) was strongly correlated to the maximum daily flux (X, mg N2O-N m–2 day–1; Y=48.3X−58.1, R2=0.85, P<0.001) recorded on experimental plots. These flux maxima occurred at spring thaw in the unfertilized, and 6–30 days after fertilization in the fertilized treatments. Net CH4 uptakes were measured on some occasions; overall, however, all the treatments were net CH4 emitters with annual rates of 3.6, 4.9 and 5.1 kg CH4-C ha–1 in the bare, low and high residue treatments, respectively. No significant effect of fertilization and mulch rate on CH4 fluxes was found, but temperature and landscape position appeared as strong controllers. Regardless of treatments, the highest CH4-emitting plots were located in a minor depressional area at the experimental site. A comparison of SOC gain and N2O and CH4 emission expressed as CO2-equivalents indicates that the residue treatments have a net CO2-mitigating effect, but since C sequestration rates are expected to decrease with time, that positive effect will likely vanish after 7 and 12 more years in the fertilized and unfertilized residue treatments, respectively.  相似文献   

7.
A field experiment was conducted to determine N2O concentrations in the soil profile and emissions as influenced by the application of N fertilizers and manure in a typical Japanese Andisol, which had been under a rotation of oat and carrot for the previous 3 years. The treatments include ammonium sulphate (AS), controlled-release fertilizer (CRF) and cattle manure (CM) in addition to a control; all the fertilizers were applied either at 150 kg N ha-1 or 300 kg N ha-1 at the time of sowing carrot. N2O emissions from the soil surface were measured with closed-chamber techniques, while N2O concentrations in the soil profile were measured using stainless steel sampling probes inserted into the soil at depths of 10, 20, 40, 60, 80 and 100 cm. Moreover, soil water potential, soil temperature and rainfall data were also recorded. The results indicated that N2O concentrations in the soil profile were always greater than in the atmosphere, ranging from 0.36 µl N2O-N l-1 to 5.3 µl N2O-N l-1. The relatively large accumulation of N2O in the lower profiles may be a significant source for N2O flux. Taking the changes of soil mineral N into consideration, most emissions of N2O were probably produced from nitrification. The accumulation of N2O in the soil profile and emissions to the atmosphere were differently influenced by the amendments of N fertilizers and manure, being consistently higher in CRF than in CM and AS treatments at the corresponding application rates, but no significant difference existed with respect to the various N sources.  相似文献   

8.
Net N mineralization was studied in three different forest sites (Belgium): a mixed deciduous forest with oak (Quercus robur L. and Quercus rubra L.) and birch (Betula pendula Roth) as dominant species, a deciduous stand of silver birch (Betula pendula) and a coniferous stand of Corsican pine (Pinus nigra ssp. Laricio). The organic (F + H) layer and mineral soil at different depths (0-10, 10-20 and 20-30 cm) were sampled at three locations in the mixed deciduous forest (GE, GF1, GF2), at one location in the silver birch stand (SB) and one in the Corsican pine stand (CP). All samples were incubated over 10 weeks under controlled temperature and moisture conditions. The net N mineralization rates in the organic and upper mineral layer (0-10 cm) were found to be significantly different from the other layers and accounted for 66-95% of the total mineralization over the first 30 cm. Net N mineralization rates in the organic layer ranged from 4.2 to 27.3 mg N m-2 day-1. Net N mineralization and nitrification rates were positively correlated. For the mineral soil, net N mineralization rates decreased with depth and the upper 10 cm showed significantly higher rates, ranging from 8.9 to 33.5 mg N m-2 day-1. The rates of the 10-20 cm and 20-30 cm sublayers were similar, ranging from 1.2 to 7.4 mg N m-2 day-1. The net N mineralization rates for the total mineral layer (0-30 cm) ranged from 17.4 mg N m-2 day-1 (SB) to 36.1 mg N m-2 day-1 (CP). Both from PCA and multiple regression analysis, we could conclude that net N mineralization rates were closely related to the initial mineral N content (Ninitial). Furthermore, significant correlations were observed between the net N mineralization rate, the total carbon (TC) and NH4+-N content for the mineral layers and between net N mineralization rate, total nitrogen (TN), hemicellulose content and C/N for the organic layers.  相似文献   

9.
不同水稻、小麦品种对N2O排放的影响   总被引:3,自引:0,他引:3  
B. GOGOI  K. K. BARUAH 《土壤圈》2012,22(1):112-121
Plant species of cropping systems may affect nitrous oxide (N2O) emissions. A field experiment was conducted to investigate dynamics of N2O emissions from rice-wheat fields from December 2006 to June 2007 and the relationship between soil and plant parameters with N2O emissions. The results indicated that N2O emissions from different wheat varieties ranged from 12 to 291 μg N2O-N m-2 h-1 and seasonal N2O emissions ranged from 312 to 385 mg N2O-N m-2. In the rice season, it was from 11 to 154 μg N2O-N m-2 h-1 with seasonal N2O emission of 190--216 mg N2O-N m-2. The seasonal integrated flux of N2O differed significantly among wheat and rice varieties. The wheat variety HUW 234 and rice variety Joymoti showed higher seasonal N2O emissions. In the wheat season, N2O emissions correlated with soil organic carbon (SOC), soil NO3--N, soil temperature, shoot dry weight, and root dry weight. Among the variables assessed, soil temperature followed by SOC and soil NO3--N were considered as the important variables influencing N2O emission. N2O emission in the rice season was significantly correlated with SOC, soil NO3--N, soil temperature, leaf area, shoot dry weight, and root dry weight. The main driving forces influencing N2O emission in the rice season were soil NO3--N, leaf area, and SOC.  相似文献   

10.
Nitrification inhibitors specifically retard the oxidation of NH4+ to NO2- during the nitrification process in soil. In this study, the influence of soil properties on the nitrification-inhibiting effect of 3,4-dimethylpyrazole-phosphate (DMPP), a newly developed nitrification inhibitor, has been investigated. Based on short-term incubation experiments, where the degradation of DMPP could be largely disregarded, the oxidation of the applied NH4+ was more inhibited in sandy soils compared with loamy soils. The influence of soil parameters on the relative NO2- formation could be described by a multiple regression model including the sand fraction, soil H+ concentration and soil catalase activity (R2=0.62). Adsorption studies showed that the binding behaviour of DMPP was influenced markedly by soil textural properties, viz. the clay fraction (r2=0.61). The adsorption of DMPP was found to be an important factor for the inhibitory effect on NH4+ oxidation in a short-term incubation (r2=0.57). It is concluded that the evaluated soil properties can be used to predict the short-term inhibitory effect of DMPP in different soils. The significance of these results for long-term experiments under laboratory and field conditions needs further investigation.  相似文献   

11.
在田间条件下,应用乙炔抑制-原状土柱培养法测定优化施肥下华北冬小麦/夏玉米轮作体系土壤反硝化和N2O的排放特征。研究表明:冬小麦和夏玉米整个生育期反硝化速率和N2O排放通量均表现出明显的季节性变化,且均与土壤水分和无机氮浓度呈显著正相关。小麦季和玉米季的反硝化损失量及N2O排放量均表现出随施肥量的降低而降低,夏玉米季的反硝化损失量和N2O排放量均高于小麦季。小麦季的反硝化损失量和N2O排放量习惯施肥处理是氮肥减量后移处理的1.62和1.67倍,玉米季分别为2.01和2.00倍。氮肥减量后移可能是通过改变土壤无机氮浓度而降低反硝化损失量和N2O排放量。  相似文献   

12.
Restoration of CH4-oxidation activities of desiccated paddy soils and the NH4+ effect after watering were investigated in laboratory incubations. Fresh paddy soil collected from an intermittently flooded rice field in Wuxi, Jiangsu province, showed a parabolic relationship between CH4-oxidation activity and soil moisture with an optimum CH4-oxidation rate at 71% water-holding capacity (WHC), while the paddy soil collected from a permanently flooded rice field in Yingtan, Jiangxi province, showed a much smaller CH4-oxidation ability, which increased exponentially with soil moisture increasing from 28% WHC to 95% WHC at an initial CH4 concentration of ~2,200 µl l-1 and at room temperature (25°C). CH4-oxidation ability was inversely related to N2O emission and related positively with CO2 emission in response to the change in soil moisture. Desiccated paddy soils lost their CH4-oxidation abilities. However, this was recovered after the soils were re-watered. The restoration of CH4-oxidation ability was directly dependent upon soil moisture and the rate of its restoration increased with increasing soil moisture content from 40% to 90% WHC. Addition of NH4Cl at rates of 0-3.57 µmol g-1 soil inhibited the restoration of CH4-oxidation ability significantly (P<0.01), but the inhibitory effect was alleviated by a high soil moisture content. The restoration of CH4-oxidation ability was much slower in the Yingtan soil than in the Wuxi soil. The studies show that the optimum moisture content of paddy soils for CH4 oxidation depends on the methanotrophic bacteria in relation to the prevailing water regime; desiccation damages the CH4-oxidation ability of permanently flooded paddy soil more severely than that of frequently well-drained soils.  相似文献   

13.
Heterotrophic N2-fixing bacteria are a potentially important source of N2 fixation in rice fields due to the moist soil conditions. This study was conducted at eight sites along a geographic gradient of the Yangtze River Plain in central China. A nitrogen-free solid malate-sucrose medium was used to isolate heterotrophic N2-fixing bacteria. Numbers of the culturable N2-fixing bacteria expressed as CFU (colony forming units) ranged between 1.41ǂ.42᎒6 and 1.24ǂ.23᎒8 in the sampled paddy field sites along the plain. Thirty strains with high ARA (acetylene reduction activity) were isolated and purified; ARA of the strains varied from 0.9 to 537.8 nmol C2H4 culture-1 h-1, and amounts of 15N fixed ranged between 0.008 and 0.4866 mg·culture-1·day-1. According to morphological and biochemical characteristics, 14 strains were identified as the genus Bacillus, 2 as Burkholderia, 1 as Agrobacterium, 4 as Pseudomonas, 2 as Derxia, 1 as Alcaligenes, 1 as Aeromonas, 2 as Citrobacter, and 3 strains belonged to the corynebacter-form group.  相似文献   

14.
Mineral-N fertilization can lead to a short-term enhancement of N2O emission from cultivated land. The aim of this field study was the quantitative determination of the short-term N2O emission after application of a fertilizer with the new nitrification inhibitor (NI) 3,4-dimethylpyrazole phosphate (DMPP) to winter wheat. NO3- and NH4+ fertilizers labelled with 15N in liquid and granulated form were used in specific fertilizer strategies. N fertilizers with higher NO3- contents caused higher N2O emission than NH4+ fertilizers. For fertilizers with NIs, used in simplified fertilizer strategies with fewer applications and an earlier timing of the N fertilization, the N2O release was reduced by about 20%. Of the total N2O emission measured, 10-40% was attributed to fertilizer N and 60-90% originated from soil N. Besides the fertilizer NO3--N, the microbial available-N pool in the soil represented a further important source for N2O losses. Compared to liquid fertilizers, the application in granulated form led to smaller N2O emissions. For fertilizers with NIs, the decrease in the N2O emission is mainly due to their low NO3--N content and the possibility of reducing the number of applications.  相似文献   

15.
N2O and NO emissions from an Andisol maize field were studied. The experimental treatments were incorporation of urea into the plough layer at 250 kg N ha-1 by two applications (UI250), band application of urea at a depth of 8 cm at 75 kg N ha-1 plus incorporation of urea into the plough layer at 75 kg N ha-1 (UB150), band application of polyolefin-coated urea at a depth of 5 cm at 150 kg N ha-1 (CB150), and a control (without N application). N2O fluxes from UI250 and UB150 peaked following the incorporation of supplementary fertilizer, and declined to the background level after that, while the N2O flux from CB150 was relatively low but remained at a constant level until shortly after harvest. Accordingly, the total N2O emissions during the whole cultivation period from the three treatments were not significantly different. The fertilizer-derived N2O-N losses from UI250, UB150 and CB150 were 0.15%, 0.27% and 0.28% of the applied N, respectively. However, it was suggested that, due to the low plant N recovery, UI250 had a significantly larger potential for indirect N2O emission than the other treatments. On the other hand, NO emissions from UI250 and UB150 were 12 times higher than that from CB150, and the fertilizer-derived NO-N losses from the three treatments were 0.16%, 0.27% and 0.026% of the applied N, respectively. Significant NO fluxes were detected only when urea-N fertilizer was surface-applied and incorporated into plough-layer soil.  相似文献   

16.
Bioavailability of triazine herbicides in a sandy soil profile   总被引:1,自引:0,他引:1  
The bioavailability of atrazine was evaluated in a Danish soil profile (Drengsted) using a combination of soil sorption, transport and mineralisation methods as well as inoculation using Pseudomonas ADP. Sorption of atrazine decreased markedly with depth as indicated by Kd values of 5.2 l kg-1 for the upper soil and 0.1 l kg-1 for the subsoils. The transport of atrazine was evaluated using soil TLC plates and the resulting Rf values were 0.1 for the upper soil and 0.9 for the subsoil. Only a relatively small amount of atrazine leached through undisturbed soil columns taken from the upper 60 cm. Inoculating with Pseudomonas strain ADP (1᎒6 CFU g-1 dry weight soil) revealed that the degradation of 0.01 ppm atrazine was fully completed (80% mineralisation) within 10 days in the subsoil, while it reached less than 15% in the upper soil. Over a period of 500 days, a total mineralisation of 37% of added atrazine in the upper soil was found (2 mg kg-1 incubated at 20° C). However, in the subsurface soil where 0.02 mg kg-1 of atrazine was incubated at 10°C, the degradation was slower, only reaching about 12%. Terbuthylazine mineralisation was found to be temperature-dependent and low (less than 5%) in the upper soil and very much lower in the subsoil. Desethylterbuthylazine was the most frequently found metabolite. Finally, Pseudomonas strain ADP inoculated into soils from different depths increased the mineralisation of terbuthylazine dramatically. Modelling using a "two-compartment model" indicated that desorption of terbuthylazine is the limiting step for its mineralisation.  相似文献   

17.
The objectives of this study were to determine the variability in mineralization of dairy manure N, to determine if N mineralization can be predicted by compositional factors or by near- or mid-infrared reflectance spectroscopy. Dairy manures (n =107) were collected from farms in Maryland, Virginia, Pennsylvania, New York, and Connecticut. The composition of these manures ranged from 14 to 386 g dry matter kg-1, 0.9 to 9.5 kg total N/m3, and 0.3 to 4.7 kg NH4+-N/m3. Manure-amended soil was aerobically incubated at 25°C and concentrations of NH4+-N and NO3--N were determined at day 2 and day 56. The manures were highly variable in their N mineralization characteristics, ranging from a net mineralization of 54.9% to a net immobilization of 29.2% of the organic N. When compositional parameters were individually regressed against percentage mineralized organic N, the highest correlation coefficient (r) was 0.164. A stepwise regression of all 11 variables yielded a maximal r of 0.486. These results suggest that the availability of dairy manure organic N is highly variable and that the availability cannot be predicted from simple compositional parameters. No relationship was found between near-infrared spectral characteristics and N mineralization suggesting that no simple relationship exists between N mineralization and compositional characteristics. There appears to be some potential for the use of mid-infrared for determining the mineralization potential of manures.  相似文献   

18.
Laboratory incubation experiments were conducted to study the influence of easily oxidizable C (glucose) and mineral N (NH4+ and NO3-) on N2O emission, evolution of CO2 and consumption of O2. A flush of N2O was always observed during the first few hours after the start of soil incubation, which was significantly higher with NH4+ compared to NO3- applications. The increase in N2O emission was attributed mainly to enhanced soil respiration and subsequent O2 limitation at the microsite level. Application of NH4+ helped to develop denitrifying populations since subsequent additions of NO3- and a C source significantly enhanced N2O emissions. In soils treated with NH4+, N2O emissions declined rapidly, which was related to decreasing concentrations of easily oxidizable C. Addition of glucose in different amounts and pre-incubation of soil for different lengths of time (to create variation in the amount of easily oxidizable C) changed the pattern of N2O emissions, which was ascribed to changes in soil respiration.  相似文献   

19.
During freeze-thaw events, biophysical changes occurring in soils can affect processes such as mineralization, nitrification and denitrification which control inorganic N balances in agro-ecosystems. To evaluate the impact of these climatic events on soil biochemical properties, a study was conducted comparing soil denitrification enzyme activity (DEA), dissolved organic C (DOC) and inorganic N levels before and after the winter season in plots under: (1) continuous corn (Zea mays L.) (CC) with annual chisel plow and disking, (2) corn-soybean (Glycine max L.) (CS) rotation with chisel plow every other year prior to planting soybean, and (3) corn-soybean-wheat (Triticum aestivum L.)/hairy vetch (Vicia villosa Roth) (CSW-V) with ridge tillage during the corn and soybean crops, and dairy manure application during the corn year. Soil cores were collected in late autumn and immediately after spring thaw at 0-5, 5-10, 10-15, and 15-30 cm depths. Regardless of management practices, freeze-thaw events resulted in significant (2-10 times) increases in NH4+-N, NO3--N (P<0.001) and DOC (P<0.01) levels at all soil depths. Following freeze-thaw, DEA remained unchanged in the 5-30 cm depth but dropped significantly (P<0.01) in the 0-5 cm soil layer. In that layer, soils which had been chisel plowed during the previous growing season lost 78-84% of the DEA recorded during the fall, whereas in the plots amended with manure during the previous season, the loss of activity was 40-45%. These data indicate that frequent tillage, compared with manure additions, is more conducive to overwinter loss of DEA in surface layers of soils subject to freeze-thaw cycles.  相似文献   

20.
Cecil sandy loam soils (ultisol) from forest (coniferous and deciduous), pasture, and arable ecosystems were sampled (0-10 cm) in the vicinity of Athens, Georgia, USA. Soil from each site was subdivided into three portions, consisting of untreated soil (control) as well as live and sterile samples treated with the fungicide metalaxyl and the herbicide propachlor at 10 mg kg-1 soil. Pesticide transformation rate, basal respiration (basal) and substrate-induced respiration (SIR) rates, and microbial metabolic quotient (qCO2) were measured for the initial application of metalaxyl [methyl-N-(2,6-dimethylphenyl)-N-(metoxyacetyl)-DL-alaninate] or propachlor (2-chloro-N-isopropyl-acetanilide) at 22°C and 60% water holding capacity. Positive correlations were found for the following: metalaxyl transformation rate constant (Kmet) and basal (r=0.73); Kmet and SIR (r=0.83); propachlor transformation rate constant (Kpr) and basal (r=0.89); and Kpr and SIR (r=0.91). Regression analysis of pesticide transformation rate and soil respiration activity, coupled with specific soil properties (pH, Corg, and clay content), revealed a positive correlation between K and SIR for Corg (r=0.88 and 0.98, for metalaxyl and propachlor, respectively). qCO2s were not significantly different (P=0.05) in propachlor-amended and pesticide-free soils. Metalaxyl amendment resulted in a change in the ecophysiological status of the soil microbial community as expressed by qCO2. The qCO2 values in metalaxyl-amended soils were significantly greater (P=0.05) in pine forest (by 25%) and arable and pasture (by 20%) soils compared to unamended soils. Differences in qCO2 values may represent the magnitude of pesticide-induced disturbance. The duration of this disturbance was greater in the pine forest soil (48 days) compared to arable and pasture soils (21 and 15 days, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号