首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 78 fecal specimens were collected from both apparently healthy (n=71) and diarrheic (n=7) cattle from an organized farm in Pune, western India in December 2007-January 2008. Three specimens tested positive for group A rotavirus (RV) by antigen capture ELISA were subjected to RT-PCR for amplification of entire coding regions of three structural (VP4, VP6 and VP7) and one nonstructural (NSP4) genes. All three strains were genotyped as G8P[14]. Phylogenetic analysis of the VP7 and VP4 genes showed clustering of the VP7 gene with G8 strains of bovine origin and VP4 gene with P[14] strains of human origin. The identification of VP6 and NSP4 genes to have I2 (subgroup I) and E2 (genotype A) specificity, respectively of bovine and human origin indicated independent segregation of genes in bovine RV strains. This study indicates circulation of a rare RV genotype, G8P[14] in western India. To our knowledge, this is the second report on RV G8[14] isolated from bovine species after bovine group A RV strain, SUN9 from Japan.  相似文献   

2.
The wild vicuña (Vicugna vicugna) is one of the four species of native South American camelids (SACs) in addition to the wild guanaco, and their domesticated counterparts, alpaca and llama, respectively. Serological data have indicated the presence of group A rotaviruses (RVA) specific antibodies in all 4 members of the SAC, and so far, RVA has been detected from alpacas, llamas and guanacos. A total of 59 fecal samples from healthy wild newborn and juvenile vicuñas, raised in captivity in Jujuy, Argentina were collected and analyzed by ELISA to detect RVA antigen. Two samples (3%) were found to contain G8 RVA strains and one strain (RVA/Vicuña-wt/ARG/C75/2010/G8P[14]) was selected for further genome analyses, revealing the G8-P[14]-I2-R2-C2-M2-Ax-N2-T6-E3-Hx genotype constellation. Unfortunately, no sequence data could be obtained for NSP1 and NSP5. Except for the E3 NSP4 genotype, this partial genotype constellation is reminiscent to bovine RVA strains and bovine-like RVA strains isolated from sheep, guanaco, antelope and humans. This relationship was confirmed phylogenetically, providing further evidence of the widespread presence of this genotype constellation in animals belonging to the artiodactyls. In particular, a close phylogenetic relationship was found between C75 and guanaco RVA strain RVA/Guanaco-wt/ARG/Chubut/1999/G8P[14] for at least 5 gene segments, suggesting a partial conservation of the genotype constellation of RVA strains infecting different species of SACs, even though nowadays their natural habitats are not overlapping. The further monitoring of the sanitary health of wild newborn and juvenile vicuñas is essential to improve the management practices applied in their sustainable exploitation.  相似文献   

3.
Equine rotavirus group A (RVA) has been detected in several countries worldwide since its first detection in 1975. Currently, equine RVA is considered the major cause of dehydrating diarrhea in foals younger than 3 months, and the frequency of detection in clinical cases varies from 20% to 77%. The genotypes of epidemiologic relevance found in horses are G3P[12] and G14P[12]. In a survey conducted in Argentina from 1992 to 2008, equine RVA was detected in 21% and 39% of the fecal samples and outbreaks, respectively. Genotype distribution was 51% G3P[12] and 33% G14P[12]. In continuation with the surveillance, the aim of the present study was to characterize the equine RVA detected in Thoroughbred foals in Argentina from 2009 to 2014. A total of 436 stool samples (corresponding to 177 single diarrhea cases or outbreaks) were analyzed. Equine RVA was detected in 31% (135 of 436) of the samples, which corresponded to 42% (74 of 177) of outbreaks. From the positive cases, 42% (57 of 135) were genotyped. Of this, 63% were G3 (36 of 57) and 37% (21 of 57) were G14 genotype. Considering the whole data (1992–2014), equine RVA was detected in 25% (300 of 1,207) of the stool samples and 41% (119 of 293) of the diarrhea outbreaks. The results of this study also show a cyclic pattern of the G3 and G14 prevalence in the horse population with a change in G3:G14 frequencies from year to year. Furthermore, clustering in the phylogenetic tree suggests evolutionary and geographic relationships between the Argentinean strains compared with the strain circulating worldwide.  相似文献   

4.
Equine group A rotavirus (RVA) strain H-1 (RVA/Horse-tc/GBR/H-1/1975/G5P9[7]) was found to have VP4, VP6-7, NSP1 and NSP4 genes of porcine origin. In order to obtain conclusive information on the exact origin and evolution of this unusual equine strain, the remaining six genes (VP1-3, NSP2-3 and NSP5 genes) of strain H-1 were analyzed in the present study. By whole genomic analysis, strain H-1 exhibited a porcine RVA-like genotype constellation (G5-P[7]-I5-R1-C1-M1-A8-N1-T1-E1-H1), different from those of typical equine RVA strains. The VP2-3 and NSP2-3 genes of strain H-1 were found to originate from porcine RVAs. On the other hand, it was difficult to pinpoint the exact origin of the VP1 and NSP5 genes of strain H-1, though phylogenetically, these genes appeared to be possibly derived from porcine or Wa-like human strains. Taken together, at least nine (VP2-4, VP6-7 and NSP1-4 genes) of the 11 gene segments of strain H-1 were found to be of porcine origin, revealing a porcine RVA-like genetic backbone. Therefore, strain H-1 is likely a porcine RVA strain that was transmitted to horses.  相似文献   

5.
Group A rotavirus (RV-A) with short electropherotype was identified by ss-PAGE in a neonatal diarrhea outbreak at a Brazilian pig farm where the sows were regularly vaccinated with a commercial vaccine containing OSU (G5P[7]) and Gottfried (G4P[6]) porcine RV-A (PoRV-A) strains. The ss-PAGE positive stool samples (n=20) were characterized as P[6] genotype by multiplex-nested-RT-PCR assay. The nucleotide analysis of the VP4 gene (VP8*) state that the viruses clustered in P[6] lineages that are also shared by RV-A strains identified in human hosts. Nucleotide analysis of the VP7 gene identified different lineages in G4 including a new lineage tentatively designated IX. The immunological pressure induced by commercial vaccine with a rotavirus containing a G4P[6] genotype of porcine origin (Gottfried strain) might have allowed the selection of PoRV-A strains with characteristics found in RV-A strains isolated of human hosts, such as P[6]-Ie and If, and promoted the selection or emergence of RV-A strains with a new lineage of the G4 genotype. The characterization of PoRV-A strains with unusual genotypes described in this study highlight the importance of surveys on the relationship between human and animal rotavirus strains.  相似文献   

6.
Group A rotaviruses with G2 and G9 VP7 specificity are common in humans, while G11 strains have been detected only sporadically. G2, G9 and G11 rotaviruses also circulate in pigs and swine rotaviruses have been suspected of interspecies and zoonotic transmissions in numerous studies. However, the complete gene constellation of G2 and G9 porcine rotaviruses has not yet been determined. In order to start filling this gap, the genomic make up of two G2, one G9 and one G11 porcine rotavirus strains, detected in Canada in 2005–2007, was determined. With the exception of a G2P[34] strain, with E9 NSP4 type and mixed I5 + I14 VP6 type, the constellation of genomic segments was rather conserved and were closely related to prototype porcine strains in the four viruses characterized (I5-R1-C1-M1-A8-N1-T7-E1-H1). Most notably, all the viruses displayed a rare NSP3 genotype, T7, which has also been identified in rare human reassortant strains and in the reference strain RVA/Cow-tc/GBR/UK/1973/G6P[5]. This study provides crucial genetic data on these complex viruses and will help understand the origin and ecological niche of gene segments and the role played by pigs in their evolution.  相似文献   

7.
Group A rotaviruses are one of the most frequently detected viral agents associated with neonatal diarrhea in piglets. In order to characterize rotavirus (RV) strains circulating in Argentinean swine, four porcine production farms located in Buenos Aires were studied. RV strains genotyped as P[6]G4, P[6]G8 and P[1]G6 were found in piglets under 30 days of age, without diarrhea. Phylogenetic and sequence analysis of the VP7 gene from G4 strains available in databases, reveals five porcine new lineages (III-VII) and three sublineages (VIIa-VIIc). The G4 porcine Argentinean strains were grouped with a porcine RV strain isolated in Brazil and another RV strain isolated from a child with diarrhea in Mexico, constituting an American lineage (VII). On the other hand, porcine G6 and G8 were closely related to RV's circulating in Argentinean cattle and South-American camelids, respectively. The fact that G4 porcine lineages were epidemiologically related to human strains, and G6 and G8 Argentinean porcine strains were found related to bovine and South-American camelids, respectively, suggests that pigs might play a crucial role as reservoir and generator of newly adapted emerging RV strains for human and other species.  相似文献   

8.
Isolation and molecular characterisation of equine rotaviruses from Germany   总被引:2,自引:0,他引:2  
A total of 26 rotavirus positive faecal samples of diarrhoeal foals, and 8 equine rotavirus isolates were examined. Viral RNA patterns were generated, G typing was performed by PCR, and a P[12]-specific DNA probe was developed for P typing. Furthermore, five equine rotavirus isolates were sequenced in the genomic regions coding for VP7 and part of VP4. Rotaviruses of genotype G3 P[12] were found in 22 faecal samples and G14 P[12] type could be found in 4 faecal samples. These findings confirm that in Germany G3 P[12] is the predominating type of equine rotaviruses.  相似文献   

9.
Group A rotaviruses (GARVs) cause severe acute gastroenteritis in children and young animals. Although zoonotic infections with bovine-like G6 and G8 GARVs have been reported in many countries, there is little evidence for reassortment between bovine GARVs and GARVs from heterologous species. The finding of bovine GARVs with the G6 and G8 genotypes in combination with the typical porcine P[7] prompted us to characterize all 11 genes of 30 bovine GARVs isolated from clinically infected calves. By the comparison of the full-length ORF of VP7 and NSP1-5, and the partial VP1-4 and VP6 nucleotide sequences between the 30 Korean and other known strains, three different genome constellations were found. Twenty seven strains showed the G8-P[7]-I5-R1-C1-M2-A1-N1-T1-E1-H1 genotypes, a single strain possessed the G6-P[7]-I2-R2-C1-M2-A1-N2-T1-E2-H1 genotype constellation and 2 strains the G6-P[7]-I2-R2-C2-M2-A3-N2-T6-E2-H3 genotype constellation. The complete genome of a single reference strains for each of these three genotype constellations (KJ25, KJ9-1 and KJ19-2) was determined and analyzed. A detailed phylogenetic analysis revealed a complicated picture, with several reassortments among bovine-like, porcine-like and human-like GARV strains, resulting in several different reassortant strains successfully infecting cattle.  相似文献   

10.
Group A bovine rotavirus (BRV) is one of the main causes of neonatal calf diarrhea. The present study reports the incidence of rotavirus diarrhea and the genotypes of BRV strains circulating in beef and dairy herds from Argentina, during a 10-year period (1994-2003). Group A BRV was detected in 62.5% (250/400) of the total studied cases of diarrhea. Positive cases were analyzed by heminested multiplex RT-PCR for P and G genotypes identification. Sixty percent of them were typed as P[5]G6, 4.4% P[11]G10, 4.4% P[11]G6 and 2.4% P[5]G10. Additionally, 9.2% of the cases were initially typed as G8 combined with P[5] or P[11], but sequence analysis revealed they belonged to genotype G6, lineage Hun4-like. Partial typing was assessed in 12.0% of the cases. One of the partially typed samples was closely related to genotype G15. BRV was detected in 71% and 58% of the outbreaks registered in beef and dairy farms, respectively. A clear differential distribution of G/P types was found according to the herd type. P[5]G6 was the prevalent strain in beef herds, while P[11] was the prevalent P-type in dairy herds (71%), associated in similar proportions with G6 and G10, These findings indicate that BRV genotypes included in the current commercially available rotavirus vaccines (G6, G10, P[5] and P[11]) should protect calves from most Argentinean field strains. Nevertheless, continuous surveillance is necessary to detect the emergence of new variants.  相似文献   

11.
Animal-to-human interspecies transmission is one of the evolutionary mechanisms driving rotavirus strain diversity in humans. Although quite a few studies emanating from Africa revealed evidence of bovine-to-human rotavirus interspecies transmission, whole genome data of African bovine rotavirus strains are not yet available. To gain insight into the complete genome constellation of African bovine rotaviruses, the full genomes of three bovine rotavirus strains were extracted from stool samples collected from calves, amplified using a sequence-independent procedure, followed by 454(?) pyrosequencing. Strains RVA/Cow-wt/ZAF/1603/2007/G6P[5] and RVA/Cow-wt/ZAF/1605/2007/G6P[5] were both genotyped as G6-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3 and were probably two variants of the same rotavirus due to their close nucleotide sequence similarity. The genotype constellation of strain RVA/Cow-wt/ZAF/1604/2007/G8P[1] was G8-P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The genetic relationships and phylogenetic analyses suggested that these three bovine rotavirus strains may have emerged through multiple reassortment events between bovine, giraffe and antelope rotaviruses. Due to the close relatedness of genome segments 1 (encoding VP1), 7 (NSP2), 9 (VP7) and 10 (NSP4) of strain RVA/Cow-wt/ZAF/1604/2007/G8P[1] to those of the corresponding segments of human rotaviruses, RVA strain 1604 may represent bovine strains that were transmitted to humans and possibly reassorted with human rotaviruses previously. The complete nucleotide sequences of the bovine rotavirus strains reported in this study represent the first whole genome data of bovine rotaviruses from Africa.  相似文献   

12.
Direct interspecies transmissions of group A rotaviruses (RVA) have been reported under natural conditions. However, the pathogenicity of RVA has never been directly compared in homologous and heterologous hosts. The bovine RVA/Cow-tc/KOR/K5/2004/G5P[7] strain, which was shown to possess a typical porcine-like genotype constellation similar to that of the G5P[7] prototype RVA/Pig-tc/USA/OSU/1977/G5P9[7] strain, was examined for its pathogenicity and compared with the porcine G5P[7] RVA/Pig-tc/KOR/K71/2006/G5P[7] strain possessing the same genotype constellation. The bovine K5 strain induced diarrhea and histopathological changes in the small intestine of piglets and calves, whereas the porcine K71 strain caused diarrhea and histopathological changes in the small intestine of piglets, but not in calves. Furthermore, the bovine K5 strain showed extra-intestinal tropisms in both piglets and calves, whereas the porcine K71 strain had extra-intestinal tropisms in piglets, but not in calves. Therefore, we performed comparative genomic analysis of the K71 and K5 RVA strains to determine whether specific mutations could be associated with these distinct clinical and pathological phenotypes. Full-length sequencing analyses for the 11 genomic segments for K71 and K5 revealed that these strains were genetically nearly identical to each other. Two nucleotide mutations were found in the 5′ untranslated region (UTR) of NSP5 and the 3′ UTR of NSP3, and eight amino acid mutations in VP1-VP4 and NSP2. Some of these mutations may be critical molecular determinants for RVA virulence and/or pathogenicity.  相似文献   

13.
An epidemiological survey was carried out to investigate the distribution of the VP7 and VP4 specificities of lapine rotaviruses (LRVs) in rabbitries from different geographical regions of Italy. Almost all the strains were characterized as P[22],G3, confirming the presence of the newly-recognized rotavirus P[22] VP4 allele in Italian rabbits. Only one P[14],G3 LRV strain was identified and two samples contained a mixed (P[14] + [22],G3) rotavirus infection. All the LRV strains analyzed exhibited a genogroup I VP6 specificity and a long dsRNA electropherotype. However, one of the P[14],G3 strains possessed a super-short pattern. Altogether, these data highlight the epidemiological relevance of the P[22] LRVs in Italian rabbitries.  相似文献   

14.
15.
The aim of this retrospective study was to use RT-PCR and nucleotide sequencing analysis to determine the G (VP7 gene) and P (VP4 gene) genotypes of 155 Brazilian bovine rotavirus A (RVA) wild-type strains detected in diarrheic calves from all Brazilian geographical regions from 2006 to 2015. The RVA strains evaluated belonged to the G6, G10, P[5], and P[11] genotypes. The G6P[5] genotype was prevalent (65.5%; P < 0.05) in beef, and the G10P[11] (38.4%) and G6P[11] (30.8%) genotypes were more prevalent in dairy cattle herds. The Midwest was the region with the highest number of genotyped RVA strains, where the genotypes G6, P[5], and P[11] were identified. Genotype combination G6-IV/P[5]-IX, prevalent in beef herds, and G6-III/P[11]-III or G10-IV/P[11]-III, prevalent in dairy herds, were detected. In addition, for the first time in Brazil, we detected the P[5] and P[11] genotype RVA strains that belong to lineage II and VII, respectively.  相似文献   

16.
Several epidemiological studies reported the detection of rotavirus strains bearing unusual combinations of genetic background of human and porcine rotaviruses. This observation supports the hypothesis of interspecies transmission of rotaviruses in humans and pigs. The aims of this study were to investigate the genotypes and molecular characteristics of rotaviruses in piglets with diarrhea in several farms from two provinces in Thailand. A total of 207 fecal specimens collected from diarrheic piglets were screened for the presence of groups A, B, and C rotaviruses. Group A rotaviruses were detected in 41 out of 207 (19.8%) fecal specimens tested. A wide variety of G-P combination rotavirus strains were detected in this study. The G4P[6] was identified as the most prevalent genotype (39.0%), followed by G4P[23] (12.2%), G3P[23] (7.3%), G4P[19] (7.3%), G3P[6] (4.9%), G3P[13] (4.9%), G3P[19] (4.9%), G9P[13] (4.9%), G9P[19] (4.9%), G5P[6], and G5P[13] each of 2.4%. Furthermore, G5 and G9 in combinations with P-nontypeable strains were also found at each consisting of 2.4% (n = 1) of the collection. It was interesting to note that among diversified porcine rotavirus strains, novel combinations of G4P[19] and G9P[19] strains were detected for the first time in this study. Nucleotide sequences of VP4 and VP7 of these strains were closely related to human rotaviruses reported previously. The data implies that these porcine rotaviruses were probably generated in nature from the reassortment between the viruses of human and porcine origin. This study provides valuable epidemiological information and molecular characteristics of porcine rotaviruses circulating in piglets with diarrhea in northern Thailand.  相似文献   

17.
Equine group A rotavirus (RVA) strains are the most important cause of gastroenteritis in equine neonates and foals worldwide, and G3P[12] and G14P[12] are epidemiologically the most important genotypes. The genotype constellation of an unusual Argentinean G3P[3] RVA strain (RVA/Horse-wt/E3198/2008/G3P[3]) detected in fecal samples of a diarrheic foal in 2008 was shown to be G3–P[3]–I3–R3–C3–M3–A9–N3–T3–E3–H6. Each of these genotypes has been found typically in feline and canine RVA strains, and the genotype constellation is reminiscent to those of Cat97-like RVA strains. However, the phylogenetic analyses revealed only a distant relationship between E3198 and known feline, canine and feline/canine-like human RVA strains. Surprisingly, a rather close relationship was found between E3198 and simian RVA strains RVA/Simian-tc/USA/RRV/1975/G3P[3] for at least 5 gene segments. RRV is believed to be a reassortant between a bovine-like RVA strain and a RVA strains distantly related to feline/canine RVA strains. These analyses indicate that E3198 is unlikely to be of equine origin, and most likely represents a RVA interspecies transmitted virus, possibly in combination with one or more reassortments, from a feline, canine or related host species to a horse. Further studies are in progress to evaluate if this strain was a single interspecies transmission event, or if this strain started to circulate in the equine population.  相似文献   

18.

Background

Both the G3P[12] and the G14P[12] type of equine group A rotavirus (RVA) have recently become predominant in many countries, including Japan. G3 types are classified further into G3A and G3B. The G3A viruses have been circulating in Europe, Australia, and Argentina, and the G3B viruses have been circulating in Japan. However, only an inactivated vaccine containing a single G3BP[12] strain is commercially available in Japan. To assess the efficacy of the current vaccine against recently circulating equine RVA strains, we examined antibody responses in pregnant mares to recent G3BP[12] and G14P[12] strains by virus neutralization test.

Findings

After vaccination in five pregnant mares, the geometric mean serum titers of virus-neutralizing antibody to recent G3BP[12] strains increased 5.3- to 7.0-fold and were similar to that against homologous vaccine strain. Moreover, antibody titers to recent G14P[12] strains were also increased 3.0- to 3.5-fold.

Conclusions

These results suggest that inoculation of mares with the current vaccine should provide foals with virus-neutralizing antibodies against not only the G3BP[12] but also the G14P[12] RVA strain via the colostrum.  相似文献   

19.
Group A rotaviruses can infect both humans and animals. Individual rotavirus strains can occasionally cross species barriers and might hereby contribute to the emergence of new genotypes in heterologous hosts. The incidence and impact of zoonotic rotavirus are not well defined, and one reason for this is a lack of data about strains circulating in suspected reservoir animal hosts. In this study we report the incidence, genetic diversity, and molecular epidemiology of rotaviruses detected in domestic cattle and swine in 6 European countries. From 2003 to 2007, 1101 and more than 2000 faecal specimens were collected from swine and cattle, both healthy and diarrhoeic, and tested for rotaviruses. Viruses from positive stools were genotyped and a subset of strains was characterized by nucleotide sequencing and phylogenetic analysis of the VP7 (G) and VP4 (P) genes. Rotaviruses were detected in 43% of bovine samples and in 14% of porcine samples. In cattle, 10 different combinations of G and P types were identified and the most common strains were G6P[11] and G6P[5]. In swine, the number of identified G-P combinations was higher (n=21), however, no single combination was predominant across Europe. Newly described genotype specificities, P[27] and P[32], were identified in swine. When compared at the nucleotide sequence level, the identified porcine rotavirus strains and contemporary human strains grouped together phylogenetically, whereas bovine rotavirus strains formed separate clades. These data demonstrate large genetic diversity of porcine and bovine rotavirus strains across Europe, and suggest that livestock herds may serve as potential reservoirs for human infections.  相似文献   

20.
Despite the impact of bovine group A rotaviruses (GARVs) as economically important and zoonotic pathogens, there is a scarcity of data on cross-species pathogenicity and extra-intestinal spread of bovine reassortant GARVs. During the course of characterizing the genotypes of all 11 genomic segments of bovine GARVs isolated from diarrheic calves in South Korea, a unique G6P[7] reassortant GARV strain (KJ9-1) was isolated. The strain harbors five bovine-like gene segments (VP7: G6; VP6: I2; VP1: R2; VP3: M2; NSP2: N2, and NSP4: E2), five porcine-like gene segments (VP4: P[7]; NSP1: A1; NSP3: T1, and NSP5: H1), and one human-like gene segment (VP2: C2). To investigate if this reassortant strain possessed cross-species pathogenicity in calves and piglets, and could induce viremia and extra-intestinal spread in calves, colostrum-deprived calves and piglets were experimentally inoculated with the KJ9-1 strain. The KJ9-1 strain caused severe diarrhea in experimentally infected calves with extensive intestinal villous atrophy, but replicated without causing clinical symptoms in experimentally infected piglets. By SYBR Green real-time RT-PCR, viral RNA was detected in sera of the calves at post-inoculation day (PID) 1, reaching a peak at PID3, and then rapidly decreasing from PID4. In addition, viral RNA was detected in the mesenteric lymph node, lungs, liver, choroid plexus, and cerebrospinal fluid. An immunofluorescence assay confirmed viral replication in the extra-intestinal organs and tissues of virus-inoculated calves. The data indicates that the homologous/heterologous origin of the NSP4 gene segment (E2 genotype), may play a key role in the ability to cause diarrhea in calves and piglets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号