首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 966 毫秒
1.
北方森林生态系统对全球气候变化的响应研究进展   总被引:2,自引:1,他引:1  
北方森林是地球上第2大生物群区,约占陆地森林面积的30%,提供了从局地到全球的生态系统服务功能。1850年以来,全球性持续升温不断显现,2000—2050年全球至少升高2 ℃,甚至更高。预计到2100年,北方森林区冬季平均温度将升高1.3~6.3 ℃。与此同时,几乎所有的北方森林生态系统功能都将会受到影响,尤其是近几十年来,该区域发生了很多与温度升高相关的潜在生态响应。本文从碳循环、生物多样性、干旱化和林火发生频率以及冻土变化等方面具体综述了北方森林生态系统对于全球气候变化的响应。响应结果如下:1)气候变化对于北方森林碳循环动态的影响是极其复杂的,迄今为止并没有达成共识, 分解对于温度的反应敏感程度至今仍存在很多不确定性。2)动物、植物和微生物(真菌)均对气候变化产生了一定的响应,表现为动物和植物的分布区进一步北移,但真菌的多样性和生产力响应机制尚无法确定。3)北方森林区随气候变化表现为进一步的干旱化和林火发生明显增加。4)北方森林区与冻土伴生,冻土随气候变暖表现出了面积缩小和活动层扩大的趋势。可见,北方森林对气候变化响应明显,尽管到目前为止有些响应机制尚不清楚,但变化趋势十分明显。本文旨在为北方森林的经营和管理提供基础数据和技术支持,实现北方森林的可持续经营。   相似文献   

2.
The Sun's role in climate variations   总被引:1,自引:0,他引:1  
Rind D 《Science (New York, N.Y.)》2002,296(5568):673-677
Is the Sun the controller of climate changes, only the instigator of changes that are mostly forced by the system feedbacks, or simply a convenient scapegoat for climate variations lacking any other obvious cause? This question is addressed for suggested solar forcing mechanisms operating on time scales from billions of years to decades. Each mechanism fails to generate the expected climate response in important respects, although some relations are found. The magnitude of the system feedbacks or variability appears as large or larger than that of the solar forcing, making the Sun's true role ambiguous. As the Sun provides an explicit external forcing, a better understanding of its cause and effect in climate change could help us evaluate the importance of other climate forcings (such as past and future greenhouse gas changes).  相似文献   

3.
Causes of climate change over the past 1000 years   总被引:9,自引:0,他引:9  
Recent reconstructions of Northern Hemisphere temperatures and climate forcing over the past 1000 years allow the warming of the 20th century to be placed within a historical context and various mechanisms of climate change to be tested. Comparisons of observations with simulations from an energy balance climate model indicate that as much as 41 to 64% of preanthropogenic (pre-1850) decadal-scale temperature variations was due to changes in solar irradiance and volcanism. Removal of the forced response from reconstructed temperature time series yields residuals that show similar variability to those of control runs of coupled models, thereby lending support to the models' value as estimates of low-frequency variability in the climate system. Removal of all forcing except greenhouse gases from the approximately 1000-year time series results in a residual with a very large late-20th-century warming that closely agrees with the response predicted from greenhouse gas forcing. The combination of a unique level of temperature increase in the late 20th century and improved constraints on the role of natural variability provides further evidence that the greenhouse effect has already established itself above the level of natural variability in the climate system. A 21st-century global warming projection far exceeds the natural variability of the past 1000 years and is greater than the best estimate of global temperature change for the last interglacial.  相似文献   

4.
The net effect of anthropogenic aerosols on climate is usually considered the sum of the direct radiative effect of anthropogenic aerosols, plus the indirect effect of these aerosols through aerosol-cloud interactions. However, an additional impact of aerosols on a longer time scale is their indirect effect on climate through biogeochemical feedbacks, largely due to changes in the atmospheric concentration of CO(2). Aerosols can affect land and ocean biogeochemical cycles by physical forcing or by adding nutrients and pollutants to ecosystems. The net biogeochemical effect of aerosols is estimated to be equivalent to a radiative forcing of -0.5 ± 0.4 watts per square meter, which suggests that reaching lower carbon targets will be even costlier than previously estimated.  相似文献   

5.
The impact of boreal forest fire on climate warming   总被引:1,自引:0,他引:1  
We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.  相似文献   

6.
Law KS  Stohl A 《Science (New York, N.Y.)》2007,315(5818):1537-1540
Notable warming trends have been observed in the Arctic. Although increased human-induced emissions of long-lived greenhouse gases are certainly the main driving factor, air pollutants, such as aerosols and ozone, are also important. Air pollutants are transported to the Arctic, primarily from Eurasia, leading to high concentrations in winter and spring (Arctic haze). Local ship emissions and summertime boreal forest fires may also be important pollution sources. Aerosols and ozone could be perturbing the radiative budget of the Arctic through processes specific to the region: Absorption of solar radiation by aerosols is enhanced by highly reflective snow and ice surfaces; deposition of light-absorbing aerosols on snow or ice can decrease surface albedo; and tropospheric ozone forcing may also be contributing to warming in this region. Future increases in pollutant emissions locally or in mid-latitudes could further accelerate global warming in the Arctic.  相似文献   

7.
The reliability of Arctic climate predictions is currently hampered by insufficient knowledge of natural climate variability in the past. A sediment core from Lake El'gygytgyn in northeastern (NE) Russia provides a continuous, high-resolution record from the Arctic, spanning the past 2.8 million years. This core reveals numerous "super interglacials" during the Quaternary; for marine benthic isotope stages (MIS) 11c and 31, maximum summer temperatures and annual precipitation values are ~4° to 5°C and ~300 millimeters higher than those of MIS 1 and 5e. Climate simulations show that these extreme warm conditions are difficult to explain with greenhouse gas and astronomical forcing alone, implying the importance of amplifying feedbacks and far field influences. The timing of Arctic warming relative to West Antarctic Ice Sheet retreats implies strong interhemispheric climate connectivity.  相似文献   

8.
Global air quality and pollution   总被引:1,自引:0,他引:1  
Akimoto H 《Science (New York, N.Y.)》2003,302(5651):1716-1719
The impact of global air pollution on climate and the environment is a new focus in atmospheric science. Intercontinental transport and hemispheric air pollution by ozone jeopardize agricultural and natural ecosystems worldwide and have a strong effect on climate. Aerosols, which are spread globally but have a strong regional imbalance, change global climate through their direct and indirect effects on radiative forcing. In the 1990s, nitrogen oxide emissions from Asia surpassed those from North America and Europe and should continue to exceed them for decades. International initiatives to mitigate global air pollution require participation from both developed and developing countries.  相似文献   

9.
Previous climate model projections of climate change accounted for external forcing from natural and anthropogenic sources but did not attempt to predict internally generated natural variability. We present a new modeling system that predicts both internal variability and externally forced changes and hence forecasts surface temperature with substantially improved skill throughout a decade, both globally and in many regions. Our system predicts that internal variability will partially offset the anthropogenic global warming signal for the next few years. However, climate will continue to warm, with at least half of the years after 2009 predicted to exceed the warmest year currently on record.  相似文献   

10.
Establishing what caused Earth's largest climatic changes in the past requires a precise knowledge of both the forcing and the regional responses. We determined the chronology of high- and low-latitude climate change at the last glacial termination by radiocarbon dating benthic and planktonic foraminiferal stable isotope and magnesium/calcium records from a marine core collected in the western tropical Pacific. Deep-sea temperatures warmed by approximately 2 degrees C between 19 and 17 thousand years before the present (ky B.P.), leading the rise in atmospheric CO2 and tropical-surface-ocean warming by approximately 1000 years. The cause of this deglacial deep-water warming does not lie within the tropics, nor can its early onset between 19 and 17 ky B.P. be attributed to CO2 forcing. Increasing austral-spring insolation combined with sea-ice albedo feedbacks appear to be the key factors responsible for this warming.  相似文献   

11.
Projected changes in the Earth's climate can be driven from a combined set of forcing factors consisting of regionally heterogeneous anthropogenic and natural aerosols and land use changes, as well as global-scale influences from solar variability and transient increases in human-produced greenhouse gases. Thus, validation of climate model projections that are driven only by increases in greenhouse gases can be inconsistent when one attempts the validation by looking for a regional or time-evolving "fingerprint" of such projected changes in real climatic data. Until climate models are driven by time-evolving, combined, multiple, and heterogeneous forcing factors, the best global climatic change "fingerprint" will probably remain a many-decades average of hemi-spheric- to global-scale trends in surface air temperatures. Century-long global warming (or cooling) trends of 0.5 degrees C appear to have occurred infrequently over the past several thousand years-perhaps only once or twice a millennium, as proxy records suggest. This implies an 80 to 90 percent heuristic likelihood that the 20th-century 0.5 +/- 0.2 degrees C warming trend is not a wholly natural climatic fluctuation.  相似文献   

12.
The sensitivity of Earth's climate to an external radiative forcing depends critically on the response of water vapor. We use the global cooling and drying of the atmosphere that was observed after the eruption of Mount Pinatubo to test model predictions of the climate feedback from water vapor. Here, we first highlight the success of the model in reproducing the observed drying after the volcanic eruption. Then, by comparing model simulations with and without water vapor feedback, we demonstrate the importance of the atmospheric drying in amplifying the temperature change and show that, without the strong positive feedback from water vapor, the model is unable to reproduce the observed cooling. These results provide quantitative evidence of the reliability of water vapor feedback in current climate models, which is crucial to their use for global warming projections.  相似文献   

13.
风景园林通过协调人与自然的关系,可以减缓和适应气候变化的负面影响。为构建风景园林应对气候变化的方法体系,提升风景园林应对气候变化能力,进一步发挥风景园林在减少碳排放、提升生物多样性、缓解极端高温天气、培育具有复原力的社区等功能。本文在梳理国内外风景园林应对气候变化的理念和实践基础上,归纳出当前存在的三点不足:对气候变化复杂性认知不足、应对气候变化的理论与实践结合不够、实施保障机制欠缺。研究系统阐述了风景园林气候积极性设计的概念、特点、流程和方法及实施机制等,并构建风景园林气候积极性设计方法和技术体系。结果表明,针对气候变化的复杂影响,风景园林气候积极性设计应采取多策略组合应对和多目标协同的方法,构建相应的价值取向和实施机制,通过多方案比选和优中选优,以取得最为理想的实施效果,更好地发挥风景园林功能,进而促进风景园林学科发展。  相似文献   

14.
全球气候变化对温带果树的影响   总被引:2,自引:0,他引:2  
全球正经历一次以变暖为主要特征的气候变化。“温室效应”、“全球变暖”等领域成为学者们研究的热点,但气候变化对温带果树所带来的影响研究甚少,相关研究信息缺乏整合与梳理。概述了全球气候的变化趋势,综述了气候变化对温带果树的物候期、需冷量、生态适应性、果实的产量、质量等影响。针对出现的问题,建议研究气候变化规律以及植物生理反应的作用机制,并提出了综合的栽培措施和提倡培育对低温需求小、抗病虫的新果树品种来适应未来温暖的气候。  相似文献   

15.
Trends, rhythms, and aberrations in global climate 65 Ma to present   总被引:14,自引:0,他引:14  
Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.  相似文献   

16.
Black carbon (BC) from biomass and fossil fuel combustion alters chemical and physical properties of the atmosphere and snow albedo, yet little is known about its emission or deposition histories. Measurements of BC, vanillic acid, and non-sea-salt sulfur in ice cores indicate that sources and concentrations of BC in Greenland precipitation varied greatly since 1788 as a result of boreal forest fires and industrial activities. Beginning about 1850, industrial emissions resulted in a sevenfold increase in ice-core BC concentrations, with most change occurring in winter. BC concentrations after about 1951 were lower but increasing. At its maximum from 1906 to 1910, estimated surface climate forcing in early summer from BC in Arctic snow was about 3 watts per square meter, which is eight times the typical preindustrial forcing value.  相似文献   

17.
Hurricanes can inflict catastrophic property damage and loss of human life. Thus, it is important to determine how the character of these powerful storms could change in response to greenhouse gas-induced global warming. The impact of climate warming on hurricane intensities was investigated with a regional, high-resolution, hurricane prediction model. In a case study, 51 western Pacific storm cases under present-day climate conditions were compared with 51 storm cases under high-CO2 conditions. More idealized experiments were also performed. The large-scale initial conditions were derived from a global climate model. For a sea surface temperature warming of about 2.2 degrees C, the simulations yielded hurricanes that were more intense by 3 to 7 meters per second (5 to 12 percent) for wind speed and 7 to 20 millibars for central surface pressure.  相似文献   

18.
Climate forcing by anthropogenic aerosols   总被引:14,自引:0,他引:14  
Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.  相似文献   

19.
Ecological effects of climate fluctuations   总被引:3,自引:0,他引:3  
Climate influences a variety of ecological processes. These effects operate through local weather parameters such as temperature, wind, rain, snow, and ocean currents, as well as interactions among these. In the temperate zone, local variations in weather are often coupled over large geographic areas through the transient behavior of atmospheric planetary-scale waves. These variations drive temporally and spatially averaged exchanges of heat, momentum, and water vapor that ultimately determine growth, recruitment, and migration patterns. Recently, there have been several studies of the impact of large-scale climatic forcing on ecological systems. We review how two of the best-known climate phenomena-the North Atlantic Oscillation and the El Ni?o-Southern Oscillation-affect ecological patterns and processes in both marine and terrestrial systems.  相似文献   

20.
Recent measurements demonstrate that the "background" stratospheric aerosol layer is persistently variable rather than constant, even in the absence of major volcanic eruptions. Several independent data sets show that stratospheric aerosols have increased in abundance since 2000. Near-global satellite aerosol data imply a negative radiative forcing due to stratospheric aerosol changes over this period of about -0.1 watt per square meter, reducing the recent global warming that would otherwise have occurred. Observations from earlier periods are limited but suggest an additional negative radiative forcing of about -0.1 watt per square meter from 1960 to 1990. Climate model projections neglecting these changes would continue to overestimate the radiative forcing and global warming in coming decades if these aerosols remain present at current values or increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号