首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aims of this study were to describe and compare the pharmacokinetic profiles and T(>MIC90) of two commercially available once-daily recommended cephalexin formulations in healthy adult dogs administered by the intramuscular (i.m.) route. Six beagle dogs received a 10 mg/kg dose of an 18% parenteral suspension of cephalexin of laboratory A (formulation A) and laboratory B (formulation B) 3 weeks apart. Blood samples were collected in predetermined times after drug administration. The main pharmacokinetic parameters were (mean +/- SD): AUC((0-infinity)), 72.44 +/- 15.9 and 60.83 +/- 13.2 microg.h/mL; C(max), 10.11 +/- 1.5 and 8.50 +/- 1.9 microg/mL; terminal half-life, 3.56 +/- 1.5 and 2.57 +/- 0.72 h and MRT((0-infinity)), 5.86 +/- 1.5 and 5.36 +/- 1.2 h for formulations A and B, respectively. T(>MIC90) was 63.1 +/- 14.7 and 62.1 +/- 14.7% of the dosing interval for formulations A and B, respectively. Median (range) for t(max) was 2.0 (2.0-3.0) h and 3.0 (2.0-4.0) for formulations A and B, respectively. Geometric mean ratios of natural log-transformed AUC((0-infinity)) and C(max) and their 90% confidence intervals (CI) were 0.84 (0.72-0.98) and 0.83 (0.64-1.07), respectively. The plasma profiles of cephalexin following the administration of both formulations were similar. No statistical differences between pharmacokinetic parameters or T(>MIC90) were observed, however, bioequivalence between both formulations could not be demonstrated, as lower 90% CI failed to fell within the selected range of 80-125% for bioequivalence.  相似文献   

2.
The present study was planned to investigate the plasma disposition kinetics and the pattern of moxifloxacin elimination in the milk of lactating ewes (n=6) following a single intravenous (IV) bolus or intramuscular (IM) injections at a dosage of 5 mg/kg in all animals. A crossover study was carried out in two phases separated by 21 days. Plasma and milk samples were collected serially for 72 h and moxifloxacin concentrations were assayed using high performance liquid chromatography with fluorescence detection. A two-compartment open model best described the decrease of moxifloxacin concentration in the plasma after IV injection. The disposition after IM administration moxifloxacin was best described by a one-compartment model. Following IV administration, the distribution half-life (t(1/2alpha)) was 0.22+/-0.02 h. The elimination half-life was 1.77+/-0.23 h. The volume of distribution at steady state (V(dss)) was 0.84+/-0.12L/kg, the total body clearance (Cl(tot)) was 0.34+/-0.04 L/h/kg and the area under the curve (AUC) was 14.74+/-2.16 microg h/mL. Following IM administration, the mean T(max), C(max), t(1/2el) and AUC values for plasma data were 1.45+/-0.02 h, 2.21+/-0.27 microg/mL, 2.68+/-0.19 h and 14.21+/-2.35 microg h/mL. The IM bioavailability was 96.35+/-17.23% and the in vitro protein binding of moxifloxacin ranged from 32-37%. Penetration of moxifloxacin from the blood into milk was rapid and extensive, and the moxifloxacin concentrations in milk exceeded those in plasma from 1h after administration. The kinetic values AUC(milk)/AUC(plasma) and C(maxmilk)/C(maxplasma) ratios indicated a wide penetration of moxifloxacin from the bloodstream to the mammary gland. The in vitro minimum inhibitory concentration (MIC) of moxifloxacin for Mannheimia haemolytica was found to be 0.035 microg/mL.  相似文献   

3.
The pharmacokinetics of marbofloxacin was investigated after intravenous (IV) and intramuscular (IM) administration, both at a dose rate of 5 mg/kg BW, in six clinically healthy domestic ostriches. Plasma concentrations of marbofloxacin was determined by a HPLC/UV method. The high volume of distribution (3.22+/-0.98 L/kg) suggests good tissue penetration. Marbofloxacin presented a high clearance value (2.19+/-0.27 L/kgh), explaining the low AUC values (2.32+/-0.30 microgh/mL and 2.25+/-0.70 microgh/mL, after IV and IM administration, respectively) and a short half life and mean residence time (t(1/2 beta)=1.47+/-0.31 h and 1.96+/-0.35 h; MRT=1.46+/-0.02 h and 2.11+/-0.30 h, IV and IM, respectively). The absorption of marbofloxacin after IM administration was rapid and complete (C(max)=1.13+/-0.29 microg/mL; T(max)=0.36+/-0.071 h; MAT=0.66+/-0.22 h and F (%)=95.03+/-16.89).  相似文献   

4.
The pharmacokinetic behaviour of enrofloxacin in greater rheas was investigated after intramuscular (IM) administration of 15 mg/kg. Plasma concentrations of enrofloxacin and its active metabolite, ciprofloxacin, were determined by high performance liquid chromatography. Enrofloxacin peak plasma concentration (C(max)=3.30+/-0.90 microg/mL) was reached at 24.17+/-9.17 min. The terminal half-life (t(1/2lambda)) and area under the curve (AUC) were 2.85+/-0.54 h and 4.18+/-0.69 microg h/mL, respectively. The AUC and C(max) for ciprofloxacin were 0.25+/-0.06 microg/mL and 0.66+/-0.16 microg h/mL, respectively. Taking into account the values obtained for the efficacy indices, an IM dose of 15 mg/kg of enrofloxacin would appear to be adequate for treating infections caused by highly susceptible bacteria (MIC(90)<0.03 microg/mL) in greater rheas.  相似文献   

5.
The pharmacokinetics and pharmacodynamics of danofloxacin were studied in calves after intravenous (IV) and intramuscular (IM) administration, at a dose of 1.25 mg/kg in a two period cross-over study, using tissue cages to monitor aspects of extravascular distribution. Danofloxacin had a high volume of distribution (3.90 L/kg) and relatively rapid clearance (1.02 L/kgh) after IV dosing. Terminal half-life was 2.65 and 4.03 h, respectively, after IV and IM administration. Danofloxacin penetrated slowly into and was cleared slowly from tissue cage fluid (transudate), elimination half-life (10.2 h after IV and 8.9 h after IM dosing) being greater than for serum. The antibacterial actions of danofloxacin against the pathogen Mannheimia haemolytica 3575 were established in vitro in Mueller Hinton Broth, serum and transudate. These data were used together with in vivo pharmacokinetic parameters, C(max) and AUC to determine the surrogate markers of antimicrobial activity, C(max)/MIC, AUC/MIC and T>MIC.The antibacterial actions of danofloxacin were also determined ex vivo in serum and transudate samples harvested at pre-determined times after IM danofloxacin dosing. Ex vivo AUC/MIC data were integrated with ex vivo bacterial count to establish values producing a bacteriostatic action, inhibition of bacterial count by 50%, reduction in bacterial count by 99.9% (bactericidal action) and elimination of bacteria. Mean values were, respectively, 15.9, 16.7, 18.15 and 33.5h for serum and 15.0, 16.34, 17.8 and 30.7 h for transudate. The AUC/MIC-effect relationships for serum may be regarded as representative of a shallow compartment of blood and well perfused tissues, whilst AUC/MIC-effect relationships for transudate may be considered to represent a deep peripheral compartment of poorly perfused tissues. A novel approach to selecting antimicrobial drug dosage for evaluation in clinical trials, using AUC/MIC values producing either bactericidal activity or elimination of bacteria together with MIC(90) values for calf pathogens, is proposed. This approach can be expected to optimise efficacy and minimise the development of resistance.  相似文献   

6.
The pharmacokinetics of tramadol in camels (Camelus dromedarius) were studied following a single intravenous (IV) and a single intramuscular (IM) dose of 2.33 mg kg(-1) bodyweight. The drug's metabolism and urinary detection time were also investigated. Following both IV and IM administration, tramadol was extracted from plasma using an automated solid phase extraction method and the concentration measured by gas chromatography-mass spectrometry (GC/MS). The plasma drug concentrations after IV administration were best fitted by an open two-compartment model. However a three-compartment open model best fitted the IM data. The results (means+/-SEM) were as follows: after IV drug administration, the distribution half-life (t(1/2)(alpha)) was 0.22+/-0.05 h, the elimination half-life (t(1/2)(beta)) 1.33+/-0.18 h, the total body clearance (Cl(T)) 1.94+/-0.18 L h kg(-1), the volume of distribution at steady state (Vd(ss)) 2.58+/-0.44 L kg(-1), and the area under the concentration vs. time curve (AUC(0-infinity)) 1.25+/-0.13 mg h L(-1). Following IM administration, the maximal plasma tramadol concentration (C(max)) reached was 0.44+/-0.07 microg mL(-1) at time (T(max)) 0.57+/-0.11h; the absorption half-life (t(1/2 ka)) was 0.17+/-0.03 h, the (t(1/2)(beta)) was 3.24+/-0.55 h, the (AUC(0-infinity)) was 1.27+/-0.12 mg h L(-1), the (Vd(area)) was 8.94+/-1.41 L kg(-1), and the mean systemic bioavailability (F) was 101.62%. Three main tramadol metabolites were detected in urine. These were O-desmethyltramadol, N,O-desmethyltramadol and/or N-bis-desmethyltramadol, and hydroxy-tramadol. O-Desmethyltramadol was found to be the main metabolite. The urinary detection times for tramadol and O-desmethyltramadol were 24 and 48 h, respectively. The pharmacokinetics of tramadol in camels was characterised by a fast clearance, large volume of distribution and brief half-life, which resulted in a short detection time. O-Desmethyltramadol detection in positive cases would increase the reliability of reporting tramadol abuse.  相似文献   

7.
OBJECTIVE: To assess bioequivalence after oral, IM, and IV administration of racemic ketoprofen in pigs and to investigate the bioavailability after oral and IM administration. ANIMALS: 8 crossbred pigs. PROCEDURES: Each pig received 4 treatments in a randomized crossover design, with a 6-day washout period. Ketoprofen was administered at 3 and 6 mg/kg, PO; 3 mg/kg, IM; and 3 mg/kg, IV. Plasma ketoprofen concentrations were measured by use of high-performance liquid chromatography for up to 48 hours. To assess bioequivalence, a 90% confidence interval was calculated for the area under the time-concentration curve (AUC) and maximum plasma concentration (C(max)). RESULTS: Equivalence was not detected in the AUCs among the various routes of administration nor in C(max) between oral and IM administration of 3 mg/kg. The bioavailability of ketoprofen was almost complete after each oral or IM administration. Mean +/- SD C(max) was 5.09 +/- 1.41 microg/mL and 7.62 +/- 1.22 microg/mL after oral and IM doses of 3 mg/kg, respectively. Mean elimination half-life varied from 3.52 +/- 0.90 hours after oral administration of 3 mg/kg to 2.66 +/- 0.50 hours after IV administration. Time to peak C(max) after administration of all treatments was approximately 1 hour. Increases in AUC and C(max) were proportional when the orally administered dose was increased from 3 to 6 mg/kg. Conclusions and Clinical Relevance: Orally administered ketoprofen was absorbed well in pigs, although bioequivalence with IM administration of ketoprofen was not detected. Orally administered ketoprofen may have potential for use in treating pigs.  相似文献   

8.
Serum concentrations and pharmacokinetics of enrofloxacin were studied in 6 mares after intravenous (IV) and intragastric (IG) administration at a single dose rate of 7.5 mg/kg body weight. In experiment 1, an injectable formulation of enrofloxacin (100 mg/mL) was given IV. At 5 min after injection, mean serum concentration was 9.04 microg/mL and decreased to 0.09 microg/mL by 24 h. Elimination half-life was 5.33 +/- 1.05 h and the area under the serum concentration vs time curve (AUC) was 21.03 +/- 5.19 mg x h/L. In experiment 2, the same injectable formulation was given IG. The mean peak serum concentration was 0.94 +/- 0.97 microg/mL at 4 h after administration and declined to 0.29 +/- 0.12 microg/mL by 24 h. Absorption of this enrofloxacin preparation after IG administration was highly variable, and for this reason, pharmacokinetic values for each mare could not be determined. In experiment 3, a poultry formulation (32.3 mg/mL) was given IG. The mean peak serum concentration was 1.85 +/- 1.47 microg/mL at 45 min after administration and declined to 0.19 +/- 0.06 microg/mL by 24 h. Elimination half-life was 10.62 +/- 5.33 h and AUC was 16.30 +/- 4.69 mg x h/L. Bioavailability was calculated at 78.29 +/- 16.55%. Minimum inhibitory concentrations of enrofloxacin were determined for equine bacterial culture specimens submitted to the microbiology laboratory over an 11-month period. The minimum inhibitory concentration of enrofloxacin required to inhibit 90% of isolates (MIC90) was 0.25 microg/mL for Staphylococcus aureus, Escherichia coli, Salmonella spp., Klebsiella spp., and Pasteurella spp. The poultry formulation was well tolerated and could be potentially useful in the treatment of susceptible bacterial infections in adult horses. The injectable enrofloxacin solution should not be used orally.  相似文献   

9.
The pharmacokinetics and intramuscular (IM) bioavailability of flumequine (15 mgkg(-1)) were investigated in healthy pigs and the findings related to published minimal inhibitory concentrations (MICs) for susceptible bacteria of animal origin, and to experimentally determined MICs for susceptible strains of porcine origin. We found MICs for Escherichia coli, Salmonella spp., Pasteurella spp. and Bordetella spp. in the range 0.5 to >64 microg mL(-1) isolated from infected pigs in the Forli area of Italy; only the Pasteurella multocida strains were sensitive (MIC(90)=0.5 microg mL(-1)). After intravenous (IV) injection, flumequine was slowly distributed and eliminated (t(1/2lambda(1))1.40+/-0.16 h and t(1/2lambda(2))6.35+/-1.69 h). The distribution volume at steady state (V(dss)) was 752.59+/-84.03 mL kg(-1) and clearance (Cl(B)) was 237.19+/-17.88 mL kg(-1)h(-1). After IM administration, peak serum concentration (4.99+/-0.92 microg mL(-1)) was reached between the 2nd and the 3rd hour. The results on MIC of isolated bacteria, although only indicative, suggest that the efficacy of flumequine on Gram-negative bacteria may be impaired by the emergence of less sensitive or resistant strains.  相似文献   

10.
This study reports on the administration of a single dose of marbofloxacin (2 mg/kg) to five adult Eurasian buzzards (Buteo buteo) by the intraosseous (IO) route, which has been proposed as a rapid and efficient means for the parenteral delivery of antimicrobial drugs. The drug was rapidly absorbed. Peak marbofloxacin concentration (C(max)) in plasma and area under the concentration-time curve (AUC) of 1.92+/-0.78 microg/mL and 8.53+/-2.73 microg h/mL, respectively. The time marbofloxacin remained in the plasma after IO administration was relatively short (elimination half-life, t(1/2beta)=4.91+/-0.65 h; mean residence time (MRT)=5.38+/-0.57 h). Single dose marbofloxacin gave values for C(max)/minimum inhibitory concentration (MIC) of 19.2 and an AUC/MIC value of 85.3h after IO administration. The IO route appears to be practical and effective for the rapid delivery of marbofloxacin to buzzards.  相似文献   

11.
Enrofloxacin pharmacokinetics were studied in European cuttlefish, Sepia officinalis, after a single 5 mg/kg i.v. injection or a 2.5 mg/L 5 h bath. A pilot study with two animals was also performed following a 10 mg/kg p.o. administration. The concentration of enrofloxacin in hemolymph was assayed using high-performance liquid chromatography (HPLC) and pharmacokinetic parameters were derived from compartmental methods. In the i.v. study, the terminal half-life (t(1/2)), apparent volume of distribution, and systemic clearance were respectively 1.81 h, 385 mL/kg, and 4.71 mL/min/kg. Following bath administration the t(1/2), peak hemolymph concentration (C(max)), and area under the curve to infinity (AUC(0-infinity)) were 1.01 h, 0.5 +/- 0.12 mug/mL, and 0.98 microg.h/mL, respectively. After oral administration, the t(1/2), C(max), and AUC(0-infinity) were 1.01 h, 10.95 microg/mL, 26.71 mug.h/mL, respectively. The active metabolite of enrofloxacin, ciprofloxacin, was not detected in any samples tested. The hemolymph concentration was still above minimum inhibitory concentration (MIC) values for shrimp and fish bacterial isolates at 6 h after i.v. administration, therefore, a dose of 5 mg/kg i.v. every 8-12 h is suggested for additional studies of efficacy. The C(max) value for the water bath was lower than for the i.v. study, but a bath of 2.5 mg/L for 5 h once to twice daily is suggested for additional studies to test efficacy against highly susceptible organisms. Although only two animals were used for the oral study, a dose of 10 mg/kg produced hemolymph concentrations of enrofloxacin that were in a range consistent with therapeutic efficacy in other species.  相似文献   

12.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin administered IV and orally to foals. ANIMALS: 5 clinically normal foals. PROCEDURE: A 2-dose cross-over trial with IV and oral administration was performed. Enrofloxacin was administered once IV (5 mg/kg of body weight) to 1-week-old foals, followed by 1 oral administration (10 mg/kg) after a 7-day washout period. Blood samples were collected for 48 hours after the single dose IV and oral administrations and analyzed for plasma enrofloxacin and ciprofloxacin concentrations by use of high-performance liquid chromatography. RESULTS: For IV administration, mean +/- SD total area under the curve (AUC0-infinity) was 48.54 +/- 10.46 microg x h/ml, clearance was 103.72 +/- 0.06 ml/kg/h, half-life (t1/2beta) was 17.10 +/- 0.09 hours, and apparent volume of distribution was 2.49 +/- 0.43 L/kg. For oral administration, AUC0-infinity was 58.47 +/- 16.37 microg x h/ml, t1/2beta was 18.39 +/- 0.06 hours, maximum concentration (Cmax) was 2.12 +/- 00.51 microg/ml, time to Cmax was 2.20 +/- 2.17 hours, mean absorption time was 2.09 +/- 0.51 hours, and bioavailability was 42 +/- 0.42%. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with adult horses given 5 mg of enrofloxacin/kg IV, foals have higher AUC0-infinity, longer t1/2beta, and lower clearance. Concentration of ciprofloxacin was negligible. Using a target Cmax to minimum inhibitory concentration ratio of 1:8 to 1:10, computer modeling suggests that 2.5 to 10 mg of enrofloxacin/kg administered every 24 hours would be effective in foals, depending on minimum inhibitory concentration of the pathogen.  相似文献   

13.
The pharmacokinetics of enrofloxacin (EFL) and its active metabolite ciprofloxacin (CIP) was investigated in 7-8 month old turkeys (6 birds per sex). EFL was administered intravenously (i.v.) and orally (p.o.) at a dose 10 mg kg(-1) body weight. Blood was taken prior to and at 0.17, 0.33, 0.5, 1, 2, 3, 4, 6, 8, 10 and 24 h following drug administration. The concentrations of EFL and CIP in blood serum were determined by high-performance liquid chromatography (HPLC). Serum concentrations versus time were analysed by a noncompartmental analysis. The elimination half-live and the mean residence time of EFL after i.v. injection for the serum were after oral administration 6.64+/-0.90 h, 8.96+/-1.18 h and 6.92+/-0.97 h, 11.91+/-1.87 h, respectively. After single p.o. administration, EFL was absorbed slowly (MAT=2.76+/-0.48 h) with time to reach maximum serum concentrations of 6.33+/-2.54 h. Maximum serum concentrations was 1.23+/-0.30 microg mL(-1). Oral bioavailability for for EFL after oral administration was found to be 69.20+/-1.49%. The ratios C(max)/MIC and AUC(0 --> 24)/MIC were respectively from 161.23+/-5.9 h to 12.90+/-0.5 h for the pharmacodynamic predictor C(max)/MIC, and from 2153.44+/-66.6 h to 137.82+/-4.27 h for AUC(0 --> 24)/MIC, for the different clinically significant microorganisms, whose values for MIC varies from 0.008 microg L(-1) to 0.125 microg mL(-1).  相似文献   

14.
The pharmacokinetics and intramuscular (i.m.) bioavailability of cefoperazone and cefamandole (20mg/kg) were investigated in dogs and the findings related to minimal inhibitory concentrations (MICs) for 90 bacterial strains isolated clinically from dogs. The MICs of cefamandole for Staphylococcus intermedius (MIC(90) 0.125 microg/mL) were lower than those of cefoperazone (MIC(90) 0.5 micro/mL) although the latter was more effective against Escherichia coli strains (MIC(90) 2.0 microg/mL vs. 4.0 microg/mL). The pharmacokinetics of the drugs after intravenous administrations were similar: a rapid distribution phase was followed by a slower elimination phase (t((1/2)lambda2) 84.0+/-21.3 min for cefoperazone and 81.4+/-9.7 min for cefamandole). The apparent volume of distribution and body clearance were 0.233 L/kg and 1.96 mL/kg/min for cefoperazone, 0.190 L/kg and 1.76 mL/kg/min for cefamandole. After i.m. administration the bioavailability and peak serum concentration of cefamandole (85.1+/-13.5% and 35.9+/-5.4 microg/mL) were significantly higher than cefoperazone (41.4+/-7.1% and 24.5+/-3.0 micog/mL), but not the serum half-lives (t(1/2el) 134.3+/-12.6 min for cefoperazone and 145.4+/-12.3 min for cefamandole). The time above MIC(90) indicated that cefamandole can be administered once daily to dogs for the treatment of staphylococcal infections (T>MIC for S. intermedius 23.8+/-0.3 and for Staphylococcus aureus 21.6+/-0.6h).  相似文献   

15.
The pharmacokinetic behavior of marbofloxacin was studied in goats after single-dose subcutaneous (SC) administration of 2mg/kg bodyweight. Drug concentration in plasma was determined by high performance liquid chromatography and the data obtained were subjected to non-compartmental kinetic analysis. Marbofloxacin peak plasma concentration (C(max)=1.77+/-0.24microg/mL) was reached 1.25+/-0.50h (T(max)) after SC administration. The elimination half-life (t(1/2beta)) and area under curve (AUC) were 5.74+/-1.21h and 8.15 vs 2.33microg h/mL, respectively. Taking into account the values obtained for the efficacy indices, it was concluded that a SC dose of 2mg/kg/24h of marbofloxacin could be adequate to treat infections caused by high susceptible bacteria like Escherichia coli or Salmonella spp.  相似文献   

16.
The pharmacokinetic properties of marbofloxacin, a third generation fluoroquinolone, were investigated in six cats after single intravenous (IV) and repeat oral (PO) administration at a daily dose of 2 mg/kg. Marbofloxacin serum concentration was analysed by microbiological assay using Klebsiella pneumoniae ATCC 10031 as micro-organism test. Serum marbofloxacin disposition was best described by bicompartmental and mono-compartmental open models with first-order elimination after IV and oral dosing respectively. After IV administration, distribution was rapid (T(1/2(d)) 0.23+/-0.24 h) and wide, as reflected by the steady-state volume of distribution of 1.01+/-0.15 L/kg. Elimination from the body was slow with a body clearance of 0.09+/-0.02 L/h kg and a T(1/2) of 7.98+/-0.57 h. After repeat oral administration, absorption half-life was 0.86+/-1.59 h and T(max) of 1.94+/-2.11 h. Bioavailability was almost complete (99+/-29%) with a peak plasma concentration at the steady-state of 1.97+/-0.61 mug/mL. Drug accumulation was not significant after six oral administrations. Calculation of efficacy predictors showed that marbofloxacin has good therapeutic profile against Gram-negative and Gram-positive bacteria with a MIC(50) value <0.25 microg/mL.  相似文献   

17.
This study was undertaken to characterize the population pharmacokinetics (PK), therapeutic dose, and preferred route of administration for pyrazinamide (PZA) in elephants. Twenty-three African (Loxodonta africana) and Asian (Elephas maximus) elephants infected with or in contact with others culture positive for Mycobacterium tuberculosis were dosed under treatment conditions. PZA was dosed daily at 20-30 mg/kg via oral (fasting or nonfasting state) or rectal (enema or suppository) administration. Blood samples were collected 0-24 h postdose. Population PK was estimated using nonlinear mixed effect modeling. Drug absorption was rapid with T(max) at or before 2 h regardless of the method of drug administration. C(max) at a mean dose of 25.6 (+/-4.6) mg/kg was 19.6 (+/-9.5 microg/mL) for PZA given orally under fasting conditions. Under nonfasting conditions at a mean dose of 26.1 +/- 4.2 mg/kg, C(max) was 25% (4.87 +/- 4.89 microg/mL) and area under concentration curve (AUC) was 30% of the values observed under fasting conditions. Mean rectal dose of 32.6 +/- 15.2 mg/kg yielded C(max) of 12.3 +/- 6.3 microg/mL, but comparable AUC to PZA administered orally while fasting. Both oral and rectal administration of PZA appeared to be acceptable and oral dosing is preferred because of the higher C(max) and lower inter-subject variability. A starting dose of 30 mg/kg is recommended with drug monitoring between 1 and 2 h postdose. Higher doses may be required if the achieved C(max) values are below the recommended 20-50 microg/mL range.  相似文献   

18.
Oral bioavailability and pharmacokinetic behaviour of clindamycin in dogs was investigated following intravenous (IV) and oral (capsules) administration of clindamycin hydrochloride, at the dose of 11 mg/kg BW. The absorption after oral administration was fast, with a mean absorption time (MAT) of 0.87+/-0.40 h, and bioavailability was 72.55+/-9.86%. Total clearance (CL) of clindamycin was low, after both IV and oral administration (0.503+/-0.095 vs. 0.458+/-0.087 L/h/kg). Volume of distribution at steady-state (IV) was 2.48+/-0.48 L/kg, indicating a wide distribution of clindamycin in body fluids and tissues. Elimination half-lives were similar for both routes of administration (4.37+/-1.20 h for IV, vs. 4.37+/-0.73 h for oral). Serum clindamycin concentrations following administration of capsules remained above the MICs of very susceptible microorganisms (0.04-0.5 microg/mL) for 12 or 10 h, respectively. Time above the mean inhibitory concentration (MIC) is considered as the index predicting the efficacy of clindamycin (T(>MIC) must be at least 40-50% of the dosing interval), so a once-daily oral administration of 11 mg/kg BW of clindamycin can be considered therapeutically effective. For less susceptible bacteria (with MICs of 0.5-2 microg/mL) the same dose should be given but twice daily.  相似文献   

19.
The pharmacokinetic properties of ceftriaxone, a third-generation cephalosporin, were investigated in five cats after single intravenous, intramuscular and subcutaneous administration at a dosage of 25 mg/kg. Ceftriaxone MICs for some gram-negative and positive strains isolated from clinical cases were determined. Efficacy predictor (t > MIC) was calculated. Serum ceftriaxone disposition was best fitted by a bicompartmental and a monocompartmental open models with first-order elimination after intravenous and intramuscular and subcutaneous dosing, respectively. After intravenous administration, distribution was fast (t1/2d 0.14 +/- 0.02 h) and moderate as reflected by the volume of distribution (V(d(ss))) of 0.57 +/- 0.22 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.37 +/- 0.13 L/h.kg and a t1/2 of 1.73 +/- 0.23 h. Peak serum concentration (Cmax), tmax and bioavailability for the intramuscular administration were 54.40 +/- 12.92 microg/mL, 0.33 +/- 0.07 h and 85.72 +/- 14.74%, respectively; and for the subcutaneous route the same parameters were 42.35 +/- 17.62 microg/mL, 1.27 +/- 0.95 h and 118.28 +/- 39.17%. Ceftriaxone MIC for gram-negative bacteria ranged from 0.0039 to >8 microg/mL and for gram-positive bacteria from 0.5 to 4 microg/mL. t > MIC was in the range 83.31-91.66% (10-12 h) of the recommended dosing interval (12 h) for Escherichia coli (MIC90 = 0.2 microg/mL).  相似文献   

20.
Pharmacokinetic variables of fosfomycin were determined after administration of buffered disodium-fosfomycin intravenously (IV), intramuscularly (IM), subcutaneously (SC) and orally (PO), in mongrel dogs, at 40 and 80 mg/kgday for three days. Renal integrity was also assessed by measuring key serum variables. Day 1, day 2 and day 3 plasma concentration vs. time profiles were undistinguishable, but there appears to be a lineal increase in serum concentrations vs. time with the dose. A non-accumulative kinetic behavior was observed after three days with both doses and most pharmacokinetic variables remain unaltered. Considering a MIC range from 1 mirog/mL to 16 microg/mL of fosfomycin in serum for sensitive bacteria, and a negligible plasma protein binding of fosfomycin (<0.5%), useful plasma concentrations can only be achieved after the SC injection of 80 mg/kg every 12h, having a C(max)=18.96+/-0.3 microg/mL; a T(1/2beta)=2.09+/-0.06 microg/mL and a bioavailability of 84-85%. No alterations were observed in serum variables of kidney-related biochemical values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号