首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenolic compounds hydroxycinnamates, anthocyanins, flavonols, and flavan-3-ols of sweet cherry cultivars Burlat, Saco, Summit, and Van harvested in 2001 and 2002 were quantified by HPLC-DAD. Phenolics were analyzed at partially ripe and ripe stages and during storage at 15 +/- 5 degrees C (room temperature) and 1-2 degrees C (cool temperature). Neochlorogenic and p-coumaroylquinic acids were the main hydroxycinnamic acid derivatives, but chlorogenic acid was also identified in all cultivars. The 3-glucoside and 3-rutinoside of cyanidin were the major anthocyanins. Peonidin and pelargonidin 3-rutinosides were the minor anthocyanins, and peonidin 3-glucoside was also present in cvs. Burlat and Van. Epicatechin was the main monomeric flavan-3-ol with catechin present in smaller amounts in all cultivars. The flavonol rutin was also detected. Cultivar Saco contained the highest amounts of phenolics [227 mg/100 g of fresh weight (fw)] and cv. Van the lowest (124 mg/100 g of fw). Phenolic acid contents generally decreased with storage at 1-2 degrees C and increased with storage at 15 +/- 5 degrees C. Anthocyanin levels increased at both storage temperatures. In cv. Van the anthocyanins increased up to 5-fold during storage at 15 +/- 5 degrees C (from 47 to 230 mg/100 g of fw). Flavonol and flavan-3-ol contents remained quite constant. For all cultivars the levels of phenolic acids were higher in 2001 and the anthocyanin levels were higher in 2002, which suggest a significant influence of climatic conditions on these compounds.  相似文献   

2.
Fresh strawberries (Fragaria x ananassa Duch.), raspberries (Rubus idaeus Michx.), highbush blueberries (Vaccinium corymbosum L.), and lowbush blueberries (Vaccinium angustifolium Aiton) were stored at 0, 10, 20, and 30 degrees C for up to 8 days to determine the effects of storage temperature on whole fruit antioxidant capacity (as measured by the oxygen radical absorbing capacity assay, Cao et al., Clin. Chem. 1995, 41, 1738-1744) and total phenolic, anthocyanin, and ascorbate content. The four fruit varied markedly in their total antioxidant capacity, and antioxidant capacity was strongly correlated with the content of total phenolics (0.83) and anthocyanins (0.90). The antioxidant capacity of the two blueberry species was about 3-fold higher than either strawberries or raspberries. However, there was an increase in the antioxidant capacity of strawberries and raspberries during storage at temperatures >0 degrees C, which was accompanied by increases in anthocyanins in strawberries and increases in anthocyanins and total phenolics in raspberries. Ascorbate content differed more than 5-fold among the four fruit species; on average, strawberries and raspberries had almost 4-times more ascorbate than highbush and lowbush blueberries. There were no ascorbate losses in strawberries or highbush blueberries during 8 days of storage at the various temperatures, but there were losses in the other two fruit species. Ascorbate made only a small contribution (0.4-9.4%) to the total antioxidant capacity of the fruit. The increase observed in antioxidant capacity through postharvest phenolic synthesis and metabolism suggested that commercially feasible technologies may be developed to enhance the health functionality of small fruit crops.  相似文献   

3.
Phenolic compounds in the aqueous systems were extracted, from hazelnut kernel (HK) and hazelnut green leafy cover (HGLC), with 80% (v/v) ethanol (HKe and HGLCe) or 80% (v/v) acetone (HKa and HGLCa). The extracts were examined for their phenolic and condensed tannin contents and phenolic acid profiles (free and esterified fractions) as well as antioxidant and antiradical activities by total antioxidant activity (TAA), antioxidant activity in a beta-carotene-linoleate model system, scavenging of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical, and reducing power. Significant differences (p < 0.05) in the contents of total phenolics, condensed tannins, and TAA existed among the extracts that were examined. HGLCa extract had the highest content of total phenolics (201 mg of catechin equivalents/g of extract), condensed tannins (542 mg of catechin equivalents/g of extract), and TAA (1.29 mmol of Trolox equivalents/g of extract) followed by HGLCe, HKa, and HKe extracts, respectively. Five phenolic acids (gallic acid, caffeic acid, p-coumaric acid, ferulic acid, and sinapic acid) were tentatively identified and quantified, among which gallic acid was the most abundant in both free and esterified forms. The order of antioxidant activity in a beta-carotene-linoleate model system, the scavenging effect on DPPH radical, and the reducing power in all extracts were in the following order: HGLCa > HGLCe > HKa > HKe. These results suggest that both 80% ethanol and acetone are capable of extracting phenolics, but 80% acetone was a more effective solvent for the extraction process. HGLC exhibited stronger antioxidant and antiradical activities than HK itself in both extracts and could potentially be considered as an inexpensive source of natural antioxidants.  相似文献   

4.
Two commercial samples of soft (70% Canadian Eastern soft red spring and 30% Canadian Eastern soft white winter) and hard (90% Canadian western hard red spring and 10% Canadian Eastern hard red winter) wheats were used to obtain different milling fractions. Phenolics extracted belonged to free, soluble esters and insoluble-bound fractions. Soluble esters of phenolics and insoluble-bound phenolics were extracted into diethyl ether after alkaline hydrolysis of samples. The content of phenolics was determined using Folin-Ciocalteu's reagent and expressed as ferulic acid equivalents (FAE). The antioxidant activity of phenolic fractions was evaluated using Trolox equivalent antioxidant capacity, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, reducing power, oxygen radical absorbance capacity, inhibition of oxidation of human low-density lipoprotein cholesterol and DNA, Rancimat, inhibition of photochemilumenescence, and iron(II) chelation activity. The bound phenolic content in the bran fraction was 11.3 +/- 0.13 and 12.2 +/- 0.15 mg FAE/g defatted material for hard and soft wheats, respectively. The corresponding values for flour were 0.33 +/- 0.01 and 0.46 +/- 0.02 mg FAE/g defatted sample. The bound phenolic content of hard and soft whole wheats was 2.1 (+/-0.004 or +/-0.005) mg FAE/g defatted material. The free phenolic content ranged from 0.14 +/- 0.004 to 0.98 +/- 0.05 mg FAE/g defatted milling fractions of hard and soft wheats examined. The contribution of bound phenolics to the total phenolic content was significantly higher than that of free and esterified fractions. In wheat, phenolic compounds were concentrated mainly in the bran tissues. In the numerous in vitro antioxidant assays carried out, the bound phenolic fraction demonstrated a significantly higher antioxidant capacity than free and esterified phenolics. Thus, inclusion of bound phenolics in studies related to quantification and antioxidant activity evaluation of grains and cereals is essential.  相似文献   

5.
Consumption of certain phenolics in the diet is considered beneficial to human health. In this study, individual phenolics were measured by diode-array HPLC at monthly intervals in the peel of Granny Smith, Lady Williams, and Crofton apple cultivars stored in air at 0 degrees C for 9 months. The concentrations of total phenolics significantly differed among the cultivars examined, with Lady Williams peel having significantly more phenolics (over 4000 microg x g(-1) peel fresh weight) than Crofton (2668 microg x g(-1) peel fresh weight) and Granny Smith, which had the lowest concentration of total phenolics (1275 microg x g(-1) peel fresh weight). There were also significant differences in individual phenolics among cultivars and during storage. Quercetin glycosides were the only flavonols identified, with quercetin rhamnoglucoside being the most abundant phenolic in the peel. Chlorogenic acid was the major cinnamic acid derivative, with high concentrations, up to 412 microg x g(-1)) peel fresh weight, in Crofton peel. A pre-storage diphenylamine (DPA) treatment had few significant effects on peel phenolic metabolism. Where differences did occur, fruit treated with DPA retained higher concentrations of total peel phenolics during storage than fruit not treated with DPA. Storage of all cultivars for up to 9 months in air at 0 degrees C induced few significant changes in the peel phenolic concentrations. This indicates that phenolic metabolism in apple peel is relatively stable, and the health benefits of phenolics in apple peel should be maintained during long-term storage.  相似文献   

6.
The influence of high oxygen concentrations on total phenolic, total anthocyanin, individual phenolic compounds, and antioxidant capacity (measured as oxygen radical absorbance capacity, ORAC) in highbush blueberry fruit (Vaccinium corymbosum L. cv. Duke) was investigated. Freshly harvested blueberries were placed in jars ventilated continuously with air or with 40, 60, 80, or 100% O(2) at 5 degrees C for up to 35 days. Samples were taken initially and at 7-day intervals during storage. Whereas the quality parameters of titratable acidity, total soluble solids, and surface color were only slightly affected by the superatmospheric O(2) treatments, the antioxidant levels were markedly increased by 60-100% O(2) treatments as compared with 40% O(2) treatment or air control during 35 days of storage. Elevated O(2) between 60 and 100% also promoted increases of total phenolics and total anthocyanins as well as the individual phenolic compounds analyzed by HPLC. Fruit treated with O(2) concentrations of >/=60% also exhibited significantly less decay. Data obtained in this study suggest that high-oxygen treatments may improve the antioxidant capacity of blueberry fruit. Furthermore, antioxidant capacity may be correlated with total phenolic and anthocyanin contents in blueberries.  相似文献   

7.
Antioxidant and antiproliferative activities of raspberries   总被引:16,自引:0,他引:16  
Raspberries are rich in phenolic phytochemicals. To study the health benefits of raspberries, four fresh raspberry varieties (Heritage, Kiwigold, Goldie, and Anne) were evaluated for total antioxidant and antiproliferative activities. The total amount of phenolics and flavonoids for each of the four raspberry varieties was determined. The Heritage raspberry variety had the highest total phenolic content (512.7 +/- 4.7 mg/100 g of raspberry) of the varieties measured followed by Kiwigold (451.1 +/- 4.5 mg/100 g of raspberry), Goldie (427.5 +/- 7.5 mg/100 g of raspberry), and Anne (359.2 +/- 3.4 mg/100 g of raspberry). Similarly, the Heritage raspberry variety contained the highest total flavonoids (103.4 +/- 2.0 mg/100 g of raspberry) of the varieties tested, followed by Kiwigold (87.3 +/- 1.8 mg/100 g of raspberry), Goldie (84.2 +/- 1.8 mg/100 g of raspberry), and Anne (63.5 +/- 0.7 mg/100 g of raspberry). The color of the raspberry juice correlated well to the total phenolic, flavonoid, and anthocyanin contents of the raspberry. Heritage had the highest a/b ratio and the darkest colored juice, and the Anne variety showed the lowest phytochemical content and the palest color. Heritage raspberry variety had the highest total antioxidant activity, followed by Kiwigold and Goldie, and the Anne raspberry variety had the lowest antioxidant activity of the varieties tested. The proliferation of HepG(2) human liver cancer cells was significantly inhibited in a dose-dependent manner after exposure to the raspberry extracts. The extract equivalent to 50 mg of Goldie, Heritage, and Kiwigold fruit inhibited the proliferation of those cells by 89.4 +/- 0.1, 88 +/- 0.2, and 87.6 +/- 1.0%, respectively. Anne had the lowest antiproliferative activity of the varieties measured but still exhibited a significant inhibition of 70.3+/- 1.2% with an extract equivalent to 50 mg of fruit. The antioxidant activity of the raspberry was directly related to the total amount of phenolics and flavonoids found in the raspberry (p < 0.01). No relationship was found between antiproliferative activity and the total amount of phenolics/flavonoids found in the same raspberry (p > 0.05).  相似文献   

8.
Antioxidant capacity, as measured by oxygen radical absorbance capacity (ORAC), and total phenolic and total anthocyanin contents were evaluated in fruit tissues of 87 highbush blueberry (Vacciniumcorymbosum L.) and species-introgressed highbush blueberry cultivars. ORAC and phenolic levels were evaluated in leaf tissues of the same materials. Average values for ORAC, phenolics, and anthocyanins in fruit were 15.9 ORAC units, 1.79 mg/g (gallic acid equivalents), and 0.95 mg/g (cyanidin-3-glucoside equivalents), respectively. Cv. Rubel had the highest ORAC per gram of fresh weight values, at 31.1 units, and cv. Elliott had the highest values on the basis of ORAC per square centimeter of surface area. In leaf tissue, values for both ORAC and phenolics were significantly higher than in fruit tissue, with mean values of 490 ORAC units and 44.80 mg/g (gallic acid equivalents), respectively. Leaf ORAC had a low, but significant, correlation with fruit phenolics and anthocyanins, but not with fruit ORAC. An analysis of ORAC values versus calculated midparent values in 11 plants from the 87-cultivar group in which all parents were tested suggested that, across cultivars, ORAC inheritance is additive. An investigation of ORAC values in a family of 44 cv. Rubel x Duke seedlings showed negative epistasis for ORAC values, suggesting Rubel may have gene combinations contributing to ORAC that are broken up during hybridization.  相似文献   

9.
Apple peels as a value-added food ingredient   总被引:6,自引:0,他引:6  
There is some evidence that chronic diseases, such as cancer and cardiovascular disease, may occur as a result of oxidative stress. Apple peels have high concentrations of phenolic compounds and may assist in the prevention of chronic diseases. Millions of pounds of waste apple peels are generated in the production of applesauce and canned apples in New York State each year. We proposed that a valuable food ingredient could be made using the peels of these apples if they could be dried and ground to a powder without large losses of phytochemicals. Rome Beauty apple peels were treated with citric acid dips, ascorbic acid dips, and blanches before being oven-dried at 60 degrees C. Only blanching treatments greatly preserved the phenolic compounds, and peels blanched for 10 s had the highest total phenolic content. Rome Beauty apple peels were then blanched for 10 s and dried under various conditions (oven-dried at 40, 60, or 80 degrees C, air-dried, or freeze-dried). The air-dried and freeze-dried apple peels had the highest total phenolic, flavonoid, and anthocyanin contents. On a fresh weight basis, the total phenolic and flavonoid contents of these samples were similar to those of the fresh apple peels. Freeze-dried peels had a lower water activity than air-dried peels on a fresh weight basis. The optimal processing conditions for the ingredient were blanching for 10s and freeze-drying. The process was scaled up, and the apple peel powder ingredient was characterized. The total phenolic content was 3342 +/- 12 mg gallic acid equivalents/100 g dried peels, the flavonoid content was 2299 +/- 52 mg catechin equivalents/100 g dried peels, and the anthocyanin content was 169.7 +/- 1.6 mg cyanidin 3-glucoside equivalents/100 g dried peels. These phytochemical contents were a significantly higher than those of the fresh apple peels if calculated on a fresh weight basis (p < 0.05). The apple peel powder had a total antioxidant activity of 1251 +/- 56 micromol vitamin C equivalents/g, similar to fresh Rome Beauty peels on a fresh weight basis (p > 0.05). One gram of powder had an antioxidant activity equivalent to 220 mg of vitamin C. The freeze-dried apple peels also had a strong antiproliferative effect on HepG(2) liver cancer cells with a median effective dose (EC(50)) of 1.88 +/- 0.01 mg/mL. This was lower than the EC(50) exhibited by the fresh apple peels (p < 0.05). Apple peel powder may be used in a various food products to add phytochemicals and promote good health.  相似文献   

10.
Antioxidant activity of apple peels   总被引:19,自引:0,他引:19  
Consumption of fruits and vegetables has been shown to be effective in the prevention of chronic diseases. These benefits are often attributed to the high antioxidant content of some plant foods. Apples are commonly eaten and are large contributors of phenolic compounds in European and North American diets. The peels of apples, in particular, are high in phenolics. During applesauce and canned apple manufacture, the antioxidant-rich peels of apples are discarded. To determine if a useful source of antioxidants is being wasted, the phytochemical content, antioxidant activity, and antiproliferative activity of the peels of four varieties of apples (Rome Beauty, Idared, Cortland, and Golden Delicious) commonly used in applesauce production in New York state were investigated. The values of the peels were compared to those of the flesh and flesh + peel components of the apples. Within each variety, the total phenolic and flavonoid contents were highest in the peels, followed by the flesh + peel and the flesh. Idared and Rome Beauty apple peels had the highest total phenolic contents (588.9 +/- 83.2 and 500.2 +/- 13.7 mg of gallic acid equivalents/100 g of peels, respectively). Rome Beauty and Idared peels were also highest in flavonoids (306.1 +/- 6.7 and 303.2 +/- 41.5 mg of catechin equivalents/100 g of peels, respectively). Of the four varieties, Idared apple peels had the most anthocyanins, with 26.8 +/- 6.5 mg of cyanidin 3-glucoside equivalents/100 g of peels. The peels all had significantly higher total antioxidant activities than the flesh + peel and flesh of the apple varieties examined. Idared peels had the greatest antioxidant activity (312.2 +/- 9.8 micromol of vitamin C equivalents/g of peels). Apple peels were also shown to more effectively inhibit the growth of HepG(2) human liver cancer cells than the other apple components. Rome Beauty apple peels showed the most bioactivity, inhibiting cell proliferation by 50% at the low concentration of 12.4 +/- 0.4 mg of peels/mL. The high content of phenolic compounds, antioxidant activity, and antiproliferative activity of apple peels indicate that they may impart health benefits when consumed and should be regarded as a valuable source of antioxidants.  相似文献   

11.
Fresh and sun-dried dates of three native varieties from Oman, namely, Fard, Khasab, and Khalas, were examined for their antioxidant activity and total contents of anthocyanins, carotenoids, and phenolics, as well as free and bound phenolic acids. All results are expressed as mean value +/- standard deviation (n = 3) on a fresh weight basis. Fresh date varieties were found to be a good source of antioxidants (11687-20604 micromol of Trolox equiv/g), total contents of anthocyanins (0.24-1.52 mg of cyanidin 3-glucoside equiv/100 g), carotenoids (1.31-3.03 mg/100 g), phenolics (134-280 mg of ferulic acid equiv/100 g), free phenolic acids (2.61-12.27 mg/100 g), and bound phenolic acids (6.84-30.25 mg/100 g). A significant (p < 0.05) amount of antioxidants and carotenoids was lost after sun-drying of dates, whereas the total content of phenolics and free and bound phenolic acids increased significantly (p < 0.05). Anthocyanins were detected only in fresh dates. Date varieties had different levels and patterns of phenolic acids. Four free phenolic acids (protocatechuic acid, vanillic acid, syringic acid, and ferulic acid) and nine bound phenolic acids (gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, p-coumaric acid, ferulic acid, and o-coumaric acid) were tentatively identified. Of the date varieties studied, Khalas, which is considered to be premium quality, had higher antioxidant activity, total carotenoids, and bound phenolic acids than other varieties. These results suggest that all date varieties serve as a good source of natural antioxidants and could potentially be considered as a functional food or functional food ingredient, although some of their antioxidant constituents are lost during sun-drying.  相似文献   

12.
The aim of our work was to supplement a solid foodstuff with grape phenolics by osmotic treatment with an aqueous solution made of osmo-active agents (NaCl and sucrose) and a commercial grape seed extract. To investigate how the composition of the osmotic solution affected phenolic infusion, experimental conditions were set by a central composite design with two factors (the molality of NaCl and sucrose in the osmotic solution). In all experiments, the total phenolic content in the osmotic solution was kept constant (6300 +/- 45 mg gallic acid equivalents/kg), and the model food (an agar-agar gel) was processed for 8 h. Throughout the response surface, the osmo-treated model food was significantly supplemented with flavan-3-ols. At the central point of the experimental design, flavan-3-ol monomers and dimers were found in concentrations of 1334 +/- 126 and 486 +/- 55 mg/kg, respectively. Their penetration into the model food was limited by sucrose to a different extent. The Trolox equivalent antioxidant capacity of the osmo-treated gel was higher than that of fruits with a very high free radical scavenging activity.  相似文献   

13.
The purpose of this investigation was to report on the total phenolics, anthocyanins, and oxygen radical absorbance capacity (ORAC) of strawberry, peach, and apple, the influence of dehydration and ascorbic acid treatments on the levels of these compounds, and the effect of these treatments on fruit color. Results showed that fresh strawberry had the highest levels for total phenolics [5317.9 mg of chlorogenic acid equivalents (CAE)/kg], whereas lower levels were found in fresh apple and peach (3392.1 and 1973.1 mg of CAE/kg, respectively), and for anthocyanins (138.8 mg/kg), whereas lower levels were found in fresh apple and peaches (11.0 and 18.9 mg/kg, respectively; fresh strawberry had an ORAC value of 62.9 mM/kg Trolox equivalents. The fresh apple and peach were found to have ORAC values of 14.7 and 11.4 mM/kg of Trolox equivalents, respectively. The color values indicated that the addition of 0.1% ascorbic acid increased the lightness (L) and decreased the redness (a) and yellowness (b) color values of fresh strawberry, peach, and apple, sliced samples, and the puree made from them. Also, results showed that dehydration is a good method to keep the concentrations of total phenolics and anthocyanins and ORAC values at high levels.  相似文献   

14.
Recent research suggests that blueberries are rich in total polyphenols and total anthocyanins. Phenolic compounds are highly unstable and may be lost during processing, particularly when heat treatment is involved. There is no systematic study available providing information on the fate of phenolic compounds during storage and how that affects their biological activity. We provide a systematic evaluation of the changes observed in total polyphenols (TPP), total anthocyanins (TACY), Trolox equivalent antioxidant capacity (TEAC), phenolic acids, and individual anthocyanins of blueberry extract stored in glass bottles and the ability of blueberry extract to inhibit cell proliferation. The extract was stored at different temperatures (-20 +/- 1, 6 +/- 1, 23 +/- 1, and 35 +/- 1 degrees C). Two cultivars, Tifblue and Powderblue, were chosen for the study. The recoveries of TPP, TACY, and TEAC in blueberry extract after pressing and heating were approximately 25, approximately 29, and approximately 69%, respectively, for both cultivars. The recovery of gallic acid, catechin, and quercetin was approximately 25%. Ferulic acid was not detected in the final extract in both Tifblue and Powderblue cultivars. The recovery of peonidin, malvidin, and cyanidin glycosides was approximately 20% in the final extract in both cultivars. Losses due to storage were less when compared with initial losses due to processing. At -20 degrees C, no statistically significant loss of TPP, TACY, and TEAC was observed up to 30 days (P < 0.05). At 6 degrees C storage, there was a significant loss observed from 15 to 30 days. Similar results were obtained at 23 and 35 degrees C (P < 0.05). There was retention of more than 40% of ellagic and quercetin after 60 days at 35 +/- 1 degrees C. Anthocyanins were not detected after 60 days of storage at 35 +/- 1 degrees C. Significant retention (P < 0.05) was obtained for malvidin (42.8 and 25.8%) and peonidin (74.0 and 79.5%) after 60 days of storage at 23 +/- 1 degrees C in glass bottles for Tifblue and Powderblue, respectively, when compared with other individual anthocyanins. A linear relationship was observed between TEAC values and total polyphenols or total anthocyanins. A cell viability assay was performed using HT-29 cancer cell lines and anthocyanins extracted from 30, 60, and 90 days of stored extract at 6 +/- 1 and 23 +/- 1 degrees C. A significant cell proliferation inhibition percentage was observed in 30 days, although this was reduced significantly after 30-90 days. These results suggest that heating and storage conditions significantly affect the phenolic compounds and their biological activities. Frozen and low temperature storage are suggested for blueberry extract in order to retain the bioactive components.  相似文献   

15.
The main change found in the phenolic composition of virgin olive oils of Arbequina, Hojiblanca, and Picual varieties during storage in darkness at 30 degrees C was the hydrolysis of the secoiridoid aglycons. This reaction gave rise to an increase in the free phenolics hydroxytyrosol and tyrosol in the oil. Filtration of oil and acidity influenced the hydrolysis to a large extent. Thus, the addition of commercial oleic acid to Hojiblanca and Picual oils increased the hydrolysis rate of the secoiridoid aglycons. In contrast, the concentration of lignans 1-acetoxypinoresinol and pinoresinol remained constant during storage. It must also be stressed that the total molar concentration of the phenolic compounds analyzed in the oils changed slightly (<20% reduction) after one year of storage, which is important from a nutritional point of view. However, the transformation of the secoiridoid aglycons into free phenolics may have consequences on oil taste and antioxidant capacity.  相似文献   

16.
Ten cranberry (Vaccinium macrocarpon Aiton) cultivars were evaluated for oxygen radical absorbance capacity (ORAC), anthocyanins, and total phenolics contents after three months of storage at 0, 5, 10, 15, and 20 degrees C. The antioxidant capacity of cranberry was affected by cultivars and storage temperatures. Among the 10 cranberry cultivars used in this study, Early Black, Crowley, and Franklin had higher antioxidant capacities than the other cultivars. ORAC values, anthocyanins, and total phenolics contents increased during storage. The highest increases in antioxidant activity, anthocyanin, and phenolics contents occurred at 15 degrees C storage. Fruit stored at 20 degrees C had lower ORAC values than those stored at 15 degrees C. A positive relationship existed between ORAC values and anthocyanin or phenolic content in all 10 cranberry cultivars at different storage temperatures.  相似文献   

17.
The consumption of fruits, vegetables, and whole grains rich in antioxidative phytochemicals is associated with a reduced risk of chronic diseases such as cancer, coronary heart disease, diabetes, Alzheimer's disease, cataract, and aged-related functional decline. For example, phenolic acids are among the main antioxidative phytochemicals in grains that have been shown to be beneficial to human health. Corn (Zea mays L.) is a major staple food in several parts of the world; thus, the antioxidant activity of several corn types was evaluated. The 2,2-Diphenyl-1-picryhydrazyl free radical (DPPH*) scavenging activity, total phenolic content (TPC), antioxidant capacity of lipid-soluble substances (ACL), oxygen radical absorbance capacity (ORAC), and phenolic acid compositions of typical and mutant genotypes (typical-1, waxy, typical-2, and high-amylose) were investigated. The DPPH* scavenging activity at 60 min was 34.39-44.51% in methanol extracts and 60.41-67.26% in HCl/methanol (1/99, v/v) extracts of corn. The DPPH* scavenging activity of alkaline hydrolysates of corn ranged from 48.63 to 64.85%. The TPC ranged from 0.67 to 1.02 g and from 0.91 to 2.15 g of ferulic acid equiv/kg of corn in methanol and HCl/methanol extracts, respectively. The TPC of alkaline hydrolysates ranged from 2.74 to 6.27 g of ferulic acid equiv/kg of corn. The ACL values were 0.41-0.80 and 0.84-1.59 g of Trolox equiv/kg of corn in methanol and HCl/methanol extracts, respectively. The ORAC values were 10.57-12.47 and 18.76-24.92 g of Trolox equiv/kg of corn in methanol and HCl/methanol extracts, respectively. ORAC values of alkaline hydrolysates ranged from 42.85 to 68.31 g of Trolox equiv/kg of corn. The composition of phenolic acids in alkaline hydrolysates of corn was p-hydroxybenzoic acid (5.08-10.6 mg/kg), vanillic acid (3.25-14.71 mg/kg), caffeic acid (2.32-25.73 mg/kg), syringic acid (12.37-24.48 mg/kg), p-coumaric acid (97.87-211.03 mg/kg), ferulic acid (1552.48-2969.10 mg/kg), and o-coumaric acid (126.53-575.87 mg/kg). Levels of DPPH* scavenging activity, TPC, ACL, and ORAC in HCl/methanol extracts were obviously higher than those present in methanol extracts. There was no significant loss of antioxidant capacity when corn was dried at relatively high temperatures (65 and 93 degrees C) postharvest as compared to drying at ambient temperatures (27 degrees C). Alkaline hydrolysates showed very high TPC, ACL, and ORAC values when compared to methanol and HCl/methanol extracts. High-amylose corn had a better antioxidant capacity than did typical (nonmutant) corn genotypes.  相似文献   

18.
The influence of deficit irrigation (Deficit) and reflective mulch (Reflective) of Caldesi 2000 nectarines on the content of individual phenolic compounds was studied at harvest and during storage for 2, 4, and 6 weeks at 2 °C during two consecutive years (2007 and 2008). Individual phenolic groups in the edible fruit part consisted mainly of proanthocyanidins (200 mg/100 g fw), lower content of phenolic acids (17 mg/100 g fw), and minor content of flavonols (5 mg/100 g fw) and anthocyanins (1.2 mg/100 g fw). Deficit irrigation increased the content of total phenolics, including proanthocyanidins and phenolic acids, reaching similar amounts in both years. Sun-exposed fruit (upper part of canopy) showed higher content than shaded fruit (lower part of canopy). However, Reflective significantly increased the content of total phenolics, particularly phenolic acids and proanthocyanidins, of fruit located in the lower part of the canopy. During storage, Deficit and Reflective did not affect the content of phenolic acids, flavonols, and proanthocyanidins when compared to the content at harvest. Optimizing cultural practices can be a way to increase the phenolic content of nectarines.  相似文献   

19.
Dense phase CO2 processing (DP-CO2) is a promising alternative to thermal pasteurization potentially inactivating microorganisms without affecting food phytochemicals or organoleptic characteristics. To demonstrate these effects, studies were conducted by changing processing pressure and CO2 concentration in relation to microbial destruction. Subsequent storage stability (10 weeks at 4 degrees C) of muscadine grape juice processed by DP-CO2 (34.5 MPa at 8% or 16% CO2) was evaluated and compared to a heat-pasteurized juice (75 degrees C, 15 s). Thermal pasteurization decreased anthocyanins (16%), soluble phenolics (26%), and antioxidant capacity (10%) whereas no changes were observed for both DP-CO2 juices. DP-CO2 juices also retained higher anthocyanins (335 mg/L), polyphenolics (473 mg/L), and antioxidant capacity (10.9 micromol of Trolox equivalents/mL) than thermally pasteurized juices at the end of storage. Insignificant differences in sensory attributes (color, flavor, aroma, and overall likeability) were observed between unprocessed and DP-CO2 juices, while significant differences were observed between unprocessed and heat-pasteurized juices. Panelists preferred DP-CO2 over heat-pasteurized juices throughout the first 6 weeks of storage, whereby the growth of yeast and mold adversely affected the juice aroma. Comparable microbial counts were observed between DP-CO2 and thermally pasteurized juices during the first 5 weeks of storage. DP-CO2 protected phytochemicals in muscadine juice during processing and storage without compromising microbial stability or sensory attributes over 5 weeks of storage.  相似文献   

20.
Cloudberries ( Rubus chamaemorus ) contain phenolics (mainly ellagitannins), which have recently been related to many valuable bioactivity properties. In general, phenolics are known to react readily with various components, which may create an obstacle in producing stable functional components for food and pharmaceutical purposes. In this study, the aim was to improve the storage stability of cloudberry phenolic extract by microencapsulation. The phenolic-rich cloudberry extract was encapsulated in maltodextrins DE5-8 and DE18.5 by freeze-drying. Water sorption properties and glass transition temperatures (T(g)) of microcapsules and maltodextrins were determined. Microcapsules together with unencapsulated cloudberry extract were stored at different relative vapor pressures (0, 33, and 66% RVP) at 25 degrees C for 64 days, and storage stability was evaluated by analyzing phenolic content and antioxidant activity. Compared to maltodextrin DE18.5, maltodextrin DE5-8 had not only higher encapsulation yield and efficiency but also offered better protection for phenolics during storage. Without encapsulation the storage stability of cloudberry phenolics was weaker with higher storage RVP. Microencapsulation improved the storage stability of cloudberry phenolics. The physical state of microcapsules did not have a significant role in the stability of cloudberry phenolics because phenolic losses were observed also in amorphous glassy materials. The antioxidant activity of the microencapsulated cloudberry extract remained the same or even improved slightly during storage, which may be related to the changes in phenolic profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号