首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Helical structures of ESCRT-III are disassembled by VPS4   总被引:1,自引:0,他引:1  
During intracellular membrane trafficking and remodeling, protein complexes known as the ESCRTs (endosomal sorting complexes required for transport) interact with membranes and are required for budding processes directed away from the cytosol, including the budding of intralumenal vesicles to form multivesicular bodies; for the budding of some enveloped viruses; and for daughter cell scission in cytokinesis. We found that the ESCRT-III proteins CHMP2A and CHMP3 (charged multivesicular body proteins 2A and 3) could assemble in vitro into helical tubular structures that expose their membrane interaction sites on the outside of the tubule, whereas the AAA-type adenosine triphosphatase VPS4 could bind on the inside of the tubule and disassemble the tubes upon adenosine triphosphate hydrolysis. CHMP2A and CHMP3 copolymerized in solution, and their membrane targeting was cooperatively enhanced on planar lipid bilayers. Such helical CHMP structures could thus assemble within the neck of an inwardly budding vesicle, catalyzing late steps in budding under the control of VPS4.  相似文献   

2.
Active nuclear import of soluble cargo involves transport factors that shuttle cargo through the nuclear pore complex (NPC) by binding to phenylalanine-glycine (FG) domains. How nuclear membrane proteins cross through the NPC to reach the inner membrane is presently unclear. We found that at least a 120-residue-long intrinsically disordered linker was required for the import of membrane proteins carrying a nuclear localization signal for the transport factor karyopherin-α. We propose an import mechanism for membrane proteins in which an unfolded linker slices through the NPC scaffold to enable binding between the transport factor and the FG domains in the center of the NPC.  相似文献   

3.
Coiled-coil proteins of the golgin family have been implicated in intra-Golgi transport through tethering coat protein complex I (COPI) vesicles. The p115-golgin tether is the best studied, and here we characterize the golgin-84-CASP tether. The vesicles bound by this tether were strikingly different from those bound by the p115-golgin tether in that they lacked members of the p24 family of putative cargo receptors and contained enzymes instead of anterograde cargo. Microinjected golgin-84 or CASP also inhibited Golgi-enzyme transport to the endoplasmic reticulum, further implicating this tether in retrograde transport. These and other golgins may modulate the flow patterns within the Golgi stack.  相似文献   

4.
During cytokinesis, as dividing animal cells pull apart into two daughter cells, the final stage, termed abscission, requires breakage of the midbody, a thin membranous stalk connecting the daughter cells. This membrane fission event topologically resembles the budding of viruses, such as HIV-1, from infected cells. We found that two proteins involved in HIV-1 budding-tumor susceptibility gene 101 (Tsg101), a subunit of the endosomal sorting complex required for transport I (ESCRT-I), and Alix, an ESCRT-associated protein-were recruited to the midbody during cytokinesis by interaction with centrosome protein 55 (Cep55), a centrosome and midbody protein essential for abscission. Tsg101, Alix, and possibly other components of ESCRT-I were required for the completion of cytokinesis. Thus, HIV-1 budding and cytokinesis use a similar subset of cellular components to carry out topologically similar membrane fission events.  相似文献   

5.
When isolated apical membrane vesicles prepared from cultured A6 epithelia were incubated in vitro with the methyl donor S-adenosylmethionine, the control rate of amiloride-inhibitable sodium transport was doubled. The methylation inhibitors 3-deazaadenosine and S-adenosyl homocysteine returned the S-adenosyl-methionine-stimulated sodium transport to control levels. Neither these agents nor adenosine affected sodium transport into control vesicles. In vesicles incubated with S-adenosyl-[3H-methyl]methionine, both membrane phospholipids and proteins were labeled, and this labeling was inhibited by deazaadenosine. In vesicles prepared from A6 cells treated with aldosterone, sodium transport was twice the control value and S-adenosylmethionine did not cause any further stimulation of transport. In those vesicles, both lipid and protein methylation were increased. These results suggest that methylation, which increases the rate of amiloride-sensitive sodium transport is involved in the action of aldosterone at the apical membrane level in epithelia.  相似文献   

6.
Transport studies in bacterial membrane vesicles   总被引:43,自引:0,他引:43  
The use of bacterial membrane vesicles as an experimental system for the study of active transport has been discussed. Vesicles are prepared from osmotically sensitized bacteria, and consist of osmotically intact, membranebound sacs without internal structure. They retain litle or no cytoplasm. Under appropriate conditions, these vesicles catalyze the transport of a variety of solutes at rates which are comparable, in many cases, to those of intact cells. Two general types of transport systems have been elucidated in the vesicle system: (i) group translocation systems which catalyze vectorial covalent reactions; and (ii) respirationlinked transport systems that catalyze the active transport of a whole range of metabolites against an electrochemical or osmotic gradient. In E. coli membrane vesicles, the respiration-linked transport systems are coupled primarily to the oxidation of (D)-lactate to pyruvate, catalyzed by a flavin-linked, membrane-bound (D)-lactate dehydrogenase which has been purified to homogeneity. Electrons derived from (D)-lactate or certain artificial electron donors are transferred to oxygen by means of a membrane-bound respiratory chain, and respiration is coupled to active transport within a segment of the respiratory chain between the primary dehydrogenase and cytochrome. b(l). The great majority of the individual membrane vesicles in the population catalyze active transport, and the generation or hydtolysis of ATP is not involved. Under anaerobic conditions, fumarate or nitrate can be utilized in place of oxygen as terminal electron acceptors. With the exception that (D)-lactate is not always the most effective electron donor for active transport, vesicles prepared from a number of other organisms catalyze transport in a similar manner. Fluorescent dansylgalactosides are useful molecular probes of active transport in the vesicle system. These compounds are competitive inhibitors of beta-galactoside transport, but are not transported themselves. Fluorescence studies indicate that the lac carrier protein constitutes approximately 3 to 6 percent of the total membrane protein, and that it is not accessible to the external medium unless the membrane is "energized." Thus, energy is coupled to one of the initial steps in the transport process. Studies with a photoaffinity-labeled galactoside provide independent support for this conclusion. When membrane vesicles prepared from a (D)-lactate dehydrogenase mutant of E. coli are treated with (D)-lactate dehydrogenase, the enzyme binds to the vesicles and they regain the capacity to catalyze (D)-lactate oxidation and (D)-lactate-dependent active transport. The maximal specific transport activity obtained in the reconstituted system is similar in magnitude to that of wildtype vesicles. Titration studies with dansylgalactoside demonstrate that there is at least a seven- to eightfold excess of lac carrier protein relative to (D)-lactate dehydrogenase. Evidence is presented indicating that the enzyme is bound to the inner surface of native membrane vesicles and to the outer surface of reconstituted vesicles, and that the flavin coenzyme moiety is critically involved in binding. Possible mechanisms of respirationlinked active transport are discussed.  相似文献   

7.
Previous work has identified two families of proteins that transport classical neurotransmitters into synaptic vesicles, but the protein responsible for vesicular transport of the principal excitatory transmitter glutamate has remained unknown. We demonstrate that a protein that is unrelated to any known neurotransmitter transporters and that was previously suggested to mediate the Na(+)-dependent uptake of inorganic phosphate across the plasma membrane transports glutamate into synaptic vesicles. In addition, we show that this vesicular glutamate transporter, VGLUT1, exhibits a conductance for chloride that is blocked by glutamate.  相似文献   

8.
Fast axonal transport in extruded axoplasm from squid giant axon   总被引:32,自引:0,他引:32  
Development of video-enhanced contrast-differential interference contrast for light microscopy has permitted study of both orthograde and retrograde fast axonal transport of membranous organelles in the squid giant axon. This process was found to continue normally for hours after the axoplasm was extruded from the giant axon and removed from the confines of the axonal plasma membrane. It is now possible to follow the movements of the full range of membranous organelles (30-nanometer vesicles to 5000-nanometer mitochondria) in a preparation that lacks a plasma membrane or other permeability barrier. This observation demonstrates that the plasma membrane is not required for fast axonal transport and suggests that action potentials are not involved in the regulation of fast transport. Furthermore, the absence of a permeability barrier surrounding the axoplasm makes this an important model for biochemical pharmacological, and physical manipulations of membranous organelle transport.  相似文献   

9.
The ESCRT (endosomal sorting complex required for transport) machinery is required for the scission of membrane necks in processes including the budding of HIV-1 and cytokinesis. An essential step in cytokinesis is recruitment of the ESCRT-I complex and the ESCRT-associated protein ALIX to the midbody (the structure that tethers two daughter cells) by the protein CEP55. Biochemical experiments show that peptides from ALIX and the ESCRT-I subunit TSG101 compete for binding to the ESCRT and ALIX-binding region (EABR) of CEP55. We solved the crystal structure of EABR bound to an ALIX peptide at a resolution of 2.0 angstroms. The structure shows that EABR forms an aberrant dimeric parallel coiled coil. Bulky and charged residues at the interface of the two central heptad repeats create asymmetry and a single binding site for an ALIX or TSG101 peptide. Both ALIX and ESCRT-I are required for cytokinesis, which suggests that multiple CEP55 dimers are required for function.  相似文献   

10.
The endosomal compartment of polarized epithelial cells is a major crossroads for membrane traffic. Proteins entering this compartment from the cell surface are sorted for transport to one of several destinations: recycling to the original cell surface, targeting to lysosomes for degradation, or transcytosis to the opposite surface. The polymeric immunoglobulin receptor (pIgR), which is normally transcytosed from the basolateral to the apical surface, was used as a model to dissect the signals that mediate this sorting event. When exogenous receptor was expressed in Madin-Darby Canine Kidney (MDCK) cells, it was shown that phosphorylation of pIgR at the serine residue at position 664 is required for efficient transcytosis. Replacement of this serine with alanine generated a receptor that is transcytosed only slowly, and appears to be recycled. Conversely, substitution with aspartic acid (which mimics the negative charge of the phosphate group) results in rapid transcytosis. It was concluded that phosphorylation is the signal that directs the pIgR from the endosome into the transcytotic pathway.  相似文献   

11.
外泌体是一种细胞分泌的囊泡,里面含有丰富的核酸和蛋白质等物质,对于信息的传递、免疫功能的调节具有重要作用.本研究通过培养巨噬细胞、树突状细胞,收集上清液,分别采用外泌体提取试剂盒法和超速离心法提取外泌体,使用透射电镜法和Western blot法进行外泌体鉴定. 将提取的外泌体转染荧光标记,与淋巴细胞共同孵育24 h.采用含荧光标记的miR-155,分别转染到巨噬细胞和树突细胞中,提取细胞上清的外泌体,与淋巴细胞共孵育24 h.结果显示:超速离心法提取的外泌体更纯,但是SBI试剂盒提取的外泌体更多,适用于下一步试验;巨噬细胞及树突状细胞分泌的外泌体加荧光标记与淋巴细胞共培养后,可使淋巴细胞荧光增加;荧光标记miR-155的外泌体与淋巴细胞共培养,可使淋巴细胞荧光增加. 本研究证实了树突细胞、巨噬细胞分泌的外泌体及其包含的miR-155可作用于淋巴细胞,参与免疫细胞间的通讯,为进一步阐明外泌体的作用机制奠定了理论基础.  相似文献   

12.
Mannose 6-phosphate receptors (MPRs) deliver lysosomal hydrolases from the Golgi to endosomes and then return to the Golgi complex. TIP47 recognizes the cytoplasmic domains of MPRs and is required for endosome-to-Golgi transport. Here we show that TIP47 also bound directly to the Rab9 guanosine triphosphatase (GTPase) in its active, GTP-bound conformation. Moreover, Rab9 increased the affinity of TIP47 for its cargo. A functional Rab9 binding site was required for TIP47 stimulation of MPR transport in vivo. Thus, a cytosolic cargo selection device may be selectively recruited onto a specific organelle, and vesicle budding might be coupled to the presence of an active Rab GTPase.  相似文献   

13.
After partitioning of cytoplasmic contents by cleavage furrow ingression, animal cells remain connected by an intercellular bridge, which subsequently splits by abscission. Here, we examined intermediate stages of abscission in human cells by using live imaging, three-dimensional structured illumination microscopy, and electron tomography. We identified helices of 17-nanometer-diameter filaments, which narrowed the cortex of the intercellular bridge to a single stalk. The endosomal sorting complex required for transport (ESCRT)-III co-localized with constriction zones and was required for assembly of 17-nanometer-diameter filaments. Simultaneous spastin-mediated removal of underlying microtubules enabled full constriction at the abscission site. The identification of contractile filament helices at the intercellular bridge has broad implications for the understanding of cell division and of ESCRT-III-mediated fission of large membrane structures.  相似文献   

14.
对禾谷缢管蚜和麦长管蚜传播小麦矮病毒GPV株系的超微结构观察发现:禾谷管蚜取食8h时,病毒进入蚜虫后肠肠腔中,12-24h后进入后肠细胞质,GPV与肠内壁顶端细胞膜接触,接触部位细胞膜逐渐下陷,形成小穴,向内凹陷发育为管状泡囊,而后进入血淋巴液,当病毒被附唾液腺吸收后蚜虫将病毒排吐进入唾液管中。  相似文献   

15.
N Segev 《Science (New York, N.Y.)》1991,252(5012):1553-1556
The function of the guanosine triphosphate (GTP)-binding protein Ypt1 in regulating vesicular traffic was studied in a cell-free system that reconstitutes transport from the endoplasmic reticulum to the Golgi. Blocking the Ypt1 protein activity resulted in accumulation of vesicles that act as an intermediate passing between the two compartments. The Ypt1 protein was found on the outer side of these vesicles. The transport process is completed by fusion of these vesicles with the acceptor compartment, and Ypt1 protein activity was needed for this step. Thus, a specific GTP-binding protein is required for either attachment or fusion (or both) of secretory vesicles with the acceptor compartment during protein secretion.  相似文献   

16.
Nanomechanical basis of selective gating by the nuclear pore complex   总被引:1,自引:0,他引:1  
The nuclear pore complex regulates cargo transport between the cytoplasm and the nucleus. We set out to correlate the governing biochemical interactions to the nanoscopic responses of the phenylalanineglycine (FG)-rich nucleoporin domains, which are involved in attenuating or promoting cargo translocation. We found that binding interactions with the transport receptor karyopherin-beta1 caused the FG domains of the human nucleoporin Nup153 to collapse into compact molecular conformations. This effect was reversed by the action of Ran guanosine triphosphate, which returned the FG domains into a polymer brush-like, entropic barrier conformation. Similar effects were observed in Xenopus oocyte nuclei in situ. Thus, the reversible collapse of the FG domains may play an important role in regulating nucleocytoplasmic transport.  相似文献   

17.
Dialkyldimethylammonium hydroxide surfactants are highly soluble in water and form spontaneous stable vesicles. These vesicles can be grown to size with added acid, and appear to provide an ideal membrane mimetic system for the study of fusion and ion transport. These phenomena are a consequence of strong hydration forces that are not necessarily limited to the hydroxide ions. The forces can be used to design a variety of model systems whose behavior differs from that of systems in which double-chained surfactants form insoluble liquid crystalline phases in water and unstable vesicle suspensions on prolonged sonication.  相似文献   

18.
An elaborate vesicle transport system supports the active exchange of membranes and protein cargo between the plasma membrane and the trans-Golgi network. Many observations suggest that highly conserved mechanisms are used in vesicle formation and scission. Such similarity is found both at the level of the receptor-ligand sequestration process that uses clathrin and associated polymeric and monomeric adaptor proteins, and in the machinery used to deform and vesiculate lipid membranes.  相似文献   

19.
Eukaryotic secretory proteins exit the endoplasmic reticulum (ER) via transport vesicles generated by the essential coat protein complex II (COPII) proteins. The outer coat complex, Sec13-Sec31, forms a scaffold that is thought to enforce curvature. By exploiting yeast bypass-of-sec-thirteen (bst) mutants, where Sec13p is dispensable, we probed the relationship between a compromised COPII coat and the cellular context in which it could still function. Genetic and biochemical analyses suggested that Sec13p was required to generate vesicles from membranes that contained asymmetrically distributed cargoes that were likely to confer opposing curvature. Thus, Sec13p may rigidify the COPII cage and increase its membrane-bending capacity; this function could be bypassed when a bst mutation renders the membrane more deformable.  相似文献   

20.
Osteoclastic bone resorption by a polarized vacuolar proton pump   总被引:42,自引:0,他引:42  
Bone resorption depends on the formation, by osteoclasts, of an acidic extracellular compartment wherein matrix is degraded. The mechanism by which osteoclasts transport protons into that resorptive microenvironment was identified by means of adenosine triphosphate-dependent weak base accumulation in isolated osteoclast membrane vesicles, which exhibited substrate and inhibition properties characteristic of the vacuolar, electrogenic H+-transporting adenosine triphosphatase (H+-ATPase). Identify of the proton pump was confirmed by immunoblot of osteoclast membrane proteins probed with antibody to vacuolar H+-ATPase isolated from bovine kidney. The osteoclast's H+-ATPase was immunocytochemically localized to the cell-bone attachment site. Immunoelectron microscopy showed that the H+-ATPase was present in the ruffled membrane, the resorptive organ of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号