首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Three genes for resistance to Erysiphe pisi, named er1, er2 and Er3 have been described in pea so far. er1 gene is located in pea linkage group VI, while er2 gene has been mapped in LGIII. SCAR and RAPD markers tightly linked to Er3 gene have been identified, but the position of these markers in the pea genetic map was unknown. The objective of this study was to localize Er3 gene in the pea genetic map. Towards this aim, the susceptible pea cv. Messire (er3er3) and a resistant near isogenic line of Messire (cv. Eritreo, Er3Er3) were surveyed with SSRs with known position in the pea map. Three SSRs were polymorphic between “Messire” and “Eritreo” and further surveyed in two contrasting bulks formed by homozygous Er3Er3/er3er3 individuals obtained from a F2 population derived from the cross C2 (Er3Er3)?×?Messire (er3er3). A single marker, AA349, was polymorphic between the bulks. Subsequently, other ten markers located in the surrounding of AA349 were selected and analysed in Er3Er3 and er3er3 plants. As a results, another SSR, AD61, was found to be polymorphic between Er3Er3 and er3er3 plants. Further linkage analysis confirmed that SSRs AA349 and AD61 were linked to Er3 and to the RAPD and SCAR markers previously reported to be linked to this gene. Er3 gene was located in pea LGIV at 0.39 cM downstream of marker AD61. The location of Er3 gene in the pea map is a first step toward the identification of this gene.  相似文献   

2.
Grapevine (Vitis vinifera L.) is economically very important for the production of wine, table grapes and raisins. However, grapevine is threatened by a brought range of pathogens. A destructive disease worldwide is powdery mildew caused by the ascomycete Erysiphe necator. In the grapevine cultivar `Regent’ a resistance locus against E. necator, Ren3, was previously reported. It spans an interval of approximately seven Mb on chromosome 15. We attempted to delimit this interval to facilitate its further molecular analysis. New simple sequence repeat markers targeted to the Ren3 region were designed. They were applied for fine mapping in the cross populations of ‘Regent’ × ‘Lemberger’ and ‘Regent’ × ‘Cabernet Sauvignon’ that segregate for E. necator resistance. Complementarily we scored E. necator infection levels of ‘Regent’ × ‘Lemberger’ progeny at different time points over the course of the vegetation period in 2015 and 2016. Subsequent QTL analysis revealed a maximum LOD value that shifted during the season from marker GF15-10 located at 2.2 Mb to marker GF15-53 located at 3.5 Mb and to marker ScORA7* located at 9.4 Mb on chromosome 15 (positions according to the grapevine reference genome of PN40024). To investigate the Ren3-encoded resistance mechanism we performed detached leaf infection assays for microscopic studies. These revealed that Ren3 carrying individuals react with a hypersensitive response. Results of detached leaf assays on recombinants in the Ren3 locus indicate that not only one, but two distinct genetic regions on chromosome 15 mediate hypersensitive response against E. necator.  相似文献   

3.
Symbiotic gene mutated in the pea (Pisum sativum L.) line RisfixC is a determinant of the number of symbiotic root nodules. In parallel to a sharp increase in nodule number, its mutational inactivation brings about the insensitivity of nodulation to the ambient nitrate level (Nts trait). Using the established localization to the SYM2-NOD3 region of the pea linkage group I, functional PCR markers were developed for the orthologous region on the chromosome 5 of the model species Medicago truncatula. Owing to the conservation of the binding regions of the designed primers, pea orthologues were successfully amplified with 60% of the primer pairs tested. When applied to a mapping pea population from the cross of the line RisfixC x Afghanistan L1268 (sym2), the new markers allowed to localize the supernodulation mutation within 2.5 cM confidence interval in the pea genome. The placement of the functional markers on the M. truncatula chromosome 5 confined the orthologous gene location to eight overlapping BACs spanning approximately 710 kbp (positions 37,755,678–38,467,472). The narrowed list of the annotated Medicago genes in combination with the published data on their symbiotic and nitrate regulation can be used for the candidate gene identification, together with the requirements imposed by the known function in nodule number initiation and nitrate sensing. In addition, the new markers are applicable for tracking the RisfixC allele in breeding programmes aimed at the improvement of symbiotic performance.  相似文献   

4.
Agropyron cristatum exhibits resistance to Blumeria graminis f. sp. tritici. Disomic and ditelosomic chromosome addition lines of A. cristatum in ‘Chinese Spring’ wheat were utilized to determine which A. cristatum chromosomes carry resistance gene(s). Resistance is conferred by gene(s) on chromosome arms 2PL and 6PL. The availability of molecular markers capable of detecting these chromosome arms in a wheat background would be very useful for marker-assisted introgression of 2PL and 6PL chromatin into common wheat. With this aim, 170 wheat conserved orthologous set (COS) markers (92 and 78 from wheat homoeologous groups 2 and 6 respectively) were assessed for their utility in A. cristatum. A total of 116 (68.2%) COS markers successfully amplified product in A. cristatum and 46 (40.0%) of these markers were polymorphic between A. cristatum and common wheat. From marker loci mapping on wheat homoeologous group 2 chromosomes, 23 markers (34.9%) were polymorphic between A. cristatum and common wheat and from them 13 markers were assigned to chromosome arm 2PL and six markers were mapped to chromosome 4P of A. cristatum showing that this chromosome is related to wheat homoeologous group 2. From marker loci mapping on wheat homoeologous group 6 chromosomes, 23 (46.0%) markers were polymorphic between A. cristatum and common wheat and from them 17 markers were located on chromosome 6P, six of them were mapped to chromosome arm 6PS and five to chromosome arm 6PL, respectively. The specific COS markers allocated on the long arms of chromosomes 2P and 6P may have a role in marker-assisted screening in wheat breeding for powdery mildew disease resistance.  相似文献   

5.
Tobacco mosaic virus (TMV) caused serious loss in yield and quality of tobacco every year. It is a long-term goal to improve the tobacco resistance against TMV by tobacco breeding. N gene was the firstly reported TMV-resistant gene, which showed resistance against all Tobamoviruses except the Ob stain and belonged to the toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat class of plant resistance (R) genes. At present, N gene had already been widely used in tobacco conventional breeding, but there is rare available molecular maker used in marker-assisted selection of TMV resistance. In this study, we designed a pair of primers that specific amplify N gene fragment based on the sequence of N gene intron III, named N-marker. Then, we identified TMV resistance by two selecting methods, PCR with N-marker and inoculated with the TMV-C strain. Results from the two method showed that (1) 13 varieties among 67 tobacco varieties displayed hypersensitive reaction when inoculated with the TMV-C strain, also contained N gene fragments screened by PCR with N-marker; (2) 105 strains of 200 BC1 strains showed resistance against TMV when inoculated with TMV-C strain, meanwhile, 103 of the 105 strains contained N gene fragment verified by PCR with N-marker. Therefore, the N-marker is reliable for high throughput screening of germplasm resources and tobacco breeding materials in selection of N-mediated TMV resistance. Our study not only developed a molecular marker for tobacco breeding, but also identified new germplasm resources that are resistant to TMV.  相似文献   

6.
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases of rice (Oryza sativa) worldwide. Identification and utilization of resistance genes in rice breeding is considered to be an effective and economical method to control this disease. Hanghui 1179 (HH1179) is a new native rice restorer line developed in South China. The hybrids derived from HH1179 show broad-spectrum resistance against rice blast in South China, and a further understanding of the genetic resistance in HH1179 will provide useful information for breeding resistant cultivars. In the present study, we used bulked segregant analysis combined with specific-length amplified fragment sequencing to identify a dominant gene from HH1179 that provides resistance against the rice blast isolate GD13-14. Association analysis indicated that the resistance gene is located on chromosome 6 and we mapped the target gene to a 100.8 kb region (between markers InDel-8 and RM19818) that contains the Pi2/Pi9/Piz/Piz-t/Pi50 gene cluster. Candidate gene prediction and cDNA sequencing indicated that the target resistance gene in HH1179 is Pi2. Our findings will be valuable for resistance breeding with restorer line HH1179.  相似文献   

7.
To better understand the underlying mechanisms of agronomic traits related to drought resistance and discover candidate genes or chromosome segments for drought-tolerant rice breeding, a fundamental introgression population, BC3, derived from the backcross of local upland rice cv. Haogelao (donor parent) and super yield lowland rice cv. Shennong265 (recurrent parent) had been constructed before 2006. Previous quantitative trait locus (QTL) mapping results using 180 and 94 BC3F6,7 rice introgression lines (ILs) with 187 and 130 simple sequence repeat (SSR) markers for agronomy and physiology traits under drought in the field have been reported in 2009 and 2012, respectively. In this report, we conducted further QTL mapping for grain yield component traits under water-stressed (WS) and well-watered (WW) field conditions during 3 years (2012, 2013 and 2014). We used 62 SSR markers, 41 of which were newly screened, and 492 BC4F2,4 core lines derived from the fourth backcross between D123, an elite drought-tolerant IL (BC3F7), and Shennong265. Under WS conditions, a total of 19 QTLs were detected, all of which were associated with the new SSRs. Each QTL was only identified in 1 year and one site except for qPL-12-1 and qPL-5, which additively increased panicle length under drought stress. qPL-12-1 was detected in 2013 between new marker RM1337 and old marker RM3455 (34.39 cM) and was a major QTL with high reliability and 15.36% phenotypic variance. qPL-5 was a minor QTL detected in 2013 and 2014 between new marker RM5693 and old marker RM3476. Two QTLs for plant height (qPHL-3-1 and qPHP-12) were detected under both WS and WW conditions in 1 year and one site. qPHL-3-1, a major QTL from Shennong265 for decreasing plant height of leaf located on chromosome 3 between two new markers, explained 22.57% of phenotypic variation with high reliability under WS conditions. On the contrary, qPHP-12 was a minor QTL for increasing plant height of panicle from Haogelao on chromosome 12. Except for these two QTLs, all other 17 QTLs mapped under WS conditions were not mapped under WW conditions; thus, they were all related to drought tolerance. Thirteen QTLs mapped from Haogelao under WS conditions showed improved drought tolerance. However, a major QTL for delayed heading date from Shennong265, qDHD-12, enhanced drought tolerance, was located on chromosome 12 between new marker RM1337 and old marker RM3455 (11.11 cM), explained 21.84% of phenotypic variance and showed a negative additive effect (shortening delay days under WS compared with WW). Importantly, chromosome 12 was enriched with seven QTLs, five of which, including major qDHD-12, congregated near new marker RM1337. In addition, four of the seven QTLs improved drought resistance and were located between RM1337 and RM3455, including three minor QTLs from Haogelao for thousand kernel weight, tiller number and panicle length, respectively, and the major QTL qDHD-12 from Shennong265. These results strongly suggested that the newly screened RM1337 marker may be used for marker-assisted selection (MAS) in drought-tolerant rice breeding and that there is a pleiotropic gene or cluster of genes linked to drought tolerance. Another major QTL (qTKW-1-2) for increasing thousand kernel weight from Haogelao was also identified under WW conditions. These results are helpful for MAS in rice breeding and drought-resistant gene cloning.  相似文献   

8.
Peach powdery mildew is one of the major diseases of the peach. Various sources of resistance to PPM have thus been identified, including the single dominant locus Vr2 carried by the peach rootstock ‘Pamirskij 5’. To map Vr2, a linkage map based on microsatellite markers was constructed from the F2 progeny (WP2) derived from the cross ‘Weeping Flower Peach’ × ‘Pamirskij 5’. Self-pollinations of the parents were also performed. Under greenhouse conditions, all progenies were scored after artificial inoculations in two classes of reactions to PPM (resistant/susceptible). In addition to Vr2, WP2 segregated for three other traits from ‘Weeping Flower Peach’: Rm1 for green peach aphid resistance, Di2 for double-flower and pl for weeping-growth habit. With their genomic locations unknown or underdocumented, all were phenotyped as Mendelian characters and mapped: Vr2 mapped at the top of LG8, at 3.3 cM, close to the CPSCT018 marker; Rm1 mapped at the bottom of LG1, at a position of 116.5 cM, cosegregating with the UDAp-467 marker and in the same region as Rm2 from ‘Rubira’®; Di2 mapped at 28.8 cM on LG6, close to the MA027a marker; and pl mapped at 44.1 cM on LG3 between the MA039a and SSRLG3_16m46 markers. Furthermore, this study revealed, for the first time, a pseudo-linkage between two traits of the peach: Vr2 and the Gr locus, which controls the red/green color of foliage. The present work therefore constitutes a significant preliminary step for implementing marker-assisted selection for the four major traits targeted in this study.  相似文献   

9.
Numerous stripe rust resistance genes have been identified from wheat, and new virulent races of Puccinia striiformis f. sp. tritici have also emerged in recent years. Deployment of diverse combinations of resistance genes is an efficient way to combat virulent evolution of strip rust pathogen. In this study, publically available molecular markers were used to identify the distribution of 36 Yr genes in 672 wheat accessions. The effectiveness of Yr genes individually and in combinations was also evaluated in field conditions. The result showed effective resistance of some recently applied genes, such as Yr15 and Yr65. It also showed the lost efficacy of some once widely used genes, such as Yr9 and Yr10. Moreover, significant additive effects were observed in some gene combinations, such as Yr9 + Yr18 and Yr30 + Yr46. Proper deploying of Yr genes and utilizing the positive interactions will be helpful for durable resistance breeding in wheat.  相似文献   

10.
Race 1 resistance against Verticillium dahliae in lettuce was originally shown in the cultivar La Brillante to be conditioned by a single dominant gene (Verticillium resistance 1, Vr1). Multiple, morphologically diverse sources of germplasm have been identified as resistant to race 1. In this study, allelism tests indicated that resistance in these different lettuce cultivars is closely linked or allelic to the Vr1 gene. The Vr1 gene is defeated by race 2 isolates of V. dahliae. Only partial resistance to race 2 isolates is available in a few plant introductions (PIs). Greenhouse and field experiments conducted with these PIs demonstrated partial resistance to V. dahliae race 1 as well as race 2 isolates from lettuce. Cultivars resistant to race 1 and PIs with partial resistance to race 2 were challenged with several race 1 and 2 isolates originating from hosts other than lettuce. This indicated that cultivars resistant to race 1 and the breeding lines derived from them would also be resistant to race 1 isolates from other hosts; similarly, the partial resistance would be effective against race 1 and 2 isolates from hosts other than lettuce. Nevertheless, there were specific interactions that warrant further study. Although race 1 currently predominates in the major lettuce production area of the Salinas Valley, CA, breeding lettuce for resistance to V. dahliae should take both races into account.  相似文献   

11.
Screening of pea germplasm for resistance to powdery mildew   总被引:1,自引:0,他引:1  
Powdery mildew caused by Erysiphe pisi DC results heavy losses in the yield and quality of pods and seeds of pea crop. Germplasm comprising 701 accessions of garden and field pea originating from 60 countries were screened for powdery mildew resistance under natural epiphytotic conditions and 64 accessions found resistant in field screening for 2?years at one location were further screened both in field at two locations and artificially in laboratory to four isolates. The information was also obtained on the amount of genetic diversity and agronomic superiority in resistant accessions. Fifty-seven accessions showed resistant reaction for 3 consecutive years in field screening but only 14 accessions originating from 10 countries showed resistant reaction in laboratory screening against the four most prevalent isolates of E. pisi collected from different places in the area of experiment. Germplasm lines showed both complete and incomplete levels of resistance and variable reactions to different isolates. There was sufficient genetic diversity and agronomic superiority in the resistant accessions e.g. EC598655, EC598878, EC598704, IC278261, and IC218988, which may serve as useful genetic material to plant breeders for breeding pea varieties for powdery mildew resistance and high yield.  相似文献   

12.
Cucumber green mottle mosaic virus (CGMMV) is a severe threat for cucumber production worldwide. At present, there are no cultivars available in the market which show an effective resistance or tolerance to CGMMV infection, only wild Cucumis species were reported as resistant. Germplasm accessions of Cucumis sativus, as well as C. anguria and C. metuliferus, were mechanically infected with the European and Asian strains of CGMMV and screened for resistance, by scoring symptom severity, and conventional RT-PCR. The viral loads of both CGMMV strains were determined in a selected number of genotypes using quantitative RT-PCR. Severe symptoms were found following inoculation in C. metuliferus and in 44 C. sativus accessions, including C. sativus var. hardwickii. Ten C. sativus accessions, including C. sativus var. sikkimensis, showed intermediate symptoms and only 2 C. sativus accessions showed mild symptoms. C. anguria was resistant to both strains of CGMMV because no symptoms were expressed and the virus was not detected in systemic leaves. High amounts of virus were found in plants showing severe symptoms, whereas low viral amounts found in those with mild symptoms. In addition, the viral amounts detected in plants which showed intermediate symptoms at 23 and 33 dpi, were significantly higher in plants inoculated with the Asian CGMMV strain than those with the European strain. This difference was statistically significant. Also, the amounts of virus detected over time in plants did not change significantly. Finally, the two newly identified partially resistant C. sativus accessions may well be candidates for breeding programs and reduce the losses produced by CGMMV with resistant commercial cultivars.  相似文献   

13.
Soil and root samples were collected from major tomato growing areas of Ethiopia during the 2012/2013 growing season to identify root-knot nematode problems. DNA-based and isozyme techniques revealed that Meloidogyne incognita and M. javanica were the predominant Meloidogyne species across the sampled areas. The aggressiveness of different populations of these species was assessed on tomato cultivars Marmande and Moneymaker. The two most aggressive populations of each species were selected and further tested on 33 tomato genotypes. The resistance screening and mechanism of resistance was performed after inoculation with 100 freshly hatched (<24 h) second-stage juveniles (J2). Eight weeks after inoculation the number of egg masses produced on each cultivar was assessed. For the resistance mechanism study, J2 penetration and their subsequent development inside the tomato roots were examined at 1, 2, 4 and 6 weeks after inoculation. On both cultivars Marmande and Moneymaker all M. incognita and M. javanica populations formed a high number of egg masses indicating highly aggressive behaviour. Populations from ‘Jittu’ and ‘Babile’ for M. incognita and ‘Jittu’ and ‘Koka’ for M. javanica were selected as most aggressive. None of the 33 tomato genotypes were immune for these M. incognita and M. javanica populations. However, several tomato genotypes were found to have a significant effect on the number of egg masses produced indicating possible resistance. For M. javanica populations there were more plants from cultivars or breeding lines on which no egg masses were found compared to M. incognita populations. The lowest number of egg masses for both populations of M. incognita was produced on cultivars Bridget40, Galilea, and Irma while for M. javanica it was on Assila, Eden, Galilea, Tisey, CLN-2366A, CLN-2366B and CLN-2366C. Tomato genotypes, time (weeks after inoculation) and their interaction were significant sources of variation for J2 penetration and their subsequent development inside the tomato roots. Differential penetration was found in breeding lines such as CLN-2366A, CLN-2366B and CLN-2366C, but many of the selected tomato genotypes resistance for the tested M. incognita and M. javanica populations were expressed by delayed nematode development. Therefore, developing a simple screening technique to be used by local farmers or extension workers is crucial to facilitate selection of a suitable cultivar.  相似文献   

14.
Wild abortive (WA)-type cytoplasmic male sterility (CMS) has been exclusively used for breeding three-line hybrid indica rice, but it has not been applied for generating japonica hybrids because of the difficulties related to breeding japonica restorer lines. Determining whether the major restorer-of-fertility (Rf) gene used for indica hybrids can efficiently restore the fertility of WA-type japonica CMS lines may be useful for breeding WA-type japonica restorer lines. In this study, japonica restorer lines for Chinsurah Boro II (BT)-type CMS exhibited varying abilities to restore the fertility of ‘WA-LiuqianxinA’, which is a WA-type japonica CMS line. Additionally, Rf genes for WA-type CMS were identified in the BT-type japonica restorers. Meanwhile, ‘C9083’, which is a BT-type japonica restorer, exhibited a limited ability to restore the fertility of WA-type japonica CMS lines, and a genetic analysis revealed that the fertility restoration was controlled by one locus. The Rf gene was mapped to an approximately 370-kb physical region and was identified as Rf4. Furthermore, Rf gene dosage effects and the temperature influenced the fertility restoration of WA-type japonica CMS lines. This study is the first to confirm that Rf4 has only minor effects on the fertility restoration of WA-type japonica CMS lines. These results may be relevant for the development of WA-type japonica hybrids.  相似文献   

15.
The whitefly-transmitted Tomato chlorosis virus (ToCV) (genus Crinivirus) is associated with yield and quality losses in field and greenhouse-grown tomatoes (Solanum lycopersicum) in South America. Therefore, the search for sources of ToCV resistance/tolerance is a major breeding priority for this region. A germplasm of 33 Solanum (Lycopersicon) accessions (comprising cultivated and wild species) was evaluated for ToCV reaction in multi-year assays conducted under natural and experimental whitefly vector exposure in Uruguay and Brazil. Reaction to ToCV was assessed employing a symptom severity scale and systemic virus infection was evaluated via RT-PCR and/or molecular hybridization assays. A subgroup of accessions was also evaluated for whitefly reaction in two free-choice bioassays carried out in Uruguay (with Trialeurodes vaporariorum) and Brazil (with Bemisia tabaci Middle-East-Asia-Minor1—MEAM1?=?biotype B). The most stable sources of ToCV tolerance were identified in Solanum habrochaites PI 127827 (mild symptoms and low viral titers) and S. lycopersicum ‘LT05’ (mild symptoms but with high viral titers). These two accessions were efficiently colonized by both whitefly species, thus excluding the potential involvement of vector-resistance mechanisms. Other promising breeding sources were Solanum peruvianum (sensu lato) ‘CGO 6711’ (mild symptoms and low virus titers), Solanum chilense LA1967 (mild symptoms, but with high levels of B. tabaci MEAM1 oviposition) and Solanum pennellii LA0716 (intermediate symptoms and low level of B. tabaci MEAM1 oviposition). Additional studies are necessary to elucidate the genetic basis of the tolerance/resistance identified in this set of Solanum (Lycopersicon) accessions.  相似文献   

16.
Black rot caused by Xanthomonas campestris pv. campestris (Xcc) (Pam.) is the most devastating disease of cauliflower (Brassica oleracea var. botrytis L.; 2n = 2x = 18), taking a heavy toll of the crop. In this study, a random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) derived sequence characterized amplified region (SCAR) markers linked to the black rot resistance locus Xca1bo were developed and evaluated as a screening tool for resistance. The RAPD marker OPO-04833 and ISSR marker ISSR-11635 were identified as closely linked at 1.6 cM distance to the black rot resistance locus Xca1bo. Both the markers OPO-04833 and ISSR-11635 were cloned, sequenced and converted into SCAR markers and validated in 17 cauliflower breeding lines having different genetic backgrounds. These SCAR markers (ScOPO-04833 and ScPKPS-11635) amplified common locus and showed 100% accuracy in differentiating resistant and susceptible plants of cauliflower breeding lines. The SCAR markers ScOPO-04833 and ScPKPS-11635 are the first genetic markers found to be linked to the black rot resistance locus Xca1bo in cauliflower. These markers will be very useful in black rot resistance marker assisted breeding.  相似文献   

17.
Wildfire, caused by Pseudomonas amygdali pv. tabaci is one of the most destructive bacterial diseases and was recognized as a disease of soybean in 1943. Wildfire has been seen a steady increase in the incidence and prevalence on some cultivars of soybean in Korea by climatic changes but there is little information on effective control measures for wildfire or soybean varieties showing complete resistance to the disease. In this study, the efficient and reliable screening method to evaluate soybean genotype for resistance to P. amygdali pv. tabaci in field had been developed. In order to determine the host resistance of the soybean cultivar against P. amygdali pv. tabaci, development of symptom by infiltration inoculation was evaluated. Significant differences between susceptible plants and resistant plants were observed through these assays. Based on these results, ‘Shinpaldal2’, ‘Daepung’ are resistant to wildfire compared to ‘Hwangeum’, ‘Taekwang’. The optimum temperature of this pathogen was between 20-25°C and when the pathogen was in the optimum temperature, the responses of susceptible or resistant cultivar were dramatically different. Prior to initiation of resistance breeding of soybean wildfire, it is imperative to set uniform resistance screening techniques. The obtained results can be effectively used to enhance the selection of wildfire resistance as well as directly applied in resistant soybean development. Resistant lines identified through this assay could be directly used in soybean breeding programs for wildfire resistance.  相似文献   

18.
Phytophthora root rot (PRR) is among the most important soybean (Glycine max (L.) Merr.) diseases worldwide, and the host displays complex genetic resistance. A genome-wide association study was performed on 337 accessions from the Yangtze-Huai soybean breeding germplasm to identify resistance regions associated with PRR resistance using 60,862 high-quality single nucleotide polymorphisms markers. Twenty-six significant SNP-trait associations were detected on chromosomes 01 using a mixed linear model with the Q matrix and K matrix as covariates. In addition, twenty-six SNPs belonged to three adjacent haplotype blocks according to a linkage disequilibrium blocks analysis, and no previous studies have reported resistance loci in this 441 kb region. The real-time RT-PCR analysis of the possible candidate genes showed that two genes (Glyma01g32800 and Glyma01g32855) are likely involved in PRR resistance. Markers associated with resistance can contribute to marker-assisted selection in breeding programs. Analyses of candidate genes can lay a foundation for exploring the mechanism of P. sojae resistance.  相似文献   

19.
The success of breeding for barley leaf rust (BLR) resistance relies on regular discovery, characterization and mapping of new resistance sources. Greenhouse and field studies revealed that the barley cultivars Baronesse, Patty and RAH1995 carry good levels of adult plant resistance (APR) to BLR. Doubled haploid populations [(Baronesse/Stirling (B/S), Patty/Tallon (P/T) and RAH1995/Baudin (R/B)] were investigated in this study to understand inheritance and map resistance to BLR. The seedlings of two populations (B/S and R/B) segregated for leaf rust response that conformed to a single gene ratio (\({\text{X}}_{1:1}^{2}\) = 0.12, P > 0.7 for B/S and \({\text{X}}_{1:1}^{2}\) = 0.34, P > 0.5 for R/B) whereas seedlings of third population (P/T) segregated for two-gene ratio (\({\text{X}}_{1:1}^{2}\) = 0.17, P > 0.6) when tested in greenhouse. It was concluded that the single gene in Baudin and one of the two genes in Tallon is likely Rph12, whereas gene responsible for seedling resistance in Stirling is Rph9.am (allele of Rph12). The second seedling gene in Tallon is uncharacterized. In the field, APR was noted in lines that were susceptible as seedlings. A range of disease responses (CI 5–90) was observed in all three populations. Marker trait association analysis detected three QTLs each in populations B/S (QRph.sun-2H.1, QRph.sun-5H.1 and QRph.sun-6H.1) and R/B (QRph.sun-1H, QRph.sun-2H.2, QRph.sun-3H and QRph.sun-6H.2), and four QTLs in population P/T (QRph.sun-6H.2, QRph.sun-1H.2, QRph.sun-5H.2 and QRph.sun-7H) that significantly contributed to low leaf rust disease coefficients. High frequency of QRph. sun-5H.1, QRph. sun-6H.1, QRph. sun-1H.1, QRph. sun-2H.2, QRph. sun-6H.2, QRph. sun-7H (based on presence of the marker, closely associated to the respective QTLs) was observed in international commercial barley germplasm and hence providing an opportunity for rapid integration into breeding programmes. The identified candidate markers closely linked to these QTLs will assist in selecting and assembling new APR gene combinations; expectantly this will help in achieving good levels of durable resistance for controlling BLR.  相似文献   

20.
Rice blast disease caused by Magnaporthe oryzae is an important limiting factor to rice production in the world. Introgression of blast resistance genes into improved germplasm by marker-assisted selection has been considered as an effective and environmentally beneficial means to control this disease. Pike, a broad-spectrum blast resistance gene, was cloned by map-based strategy recently in our laboratory. Two adjacent CC-NBS-LRR genes (designated as Pike-1 and Pike-2) were required for Pike-mediated resistance. In the current study, sequence alignment of the SNP G1328C and the SNP-surrounding region let us find that the Pik DNA variants of the studied rice lines appear to be divided into G-, C-, T- and G’-types. Based on the four genotypes, a Pike-specific marker system consisting of three PCR-based markers CP-G1328C, CP-G1328T and CP-G1328G’ was developed and used to effectively differentiate G-type allele from each of the others. Using this marker system, we investigated distribution of the Pik DNA variants in a set of 326 rice varieties or breeding lines and found that there were 2, 130, 135 and 59 rice lines identified to carry G-, C-, T- and G’-type alleles, respectively. In addition, with sequence data of the SNP G1328C-containing genomic region derived from 56 rice lines, we constructed a phylogenetic tree with three major clades which just corresponded to the types of the Pik DNA variants described above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号