首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The objective of the present study was to evaluate the plant phosphorus (P) availability of products derived from new P‐recovery technologies deployed in wastewater treatment systems against sewage sludge and untreated sewage sludge ashes. Eight P sources were evaluated in a six‐week pot experiment with spring barley (Hordeum vulgare L.) and a soil incubation experiment with anaerobically digested and dewatered sewage sludge (Sludge), sewage sludge ash (Ash), thermochemically treated sewage sludge ash (TrAsh), struvite (Struv), concentrate (Conc), and centrifuged concentrate (Prec) from evaporated reject water, with triple super phosphate (TSP), and composted organic household waste (Comp) as references. All sludge‐related materials except struvite came from the same wastewater treatment plant in Denmark. The apparent plant P use efficiency (PUE) of the treatments in the pot experiments was in the following order: Prec (17.0%) > TSP (12.8%) ≥ Conc (12.7%) > Sludge (8.8%) ≥ TrAsh (6.9%) ≥ Struv (6.0%) ≥ Comp (5.8%) > Ash (3.4%). The water‐extractable P (WEP) in the incubation experiment largely supported this order and there was a strong correlation between WEP in the incubation experiment and plant P uptake in the pot experiment. Overall, the results of this study demonstrate that it should not automatically be assumed that products recovered with new treatment technologies for P recovery are more effective P fertilizers than the sewage sludge from which they originate. Furthermore, these results indicate that the measurement of water‐extractable P after soil incubation could be a suitable proxy for plant P availability.  相似文献   

2.
The impact of plants (Phalaris arundinacea L.) on the leakage of ammonium, cadmium, copper, nitrate, phosphate, and zinc from sulfidic mine tailings covered with wood fly ash and sewage sludge was investigated. Either ash or sludge was placed in contact with the tailings, and ash layers of either low or high compactness were used. It was revealed that an ash/sludge cover effectively decreased the metal leaching from the tailings regardless of the order in which the materials were applied. Plants decreased the amount of leachate and the concentrations of ammonium and phosphate. The presence of ash below the sludge decreased the plant uptake of copper and zinc and nitrate leakage. However, when the ash was added as a thin (1.5 cm) porous layer, roots and air reached the tailings and caused high metal leakage. The results support the use of a vegetated ash/sludge cover in the treatment of mine tailings, provided that the sealing layer is firm enough to prevent root penetration.  相似文献   

3.
Thermal utilization of sewage sludge through mono‐incineration or gasification results in phosphorus (P) rich sewage sludge ash (SSA) that must be returned to agricultural production systems to fulfill the need for recycling of P resources contained in wastewater streams. As the plant‐availability of P contained in SSA is low, we propose feeding SSA directly into the production of superphosphate fertilizers, thereby opening a further pathway for the recycling of phosphorus (P) from wastewater streams to agricultural production systems by using available technologies. We carried out laboratory‐scale production of superphosphate test‐products, in which rock phosphate (RP) was partially replaced with SSA (gasification) before digestion with concentrated sulfuric acid, and evaluated these products with regard to the solubility of P in H2O and neutral ammoniumcitrate solution. We further carried out a growth‐chamber experiment (28 d) using maize (Zea mays L. cv. Sulano) as a model plant on a low P (0.4 mg PCAL 100g?1), high pH (7.6) substrate to evaluate plant P availability of the test products. Our laboratory‐scale results show that at least 8% of P from RP can be replaced by P from SSA while maintaining both the high solubility of P in the fertilizer product and the growth of maize compared to pure RP digested with concentrated sulfuric acid. Further substitution of RP through SSA decreased the total P concentration of the test products, as well as the relative amounts of P soluble in H2O and neutral ammoniumcitrate solution, which affected early plant development of maize.  相似文献   

4.
Background: The fertilizer value of phosphorus (P) in waste products relies heavily on its availability to the subsequent crop. Aim: We studied the link between extractable P in waste products and apparent P recovery (APR, i.e., difference in plant P uptake between P amended and un‐amended soils divided by the amount of P added) using spring barley grown on three sandy soils. Methods: The products included sewage sludge, biomass ash, struvite, compost, meat and bone meal, biochar from sewage sludge, and industrial sludge. Soft rock phosphate and triple‐superphosphate (TSP) were included for comparison. Availability of P was characterized by extraction with water and solutions of sodium bicarbonate, citric acid, oxalic acid, hydrochloric acid, ammonium acetate, ammonium fluoride and anion exchange resin membranes. TSP was used to establish mineral‐fertilizer‐equivalents (MFE). Water and bicarbonate extractions were also applied to products incubated with soil before extraction. Results: The APR ranged 26 to 31% for TSP and 0 to 30% for waste products. APR correlated most strongly with bicarbonate extractable P. The correlation increased when products were incubated with soil before extraction. Conclusions: We conclude that bicarbonate extraction is a good indicator of potential P availability. However, interactions between waste products and soil properties modify P availability.  相似文献   

5.
Fertilizer nitrogen (N) equivalency estimates of sewage sludge are essential to assess benefits from its use in agricultural fields and minimize agronomic failure and environmental risks. Using an outdoor pot experiment, where sludge was applied to the upper layer of the soil in pots, this study aimed to estimate the rate of dried sewage sludge application needed to replace a given amount of inorganic fertilizer and to investigate eventual variations of this estimate depending on whether N replacement value referred to grain yield of barley, biomass production, or overall plant N uptake. Equivalencies were obtained from the response curves of these crop characteristics in relation to the rate of sludge application. It was shown that the patterns of carbon (C) and N allocation to grain and straw were different between the inorganic fertilizer and the sewage sludge treatment, presumably due to the timing of mineral N provision. When the same grain yield was obtained at these two treatments, straw yield and grain N content were greater at the sludge fertilized crop. It was concluded that fertilizer N equivalency value of sewage sludge should inevitably refer to a single crop yield component determined by a producer.  相似文献   

6.
The effect of organic and inorganic fertiliser amendments is often studied shortly after addition of a single dose to the soil but less is known about the long-term effects of amendments. We conducted a study to determine the effects of long-term addition of organic and inorganic fertiliser amendments at low rates on soil chemical and biological properties. Surface soil samples were taken from an experimental field site near Cologne, Germany in summer 2000. At this site, five different treatments were established in 1969: mineral fertiliser (NPK), crop residues removed (mineral only); mineral fertiliser with crop residues; manure 5.2 t ha−1 yr−1; sewage sludge 7.6 t ha−1 yr−1 or straw 4.0 t ha−1 yr−1 with 10 kg N as CaCN2 t straw−1. The organic amendments increased the Corg content of the soil but had no significant effect on the dissolved organic C (DOC) content. The C/N ratio was highest in the straw treatment and lowest in the mineral only treatment. Of the enzymes studied, only protease activity was affected by the different amendments. It was highest after sewage amendment and lowest in the mineral only treatment. The ratios of Gram+ to Gram− bacteria and of bacteria to fungi, as determined by signature phospholipid fatty acids, were higher in the organic treatments than in the inorganic treatments. The community structure of bacteria and eukaryotic microorganisms was assessed by denaturing gradient gel electrophoresis (DGGE) and redundancy discriminate analyses of the DGGE banding patterns. While the bacterial community structure was affected by the treatments this was not the case for the eukaryotes. Bacterial and eukaryotic community structures were significantly affected by Corg content and C/N ratio.  相似文献   

7.
Rice production and cyanobacterial N in acid soil can be improved by liming. There is evidence that the organic amendments can increase the soil pH. The aim of this study was to find appropriate combination of soil amendments and cyanobacteria capable for enhancing nutrient uptake and improving rice yield in acidic paddy soil. Three soil amendments (rice straw, sewage‐sludge composts, NPK) with and without inoculation of cyanobacteria were studied for rice plants (Oryza sativa L.) in a pot experiment. The sludge compost had significantly reduced soil acidity from 5.44 to 6.67. The plant N and K uptake increased significantly with sludge and cyanobacteria application. The yield components increased significantly with sludge, but decreased thereafter, an exception was the number of panicles, with straw compost. These characters were also significantly affected by inoculation with cyanobacteria except 100‐grain weight, filled‐grain percentage, and harvest index. The combination of sludge compost and cyanobacteria improved the yield components and consequently grain yield (138 g pot–1) compared with sludge treatment only (132 g pot–1). The amount of cyanobacterial N absorbed (N‐difference method) by rice plant under sludge compost was higher than that of soils amended with either rice straw or NPK treatments. Therefore, the addition of sewage sludge to acid paddy soil not only amended the soil properties but also activated the cyanobacteria and consequently improved rice plant nutrition and grain yield.  相似文献   

8.
The phosphorus (P) fertilizer effect of a range of commonly available manure, waste treatment and by‐product residues was tested in pot, field and incubation experiments. The effect of the residues on P offtake was compared with that of commercial mineral P (super phosphate) to calculate the mineral fertilizer equivalent (MFE). Possible relationships between MFE and P extractable from residues using different agents (ammonium lactate, citrate, water) were examined. Dry matter yield and P concentration were measured in ryegrass grown in pots amended with 14 different residues. The effect on the first cut (after 5 weeks) was significantly higher for residues with a low organic matter content, for example ash and biogas residues (MFE = 74–85%), than for many other products with higher organic matter content, for example meat meal (MFE = 44%), cattle slurry (MFE = 57%) and sewage sludge (MFE = 0–37%). However, the effect on two combined cuts (after 11 weeks) was more similar between residues (MFE = 40–60% for most residues). Ammonium lactate‐extractable P (P‐AL) in residues correlated better with MFE (r2 = 0.48) than water‐extractable or citrate‐extractable P. Grain yield and P concentration were measured in a field experiment with spring wheat fertilized with four different residues. Pelleted meat meal had a similar effect on yield and P offtake as mineral fertilizer P, whereas two different sewage sludge and chicken manure had approximately 50% of the mineral fertilizer effect. The effect of residues on soil P‐AL (the Swedish measure of easily available soil P) in the incubation experiment showed no correlation with MFE from the pot experiments.  相似文献   

9.
Abstract

The interaction of gamma‐irradiated sewage sludge, nitrogen and phosphorus fertilizers on dry matter production, phosphorus concentration and phosphorus uptake of sorghum was examined. Three crops of sorghum were grown in the greenhouse in 19 1 plastic buckets. The phosphorus and sludge treatments were applied at the initiation of the experiment only. Nitrogen was applied to the corresponding nitrogen treatment pots before each of the three croppings.

There was a significant nitrogen x sewage interaction for dry matter production, phosphorus concentration and phosphorus uptake in each harvest. There was a significant phosphorus sewage sludge interaction in the first harvest for phosphorus uptake. All other possible interactions were not statistically significant. The 67 metric ton/ha sludge rate produced nearly the same yield as the nitrogen treatment. In the first harvest, sludge significantly increased plant phosphorus uptake from the fertilizer phosphorus. The phosphorus uptake in sorghum from 472 and 944 kg P/ha from the sludge treatments was comparable to that from 1299 and 2598 kg P/ha from triple superphosphate.  相似文献   

10.
Abstract

Plant uptake of selenium (Se) on western United States mine lands is a concern in reclamation efforts due to the potential growth of vegetation that may be considered toxic to wildlife and domestic animals if consumed over time. A study was designed to determine if sewage sludge from Rock Springs and Kemmerer/Evanston, Wyoming, at rates of 25, 50, and 100 Mg/ha, would enhance or decrease Se uptake by yellow sweet clover (Melilotus officinalis) and thick spike wheatgrass (Agropyron dasystachyum) grown on mine backfill material (i.e., overburden material that has been displaced). Results indicated that increased sludge amendments significantly decreased plant Se levels. Changes in backfill chemical and physical characteristics were believed to have caused a reduction in Se bioavailability (as determined by AB‐DTPA extraction), even though total Se concentrations of the sludge‐amended backfill treatments were greater with increasing sewage sludge additions. Land application of sewage sludge is therefore recommended as a viable method for mine land reclamation efforts.  相似文献   

11.
Thermal drying of sewage sludge implies sanitation and improves practical handling options of the sludge prior to land application. However, it may also affect its value as a fertilizer. The objective of this study was to assess whether thermal drying of sewage sludge, as well as drying temperature, affects plant P availability after application to soil. The experiment included dewatered sewage sludge (20% DM) and thermally dried sewage sludge (95% DM) collected at a Danish wastewater treatment plant, as well as laboratory oven‐dried (70, 130, 190, and 250°C; DM > 95%) subsamples of the dewatered sludge, and a triple superphosphate as a reference. Plant P availability was studied in a 197 d soil incubation experiment, with sampling for Diffusive Gradients in Thin films (DGT) and water extractable P (WEP) analyses over time, and in a pot experiment with spring barley (Hordeum vulgare L.). In both experiments, thermal drying reduced P availability, as shown by 37 and 23% lower DGT and WEP values, respectively, and a 16% lower P uptake by barley in the pot experiment. The specific drying temperature did not appear to have much effect. Overall, our results suggest that thermal drying of iron‐precipitated sewage sludge is not an optimal treatment option if the aim is to optimize plant P availability.  相似文献   

12.
Sewage sludge is a valuable source of organic matter, N, P and certain micronutrients that have beneficial effects on plant growth and biomass production. However, sanitary regulations often require the stabilization of sewage materials prior to applying them to soils as biosolids. Environmental regulations also demand appropriate management of biosolid‐N to avoid groundwater contamination. Because stabilization processes usually make sewage sludge less putrescible, we hypothesized that the mineralization rates of organic‐N from stabilized biosolids would be affected. Therefore, this study aimed to evaluate the mineralization of five biosolids in two soils – a sandy Spodosol and a clayey Oxisol. Digested sludge, composted sludge, limed sludge, heat‐dried sludge and solar‐irradiated sludge were mixed with soil samples at a concentration of 32.6 mg N/kg soil (1.0 dry t/ha of digested sludge) and incubated at 25 °C in a humidity chamber for 23 weeks. Results showed that the stabilization processes generally slowed the release of mineral‐N in soils relative to the digested sludge from which the biosolids originated. However, increments in the levels of mineral‐N were more influenced by soil type than by the type of stabilization process applied to the sewage sludge. Mineralization rates were up to 5‐fold higher in the Oxisol than in the Spodosol soil, and as a result, organic‐N in biosolids mineralized 10–24% in Spodosol and 23–52% in Oxisol. Any appropriate plan for the management of biosolid‐N for plant use should consider the interaction between soil type and biosolid type.  相似文献   

13.
The aim of this study was to investigate factors regulating phosphatase activities in Mediterranean soils subjected to sewage sludge applications. Soils originating from calcareous and siliceous mineral parent materials were amended with aerobically digested sewage sludge, with or without physico-chemical treatment by ferric chloride. Sludge amendments, ranging from 6.2 to 10 g kg−1 soil, were carried out in order to provide soil with a P total quantity equivalent to 0.5 g P2O5 per kg of soil. Bacterial density, phosphatase activities (i.e. acid and alkaline phosphomonoesterases and phosphodiesterases) and available P (i.e. P Olsen and P water) were measured after 25 and 87 days of incubation. Results showed significant effects of sewage sludge application and incubation period. Sewage sludge effect resulted in an increase in phosphatase activities, microbial density and available P. Incubation period increased available P while decreasing phosphatase activities. This study also revealed that the origin of sludge and its chemical characteristics may show different effects on certain variables such as phosphodiesterases or bacterial density, whereas mineral parent materials of soils did not show any significant effects.  相似文献   

14.
通过选取水稻秸秆、猪粪、污泥和颗粒有机肥,添加氧化铁后分别进行室内好气培养(25℃)和田间填埋矿化(夏季),以探索农业固碳减排的技术途径。结果表明,室内好气培养条件下,氧化铁明显降低了水稻秸秆、猪粪、污泥和颗粒有机肥的CO2释放速率,整个培养期间的CO2累积释放量分别由未添加氧化铁的10934.45、5426.12、5288.43和794.90mgCO2-C·kg^-1降低为添加氧化铁的125.47、1535.15、1473.36和498.72mgCO2-C·kg^-1,以水稻秸秆的效果最为显著。田间填埋条件下,除了颗粒有机肥的有机碳降解速率基本未受氧化铁影响外,其余3种有机物料在每一取样阶段的有机碳降解速率均受到了氧化铁的有效抑制。填埋90d后,水稻秸秆、猪粪和污泥的有机碳降解速率分别由未添加氧化铁的34.06%、14.91%和19.90%降低为添加氧化铁的24.25%、9.45%和14.24%,也以水稻秸秆的效果最为显著。可见,无论是室内好气培养还是田间填埋矿化,氧化铁均表现出对有机物料矿化降解的有效抑制作用,具有明显的有机碳固持能力。  相似文献   

15.
Abstract

The objectives were to determine if phosphorus (P) from different organic wastes differs in availability to crops. Four materials: digested, dewatered sewage sludge (DSS); irradiated sewage sludge (DISS); irradiated and composted sewage sludge (DICSS); and composted livestock manure (CLM) were applied for two years at five rates (0, 10, 20, 30, 40 Mg#lbha‐1#lbyr‐1) with four replicates. Uptake of P was measured in lettuce [Lactuca saliva L. (cv. Grand Rapids)], bean [Phaseolus vulgaris L. (cv. Tender Green)], and petunia [Petunia hybrida Vilm. (cv. Superior Red)] in 1990, and in consecutively harvested two cuts of lettuce in 1991. Percentage of total P that was extractable by 0.5M sodium bicarbonate (NaHCO3) in CLM (30–70%) was much higher than in DSS, DISS, and DICSS (0.8–5.6%). Phosphorus uptake by crops harvested in an early stage of growth, lettuce in 1990 and first cut lettuce in 1991, and the extractable soil P linearly increased with total P applied. The lack of response in P uptake with bean pod and petunia in 1990, and the second cut lettuce in 1991, was possibly due to their advanced stage of maturity. Much larger amounts of P were applied with DSS, DISS, and DICSS than with CLM, while P uptake and extractable soil P did not increase compared to that in the treatment that received no P. The low availability of P in sludge was likely caused by iron (Fe) and aluminum (Al) which precipitated P. Sludge irradiation and/or composting had no significant effect on P availability.  相似文献   

16.
生物炭主要类型、理化性质及其研究展望   总被引:25,自引:3,他引:22  
【目的】 生物炭作为工农业生产副产品低碳利用的有效手段,其改善土壤及提高作物品质的有益功效已被逐步认识,但对其研究报道分散且差异较大。对已有研究进行梳理总结,可为生物炭生产施用以及形成有效的产业链提供科学依据。 主要进展 1)生物炭全碳含量在 30%~90% 之间,平均 64%。生物炭碳含量由大到小来源依次是木质、秸秆、壳类、粪污和污泥。秸秆类生物炭碳含量大多为 40%~80%,木质类生物炭在 60%~85%。生物炭灰分含量在 0~40% 之间变动,平均 15.52%。灰分含量由大到小依次是污泥、粪污、秸秆、壳类和木质。秸秆生物炭灰分含量主要在 20%~35% 之间,较少为 15%;木质炭灰分主要在 0~10% 范围内。生物炭碳含量和灰分含量相关系数为–0.77。裂解温度与生物炭碳灰组分呈正相关,相关系数分别为 0.17 和 0.28。施入生物炭可以改善土壤状况,生物炭灰分通常对养分贫瘠土壤及沙质土壤的一些养分补充作用较明显。2)生物炭比表面积绝大多数在 0~520 m2/g 之间,平均 124.83 m2/g,壳类、秸秆、木质、粪污和污泥生物炭比表面积逐渐降低。秸秆炭比表面积集中在 0~200 m2/g 以内,木质炭比表面积集中在 0~100 m2/g 以内。制备温度与比表面积的相关系数为 0.48。生物炭的孔隙结构能降低土壤容重、降低土壤密度,能较好地去除溶液和钝化土壤中的重金属。3)生物炭 pH 值范围在 5~12,平均为 9.15。秸秆、污泥、粪污、木质、壳类生物炭 pH 值中值逐渐降低。秸秆生物炭 pH 值多集中在 8~11 范围内,木质生物炭 pH 相对一致。生物炭的 CEC 从 0 到 500 cmol /kg 都有分布,平均为 71.91 cmol/kg。秸秆类生物炭 CEC 值大多集中在 0~100 cmol/kg 范围内,木质生物炭则在 5~10 与 15~25 cmol/kg 范围内均有一定数量的分布。裂解温度与 pH 值和 CEC 的相关系数为 0.58 和 0.30。生物炭施入土壤后可消耗土壤质子,提高酸性土壤 pH 值,提高酸性土壤一些养分的有效性;其巨大的表面积还可提高对阳离子的吸附,提高土壤保肥能力。4)生物炭的裂解温度大都集中在 200~800℃ 之间,偶有达到 1000℃ 的裂解温度。 建议和展望 目前,全世界范围内对生物炭的生产和使用还处于就近和来源方便的初级阶段,影响着生物炭功能和效益的最大化。应从以下几个方面加强研究和应用试验:首先,系统研究生物炭制造参数对理化性状的影响,研究不同原料生物炭的作用机理差异及其针对性,建立生物炭理化性质参数数据库;其次,加强应用研究,根据土壤理化性状和改良目标选择适宜的生物炭类型,根据对作物经济性状的要求,研究选择适宜的生物炭类型,实现生物炭功效的最大利用。加强不同原料的选配和组合研究,改良生物炭产品的目标性状,形成系列化产品。   相似文献   

17.
A pot experiment was conducted to compare the behaviour and bioavailability of Cd and Pb from two soils mixed with sewage sludge at three rates (0, 50 and 150 t ha?1) and maintained at two contrasting ambient temperatures (15°C and 25°C) over a period of one year following the treatments. Ryegrass (Lolium perenne) accumulated Cd and Pb in the sewage sludge treated soils, although accumulation was significantly lower in the soils treated at the high rate (150 t ha?1) compared to the low rate (50 t ha?1). Ryegrass grown in the warm environment (25°C) accumulated significantly higher levels of Cd and Pb than that grown in cooler conditions (15°C). Samples of the soils spiked with nitrate salts of Cd and Pb at equivalent rates of metal loading resulted in the ryegrass accumulating much higher levels of both the metals than on the sludge treated soils. Metal uptake by the ryegrass from the sludge treatments increased over successive harvests while that from metal salt treatments decreased. The observed trend of increasing plant metal uptake over time coincided with a trend of decreasing pH in the sludge treatments. However, the concentrations of Cd and Pb extracted by DTPA failed to predict the changes in plant metal uptake. The importance of sewage sludge as both a source and a sink of pollutant metals and the trend of increasing bioavailability over time shown by this experiment are discussed.  相似文献   

18.
The aim of the study was to investigate sewage sludge vermicompost application effects on growth and mineral nutrition of winter rye (Secale cereale L.) plants as compared to two initial levels of mineral nutrient availability, pure sand and sand enriched with inorganic nutrients at the optimal level. Addition of sewage sludge vermicompost significantly inhibited rye seed germination at 20 to 50% sand substitution independently on mineral nutrient supplement. Growth inhibition was evident at early stages of plant development. However, at the later stages, sewage sludge vermicompost acted both as mineral fertilizer and plant growth-promoting agent. Significant stimulation of mineral uptake was seen only at high rates of vermicompost substitution (40 and 50%) already causing decrease in shoot dry matter accumulation. Vermicompost substitution resulted in a significant increase of leaf chlorophyll content. Beneficial effect of sewage sludge vermicompost in conditions of optimal mineral supply can result mainly from plant growth-promoting activity.  相似文献   

19.
Abstract

The volcanic ash of the Mount Pinatubo in Philippines is used in this study. The major drawbacks of this volcanic ash for growing agricultural crops are nitrogen (N) and iron (Fe) deficiencies with low organic matter contents. The objective of this study is to investigate the effect of sewage sludge compost on wheat through shoot and root development as well as dry matter production by pot culture. Either oxamide or polyolefinresin‐coated urea (PORCU) along with potash and phosphate fertilizers is applied to each pot containing volcanic ash. Application of sewage sludge compost in oxamide treatment yield a better plant height with an extended root length and high dry matter production compared to PORCU. However, statistical analysis of the data on plant height shows significant level (p<0.001, n=36), while those on root growth and dry matter production show no significant difference (p<0.335 and 0.564, n=36). Thus it is concluded that the coupling effect of oxamide and sewage sludge compost has a greater impact on plants, while growing on this ash.  相似文献   

20.
The influence of fertilization with straw and sewage sludge on the humic system of a brunizem and a chernozem The influence of fertilization with straw, sludge and mineral nitrogen on the humic system of a black and a brown soil was determined. Soil samples from a polyfactoriel pot experiment lasting two years were analyzed using a photometric analysis of the humic system. Sewage sludge increased extractable humic substances in both soils; straw increased chernozem humic substances but not brunizem humic substances. The other factors tested had no influence. Fertilization with straw, sludge and mineral-N each caused a degradation of the humic system of both soils, as was the case with the combined treatmetns on the brown soil. On the black soil, however, the combined treatment with straw and sludge caused a pronounced aggregation of the humic system. Additional fertilization with mineral-N resulted in an aggregation already with the lower sludge-treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号