首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
渣浆泵内部流场数值模拟与磨损特性分析   总被引:3,自引:4,他引:3  
利用工程上普遍采用的k-ε两方程模型和SIMPLE算法,对渣浆泵的内部流场进行了数值模拟。得出了渣浆泵叶轮与蜗壳内的速度分布、固相浓度分布以及漩涡结构等流场信息。比较了颗粒直径为0.5 mm,初始固相浓度为0.05,0.1,0.2,0.3,0.4时,以及初始固相浓度为0.1,颗粒直径为0.076,0.15,0.5,0.75,1 mm时的不同工况下泵内的固相浓度分布;分析了颗粒直径以及初始固相浓度对渣浆泵叶轮和蜗壳磨损的影响。  相似文献   

2.
为了探究颗粒直径和颗粒浓度对离心式污水泵内三维流场的影响规律,基于雷诺时均N-S方程和SST k-ω湍流模型,以离心式污水泵为研究对象,利用ANSYS CFX软件对泵内三维流动进行数值模拟,分析和总结了污水泵内压力、流线、固相体积分数和叶片表面压力载荷分布规律。研究结果表明:颗粒浓度和直径对泵内压力分布的影响主要在叶轮进口处,并且颗粒直径的影响较小一些。另外,颗粒浓度对于泵内流态分布的影响较为复杂,叶轮流道内旋涡沿着流道呈条状分布,随着颗粒浓度的逐渐增加,旋涡逐渐消失。随着颗粒浓度的增加,叶片压力面和吸力面的压力均逐渐降低,但是叶片载荷基本保持不变。研究结果为离心式污水泵的结构优化和性能改善提供了参考。  相似文献   

3.
低比转速离心泵叶轮内固液两相流的数值分析   总被引:7,自引:5,他引:7  
为了分析离心叶轮内固液流动特性,采用M ixture多相流模型,扩展的标准κε湍流方程与SIMPLEC算法,应用流体动力学软件Fluent对低比转速离心泵叶轮内固液两相湍流进行了数值模拟.分析了多种粒径及浓度条件下的固相体积浓度分布规律.当颗粒直径较小和泥沙浓度较低时,固粒在叶轮出口附近会出现向叶轮背面迁移的趋势;但在离心泵叶轮固液两相流动中,固体颗粒还是主要集中于叶轮工作面,因而会加剧叶轮工作面磨损破坏速度.数值结果表明,在相同的泥沙颗粒直径条件下,水泵扬程随着含沙水流中泥沙浓度的增大而下降.  相似文献   

4.
叶片型线对渣浆泵水力性能及叶轮磨损特性的影响   总被引:1,自引:0,他引:1  
为研究叶片型线对渣浆泵水力性能及叶轮磨损特性的影响,以LC100/350型渣浆泵为研究对象,工质为石灰石浆液,在叶轮轴面及叶片进出口安放角等参数不变的条件下,采用对数螺旋线进行叶片型线控制,通过数值计算方法,采用离散相模型,分析渣浆泵叶轮叶片型线对其水力性能及磨损特性之间的关系.计算结果表明:采用变角螺线法设计的圆柱形叶片有利于提高水力效率,但将导致扬程的小幅降低;包角120°的叶型为设计空间水力性能最优叶型;不同的叶片型线条件下,渣浆泵的水力性能与其叶轮磨损特性相互制约;小包角的叶片导致泵的水力性能下降,但叶轮磨损强度相对较低;叶轮的磨损强度与固相浓度呈正相关关系,叶轮磨损最严重的部位位于后盖板靠近轮毂的区域;在大流量工况下叶片包角对叶轮磨损强度影响较额定工况及小流量工况显著得多,颗粒粒径的变化与颗粒浓度的变化对泵的水力性能及叶轮磨损特性的影响基本一致.  相似文献   

5.
针对某型深海采矿提升斜流泵,采用k-ε湍流模型和Particle Transport Solid粒子输运模型进行了固液两相流数值模拟,对比分析了不同颗粒浓度(2%~12%)和不同颗粒粒径下(1~30 mm)的颗粒运动规律和叶片磨损情况.结果表明,随着颗粒浓度的增大,叶轮进口区域的颗粒聚集程度上升,导叶流道内的颗粒聚集程度加剧;叶轮叶片的磨损面积和导叶叶片的磨损面积逐渐增大.其中,叶轮叶片的主要磨损位置在叶片前缘,导叶叶片的主要磨损位置在叶片转向处和叶片尾缘.叶片的磨损位置都呈现从叶顶向叶根逐渐发展的趋势;导叶叶片的磨损面积比大于叶轮叶片的磨损面积比;随着颗粒粒径的增大,叶轮出口区域的聚集程度减弱,导叶流道内的颗粒聚集减轻;其磨损规律与不同浓度下的工况相一致,叶轮叶片的叶片压力面为主要磨损区域,而且导叶叶片在尾缘的磨损减小.研究结果可为深海采矿斜流泵的优化设计提供理论依据.  相似文献   

6.
为探究渣浆泵在输送固液两相流介质时颗粒直径对冲蚀磨损的影响,采用k-ε湍流模型(液相)、离散相零方程模型(固相)和Finnie塑性冲蚀磨损模型,通过拉格朗日法计算出不同颗粒直径下颗粒的运动轨迹.对颗粒与过流零件表面撞击的冲击速度、冲击角度等参数进行了数值模拟,进而探讨固液两相流中浆体对渣浆泵的磨损规律.结果表明:小直径颗粒在流道中分布相对均匀,与过流部件发生撞击概率很小,对叶片的冲蚀磨损相对较弱.大直径颗粒的运动轨迹易向叶片工作面靠拢,且易与叶片头部发生碰撞.直径较大时,颗粒冲击叶片和蜗壳圆周壁面的角度和速率更大,且存在多次撞击过程,对叶片和蜗壳壁面的冲蚀磨损程度相对较大,造成严重的冲蚀磨损.  相似文献   

7.
离心泵叶轮固液两相流动及泵外特性数值分   总被引:9,自引:0,他引:9  
基于N-S方程和标准k-ε湍流模型,采用SIMPLEC法,对离心叶轮三维固液两相流场进行了耦合计算,得到了固相(颗粒)不同粒径、不同体积浓度不同密度以及不同流量时的固相(颗粒)浓度分布,并研究了外特性的变化规律.模拟结果表明,颗粒本身的性质密度、粒径对颗粒的分布及运动规律影响较大,密度、粒径越大的颗粒在惯性力作用下易偏向工作面;颗粒体积浓度对颗粒的分布略有影响;泵在非设计工况下运行时,相对进口液流角的变化影响了颗粒在叶轮内的分布情况;颗粒密度、粒径、固相体积浓度的增大会引起扬程的减小.  相似文献   

8.
针对深海扬矿泵的磨损问题,采用Euler-Lagrange两相流模型对泵内流场进行模拟,并与试验结果进行对比,以验证仿真模型的准确性.采用专业旋转机械造型软件BladeGen对叶轮和导叶造型.基于CFX流体分析软件,应用Finnie磨损模型研究深海扬矿泵在不同的流量、转速以及输送不同颗粒体积分数下过流部件的磨损速率,并获得泵内流场颗粒轨迹分布图.结果表明:随着流量的增大,扬矿泵叶轮过流部件的磨损速率增大,但导叶过流部件的磨损速率变化并不明显.这是导叶式渣浆泵与蜗壳式渣浆泵的不同之处.当转速或颗粒体积分数提高时,叶轮和导叶过流部件的磨损速率迅速增大;与导叶相比,叶轮过流部件的磨损速率明显更大,其中叶轮压力面磨损最为严重.根据等寿命设计原则,叶轮过流部件应选用更耐磨损的材料.  相似文献   

9.
为了研究HD型石油化工流程泵首级双吸式叶轮、双蜗壳流道内部固液两相流动规律,应用计算流体动力学软件Fluent,基于雷诺时均N-S方程和k-ε紊流模型,采用SIMPLEC算法进行压力速度耦合,对双吸式叶轮、双蜗壳内的流场进行数值计算.同时分析不同初始固相体积分数以及不同颗粒直径条件下,叶轮及双蜗壳内的固相体积分数分布的变化规律,得到与单吸式叶轮、单蜗壳不同的流动规律.计算结果表明:在双吸式叶轮内,随着初始固相体积分数的增大,固相体积分数分布变化很大且变化规律明显,靠近吸力面侧固相体积分数较大,靠近压力面侧则较低;固体颗粒在双吸式叶轮中有向叶片吸力面侧运动的趋势,且随着粒径的增大颗粒会向叶片吸力面运动,但固相体积分数分布变化不大;在双蜗壳流道内,固相体积分数分布不均匀,在第一断面至第八断面固相体积分数相对较大,在扩散段外侧体积分数较大,内侧体积分数较小,固体颗粒有向外侧壁面运动趋势,固相体积分数显著较大.  相似文献   

10.
针对大尺寸固体颗粒对输送泵叶轮的磨损问题,借助商用计算流体动力学软件STAR-CCM+开展数值模拟研究.采用变曲率弯管试验结果验证数值模拟模型的物理有效性,进而考虑介质浓度、颗粒粒径对输送泵运行性能和磨损特性的影响.研究结果表明:泵内固体颗粒的分布不均匀,叶片工作面对颗粒做功导致颗粒高速撞击叶片是叶片发生磨损的关键因素.输送泵叶轮的磨损主要发生在叶片的进口边和背面,首级叶轮的磨损量始终大于次级叶轮.介质浓度的增加会导致叶轮磨损量增加.当颗粒粒径由25 mm增加至30 mm时,首级叶轮和次级叶轮的磨损率均出现急剧增长,叶轮的磨损加剧.输送小颗粒时,应着重对叶片的进口角度进行优化,减轻小颗粒对叶片进口边的磨损;输送大颗粒时,应对叶片的型线进行优化,以减少大颗粒对叶片背面的磨损.  相似文献   

11.
为分析浆体流量对深海采矿矿浆泵空化特性的影响,建立了两级矿浆泵三维流场模型.基于欧拉多相流模型、Schnerr-Sauer空化模型、RNG k-ε湍流模型,利用计算流体力学理论和Fluent软件对矿浆泵进行数值计算.设置矿石颗粒直径d为20 mm,浆体中颗粒体积分数CV为8%,矿浆泵转速n为1 450 r/min,在该工况下研究矿浆泵输送不同浆体流量时泵的空化特性,比较不同空化特性下矿浆泵内压力分布、气相分布及工作性能的不同,并进行试验对比验证,为矿浆泵空化特性提供理论依据.研究结果表明:深海采矿矿浆泵首级叶轮前端呈现明显的低压区,且该低压区域的面积随着流量的增大而减小;气相体积分数分布区域与低压区呈现类似的规律;空化发生区域出现了速度旋涡现象,增大了流场的不稳定性;随着流量的增加,空化余量增大,空化现象不明显,对矿浆泵扬程的影响也越小.  相似文献   

12.
为了研究渣浆泵前腔密封结构对其密封面磨损特性的影响,以ESH型旋流器给料泵为研究对象,选择4种常用的前腔密封结构,在工况以及叶轮和蜗壳的水力参数均相同的前提下,应用计算流体动力学软件ANSYS CFX和磨损模型对泵内固液两相流进行数值模拟,并通过试验进行验证.研究结果表明:采用角式小间隙密封结构,密封面上固相浓度最低,固相的速度分布最均匀,密封面的失重量最小,抗磨损效果最好,其次为平面小间隙密封结构、角式大间隙密封结构,而平面大间隙密封结构的抗磨损性能最差;定义了磨损函数,且密封面上磨损函数值的分布与试验结果吻合较好.研究结果可为渣浆泵的抗磨损设计提供一定的理论依据.  相似文献   

13.
旋流自吸泵气液两相流数值模拟   总被引:4,自引:2,他引:2  
采用雷诺时均N-S方程和RNGk-ε湍流模型,使用多相流模型中的混合物模型,通过商用软件FLUENT,对自吸时旋流自吸泵内气液两相流场作了数值模拟.在对蜗壳流道和叶轮流道进行网格划分时,尺寸扭曲率为0.78.根据模拟结果,将泵内两相流场的静压分布,与单液相时的静压分布作了对比,并比较了叶轮内气相与液相相对速度的分布情况.另外,对含气率的分布情况作了分析.结果表明,自吸时气液两相状态下的静压稍小于单液相状态下的静压;泵内的主要流动是液相通过相间作用夹带气相的流动,液相速度略大于气相速度;靠近泵出口的两个叶道内,有气相的积聚,含气率较高.  相似文献   

14.
基于固液两相流理论,应用欧拉-拉格朗日法模拟了离心式泥泵不同流量及泥沙浓度下的定常固液两相流场,应用FINNIE预估模型进行了磨损特性计算,着重研究了泥泵叶轮、压水室表面的磨损规律.研究结果表明,随着泥沙浓度增大,泥泵的叶轮、压水室表面的磨损率相对值相应增大;压水室表面的磨损率相对值在小流量的值较高;叶轮的磨损率相对值的最大值出现在小流量区域;压水室表面的磨损率相对值比叶轮表面要高;泥泵在高效区运行,泥泵过流部件的磨损率相对值较低.  相似文献   

15.
基于Eulerian-Eulerian“双流体”模型观点,应用CFD软件 Fluent 对离心泵细颗粒泥沙固液两相流进行了数值模拟。给出了在微米量级尺度上不同粒径及10%颗粒体积浓度以内条件下离心泵固液两相流动规律,得到了相应的离心泵的外特性的变化规律并与清水单相流情形进行了对比。研究结果表明:在叶轮流道内,固相体积浓度分布极不均匀,细颗粒主要集中于流道出口处及叶轮吸力面。在所研究的工况条件下,与清水情况相比,加入某些浓度、粒径的细颗粒离心泵内的湍流粘度,湍动能都有所下降,并且分布规律与颗粒的分布相似,离心泵的扬程与效率有所提高。相同体积流量下,离心泵的扬程和效率在所研究的工况条件下随颗粒浓度和粒径的增加先增大后减小。  相似文献   

16.
基于混合模型的离心泵叶轮内汽蚀   总被引:4,自引:0,他引:4  
为了分析离心泵发生汽蚀情况下叶轮内流场的分布以及汽泡相的体积分数,采用两相流混合模型对叶轮内三维湍流汽蚀流场进行数值计算。根据计算结果静压分布和汽泡相的流动特征,揭示叶轮内汽蚀两相流场的内在特性。  相似文献   

17.
根据两相流的理论设计方法对火电机组所用脱硫泵的叶轮直径、叶轮出口宽度、叶片进出口安放角和压水室等几何参数进行优化设计,适当增大叶片出口宽度和涡室排出口直径、并减小叶片出口安放角以减小磨损,提高泵的效率和水力性能.基于Pro/E软件建立泵的三维全流场模型,结合计算流体动力学软件Fluent 6.3,采用欧拉多相流模型对泵内两相流场进行了数值模拟.对两相流场的磨损机理进行了阐述,根据泵的设计工况对流道内固相体积分数分布进行数值计算及分析,同时对过流部件的基本磨损情况和主要磨损部位进行了预测.结果表明:叶轮的主要磨损部位在叶轮进出口处、叶片工作面、叶片前流线和前盖板处;设计的压水室耐磨衬板间隙自动补偿装置的可更换的结构形式能够保证泵的高效运行并延长泵的使用寿命;泵的性能试验结果表明该泵设计合理,额定点效率提高了3.8%.  相似文献   

18.
低比转数离心泵叶轮内汽蚀两相流三维数值模拟   总被引:8,自引:2,他引:8  
阐述低比转数离心泵叶轮内汽蚀两相流基本理论,采用两相流混合模型对叶轮内定常三维湍流汽蚀流场进行数值模拟。根据计算结果的液相和空泡相主要流动特征,分析汽蚀发生过程叶片上的静压分布,揭示叶轮内汽蚀两相流场的内在特性。  相似文献   

19.
针对重型渣浆泵在偏离设计工况运转时出现的局部磨损情况进行了研究,应用Particle模型对重型渣浆泵高浓度浆体输送进行数值模拟,并通过试验验证,分析了节流设计的重型渣浆泵在小流量工况运转时,叶轮前后背叶片的设计对泵内部局部磨损的影响.研究结果表明:节流设计的渣浆泵在小流量工况下运行时,内部流场比设计工况下更加不稳定,扬程下降3%~10%;护套内部颗粒体积分数的分布受前后背叶片影响很小,但对颗粒滑移速度会产生明显影响;当设计有前后背叶片的重型渣浆泵在小流量工况下运行时,护套与转子交界靠近隔舌处固体颗粒的滑移速度激增,产生严重的局部磨损,严重影响使用寿命;通过去除前后背叶片,可以有效降低交界处的颗粒滑移速度,减轻磨损程度;但前背叶片的去除也会造成前腔回流量大幅增加,使前腔内部旋涡强度增大,加剧前护板内侧的磨损.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号