首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.
Summary The paper addresses the general question of identifying the optimum environment for selection in plant breeding programs for low input agricultural systems. After defining low-yielding and high-yielding environments based on the average grain yield of large numbers of barley genotypes in different cropping seasons, we examined: 1) the phenotypic relationships between the highest yielding genotypes in low- and high-yielding environments, and 2) the genetic correlation coefficients between grain yield in low- and high-yielding environments. The results indicate that the alleles controlling high grain yield in low-yielding conditions are at least partially different from those controlling high grain yield in high-yielding conditions. Therefore, selection in high-yielding environments is expected to produce a negative response or no response in low-yielding environments. This may explain why crop varieties bred under high-yielding conditions failed to have an impact in low-yielding agricultural systems. The results may be extrapolated to systems where environmental concern suggests a reduction of inputs by raising the question of whether crop breeding programs based on selection under high inputs are likely to generate the right type of germplasm for an environmentally friendly agriculture.  相似文献   

2.
Kazuo Kawano 《Euphytica》1990,46(3):195-202
Summary Relative importance of harvest index (I) and total biomass yield (B) to economic yield (Y) was assessed in several food crops at different levels of environmental productivity. Importance of B is generally higher in low than high yielding environments, while that of I is higher in high than low yielding environments. In some crops B is important throughout different yield levels while in others I is important even in low yielding environments.Past efforts by anonymous farmers have consummated a good part of genetic improvement of crop yields through improvement in B. Many venerable land cultivars of grain crops, adapted to unimproved, limited-input cultural conditions, evolved through this process. The same process may not have thoroughly exhausted the yield improvement opportunity through improving I. Success in yield improvement by modern breeding has been limited mainly to high-input cultural conditions characterized by higher soil fertility and irrigation mainly through improvement in I. Varietal improvement possibility for less productive environments is discussed.  相似文献   

3.
Summary Yield data obtained from a comparative small grain cereals trial, grown for five consecutive growing seasons at a total of 23 environments in Cyprus, were subjected to regression analysis. Within each environment, yield trials consisted of a standard set of three cultivars or elite lines of barley, triticale, durum and bread wheat. The regression coefficient (b) of crop mean on the environmental index (I) and the mean square deviation from regression (sd2) were calculated for each crop. Each crop tended to have its own characteristic value of sd2 and its magnitude was an excellent indicator of specific crop-environment interaction. The causes of large sd2, for two of the four crops, were the susceptibilith of barley to lodging, when favourable conditions were encountered at high yielding environments, and triticale dependence on late season precipitation. Durum wheat and triticale had an average response to different yielding environments (b>1.19) and both were significantly different from those of bread wheat (1.08) and barley (0.54). Hence, barley, bread and durum wheat are specifically adapted to low, average and high yielding Mediterranean environments, respectively. The cultivation of triticale at the expence of durum wheat is not feasible. Furthermore, interactions between crops and environments demonstrated by the regression parameters, should constitute the basis for decision making, regarding crop adaptation in a region. The average yield in all environments should not be considered as a proper criterion for adaptation. In this study, triticale had a similar mean grain yield (3,842 kg/ha) to that of bread wheat, but was significantly higher yielding than barley or durum wheat (5 and 7%, respectively).  相似文献   

4.
In order to investigate the agricultural potential of the genus Vicia, and identify traits associated with productivity and responsiveness to environment, 34 undomesticated Mediterranean accessions representing Section Narbonensis (V. johannis, V. narbonensis) and V. sativa were grown in five contrasting environments in northern Syria (growing season rainfall: 76–290 mm).Highly significant genotype × environment interactions were observed for all traits. For most of the components of yield, accession mean performance (productivity)was highly correlated with responsiveness across environments (r = 0.59–0.96), as defined by joint linear regressions. Thus high yielding genotypes tended to be relatively more productive than low yielding genotypes under conditions that favoured high yields. Regression analysis revealed that mean site yields were positively correlated to rainfall (r = 0.85) and its attendant effect on growing season length as measured by cumulative season temperature and phenology (r = 0.59–0.81).In order to examine yield related traits independently of taxonomy, genotypes were grouped into three categories using K-means clustering based on productivity and responsiveness of seed, hay and biological yield. Highly productive/responsive genotypes were tall with high harvest index, large seeds and low fecundity (seeds and pods per plant), whereas unproductive/unresponsive plants tended to be short, highly fecund, with small seeds and low harvest index. Principal components analysis showed that responsiveness, in terms of seed, hay and biological yields, was closely related to phenological plasticity. Thus highly productive/responsive genotypes were able to start flowering earlier than unproductive/unresponsive genotypes in early environments, but significantly later in late, higher rainfall environments. Plant growth habit was also related to yield responsiveness. In environments with little biomass production the proportion of erect plants was high in all three categories. In more favourable, high biomass environments, the proportion of erect plants in unproductive/unresponsive genotypes fell dramatically, but was unchanged among productive/responsive genotypes. We suggest that for unproductive/unresponsive genotypes competition for light is increased under optimal growth conditions. We argue that the optimal combination of fixed and responsive traits in high yielding genotypes results in a `compound interest-type' response to more favourable environments. Highly productive and responsive genotypes can capture resources more effectively than their low yielding counterparts, leading to a positive relationship between performance and responsiveness for most components of yield. Differences in productivity and responsiveness for seed, hay and biological yield reflected Vicia taxonomy, increasing in the following order from low to high: V. johannis, V. sativa, the small seeded V. narbonensis (salmonea, jordanica, affinis) V. n. var. narbonensis, and finally V. n. var.aegyptiaca. V. n. var. aegyptiaca showed the most agricultural potential, since the taxon contained all the properties of productive/responsive genotypes listed above, yielding >1 t/ha under extremely arid conditions (104 mm),and >2.5 t/ha on 290 mm rainfall, confirming its potential for dry environments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Thirty-six lentil varieties were evaluated under organic and conventional environment for three consecutive years in order to see whether the promising genetic material for an organic plant breeding program are different from those of a conventional system. The genetic material studied originated from various countries. In the conventional trial plots standard cultural practices (P mineral fertilization & pest control) were applied throughout the growing season, while in the organic ones no fertilizers or pest agrochemicals were applied. Significant regression, but of low value, between grain yield ranking and earliness or harvest index ranking was detected. Combined ANOVA indicated significant differences between genotypes, years, environments and genotype × environmental interactions (GEI). It was observed that under conventional management most of the genotypes had a higher yield compared to the organic one. The mean grain yield ranking of the genotypes in each of the environments revealed that some of the genotypes occupied the same ranking position at both the organic and the conventional environment (non-crossover GEI), while others exhibited a significant alteration in their ranking (crossover GEI) under the two environments. Crossover GEI and non-cross over GEI revealed two types of lentil varieties. Varieties with specific adaptation and varieties with broad adaptation. It was concluded that grain yield was in general higher when lentil varieties were grown under a conventional environment compared to the grain yield produced under an organic environment. Yet, there are lentil genotypes with a higher yielding ability under the organic management and therefore should be targeted by the breeder.  相似文献   

6.
M. A. Faluyi 《Euphytica》1990,50(3):197-201
Summary Three maturity groups of soybeans (Glycine max L.) were used to investigate the relationship between dry-matter accumulation (DMA) and grain yield (GY), and the prospects for selection of high seed yielding strains among the existing soybean cultivars in a tropical environment. The positive and significant association between DMA and GY (r=0.888***) indicated that selection for high DMA could give gains in GY. However, the higher harvest index (HI=37.5%) for the low seed yielding early maturing genotypes than the more vegetatively endowed and higher seed producing late maturity group, is an indication that excessive DMA could be disadvantageous. Total seed yield per land area for the three maturity groups of soybeans showed that the genotypes with high harvest index and low seed yield could be as good as those ones with high seed and dry-matter yields with low harvest index. The high coefficient of variation which ranged between 18.1 and 59.8% and the heritability estimations which also ranged from 34.4 to 82.2% are indicative of the presence of substantial genetic diversity and there are good prospects for the improvement of the crop through selection.  相似文献   

7.
Summary The objective of this study was to evaluate traits which can facilitate and improve selection for grain yield of spring barley. Five experiments were conducted in different environments to measure grain yield and yield related traits of breeding lines and exotic varieties. Differences for rate of canopy expansion were significant and offer the opportunity to select for a high weed suppressing potential but there was no relation to grain yield. Dry matter yield/m2 at anthesis and its water-soluble-carbohydrate content were not correlated with grain yield/m2 and number of grains/m2. Variation in biomass among breeding lines with a similar development and plant height was small. Biomass standardized for plant height was stable across environments and showed a good correlation with number of grains and grain yield. The contribution of pre-anthesis assimilation to grain yield was only important under low yielding experimental conditions, but the differences among the genotypes for this trait were inconsistent. It may be difficult to select genotypes with a high potential contribution of pre-anthesis assimilation to grain yield.  相似文献   

8.
Summary Thee groups consisting of 332, 243 and 280 barley breeding lines (entries) of known selection history were evaluated in 10, 9 and 8 environments, respectively, to determine the relationship between grain yield in low yielding (LYE) or high yielding (HYE) environment, and selection history and type of germplasm. One cycle of selection in LYE produced on average five times more entries outyielding the best check in LYE than selection in HYE. A retrospective analysis indicated that the highest yielding lines in LYE were lower yielding (15%–28%) in HYE when compared with the best check, and by 20% and 38% compared with the best entries in HYE. In contrast, the highest yielding lines in HYE were lower yielding (4%–33%) in LYE when compared with the best check, and by 33% and 40% when compared with the best entries in LYE. The highest yielding lines in LYE did not differ consistently from the highest yielding lines in HYE for a number of morphological and developmental traits including days to heading. This suggests there are many paths to high yield in LYE and that analytical breeding based on individual traits may not be appropriate for variable environments. Only 0.07% of the highest yielding entries in LYE was selected for high yield in HYE conditions confirming previous results indicating that selection for high yield in HYE is an inefficient strategy for improving yield in low yielding conditions. This frequency is 28 times lower than the frequency of high yielding entries in LYE selected from landraces or crosses with landraces in low yielding conditions. The results imply that the most cost-effective strategy for barley breeding in low yielding conditions is to select repeatedly in low yielding conditions and to include adapted germplasm (landraces) in the breeding material.  相似文献   

9.
Maize is not inherently tolerant to soil acidity but due to the ever increasing demand for the crop in the developing world, production of maize on acid soils continues to expand. Breeding for maize acid soil tolerance is the best strategy to improve yield under these conditions. Therefore, the current study was done to determine the general combining ability (GCA) of eight acid-soil tolerant and susceptible inbred lines and the specific combining ability (SCA) of cross combinations of these lines for grain yield under acid and non-acid soils. The eight lines were crossed using a diallel mating design to produce 28 single cross hybrids for evaluation under acid and non-acid soils at four sites for two seasons. Line C2 was the best general combiner under both soil environments while A2/C1 and A1/C2 had the highest desirable SCA effects under optimal conditions. Loss in grain yield and sensitivity to low pH stress was higher among genotypes in light textured soils than heavy soils. Non-additive gene action was more important than additive gene action in conditioning grain yield under both environments. Results revealed that it was feasible to improve grain yield under low pH and optimum soils from the set of genotypes used in the current study.  相似文献   

10.
Summary The objectives of this research were to study the association in bread wheat between spectral reflectance indices (SRIs) and grain yield, estimate their heritability, and correlated response to selection (CR) for grain yield estimated from SRIs under reduced irrigation conditions. Reflectance was measured at three different growth stages (booting, heading and grainfilling) and five SRIs were calculated, namely normalized difference vegetation index (NDVI), simple ratio (SR), water index (WI), normalized water index-1 (NWI-1), and normalized water index-2 (NWI-2). Three field experiments were conducted (each with 30 advanced lines) in three different years. Two reduced irrigation environments were created: (1) one-irrigation level (pre-planting), and (2) two-irrigation level (pre-planting and at booting stage), both representing levels of reduced moisture. Maximum yield levels in the experimental zone were generally obtained with 4–6 irrigations. Genotypic variations for all SRIs were significant. Three NIR (near infrared radiation) based indices (WI, NWI-1, and NWI-2) gave the highest level of association (both phenotypic and genotypic) with grain yield under both reduced irrigation environments. Use of the mean SRI values averaged over growth stages and the progressive integration of SRIs from booting to grainfilling increased the capacity to explain variation among genotypes for yield under these reduced irrigation conditions. A higher level of broad-sense heritability was found with the two-irrigation environment (0.80) than with the one-irrigation environment (0.63). Overall, 50% to 75% of the 12.5% highest yielding genotypes, and 50% to 87% of the 25% highest yielding genotypes were selected when the NWI-2 index was applied as an indirect selection tool. Strong genetic correlations, moderate to high heritability, a correlated response for grain yield close to direct selection for grain yield, and a very high efficiency of selecting superior genotypes indicate the potential of using these three SRIs in breeding programs for selecting increased genetic gains in grain yield under reduced irrigation conditions.  相似文献   

11.
Capitalizing on the yield potential in available groundnut germplasm, and high stability of kernel yield are important requirements for groundnut producers in semiarid environments. Forty-seven groundnut genotypes were evaluated from 2003 to 2005 at 4 locations representative of the Guinea and Sudan savanna ecologies in Ghana. The objectives were to assess genotypic differences in reaction to early and late leaf spot infections under natural field conditions, assess the extent of genotype × environment (G × E) interaction for kernel yield, and determine the relationship between yield potential and yield stability. Genotypes differed significantly in their reaction to leaf spot infections indicated by the area under disease progress curve (AUDPC). Genotypic AUDPC was negatively correlated with maturity period (P < 0.01), with kernel yield (P < 0.05) at each of the 3 locations in the Guinea savanna ecology but not in the Sudan savanna ecology and with each of four stability parameters (P < 0.05). High or low yielding genotypes were grouped based on Dunnett’s test at P < 0.10. High yielding groups had significantly low AUDPC, high biomass, high partitioning of dry matter for kernel growth, and were later in maturity compared to low yielding genotypes. Significant G × E interaction effect for kernel yield was dominated mainly by the lack of correlation among environments variance (76–78%) relative to the heterogeneity of genotypic variance component (22–24%). Stability of yield assessed through the among-environment variance, Wricke’s ecovalence, and Finlay-Wilkinson regression coefficient revealed that genotypes in the higher yielding group were relatively unstable compared to the low yielding group. Indicated by the Kataoka’s index of yield reliability, however, relatively unstable genotypes in the high yielding group are expected to be more productive even under assumptions of high risk aversion (P = 0.75–0.95) compared to the more stable, low yielding genotypes. The findings indicate that deploying these recently developed germplasm in semiarid regions in West Africa provides a better match to farmers’ risk-averse strategies compared with the use of existing earlier maturing cultivars.  相似文献   

12.
Summary Yield data from the 5th–12th international mungbean nursery (IMN) trials conducted at 23 sites in 15 countries were analyzed by conventional stability analysis—regression of genotype mean on the environmental index, and by segmented regression analysis—fitting separate linear regressions in low yielding and high yielding environments. The gene pool base concept allows comparison of genotypes from different IMN trials grown in different years and sites. A very high positive linear relationship was observed between the regression coefficient and the average yield of cultivars, indicating that high yielding cultivars were less stable across environments. When data points of the regression of genotype mean and site mean for VC 1973A, a high yielding and widely adapted cultivar, were examined, the relationship appeared not to be linear. The segmented regression analysis improved the coefficient of determination (r2) and the genotypes were grouped based on regression coefficients in high yielding and low yielding environments. Different categories of genotypes suitable for high input environments, widely adaptable genotypes, and highly stable genotypes were identified.Texas Agricultural Experiment Station Technical Article 23208.  相似文献   

13.
Wheat is one of the major food crops in the world. It is Australia’s largest crop and most important agricultural commodity. In Australia the crop is grown under rainfed conditions with inherently important regional environmental differences; wheat growing areas are characterized by winter dominant rainfall in southern and western Australia and summer rainfall in northern Australia. Maximizing yield potential across these diverse regions is dependent upon managing, either genetically or agronomically, those factors in the environment that limit yield. The potential of synthetic backcross lines (SBLs) to increase yield in the diverse agroecological zones of Australia was investigated. Significant yield advantages were found for many of the SBLs across diverse environments. Depending on the environment, the yield of the SBLs ranged from 8% to 30% higher than the best local check in Australia. Apart from adaptation to semiarid water stressed conditions, some SBLs were also found to be significantly higher yielding under more optimal (irrigated) conditions. The four testing environments were classified into two groups, with the northern and southern environments being in separate groups. An elite group of SBLs was identified that exhibited broad adaptation across all diverse Australian environments included in this study. Other SBLs showed specific adaptation to either northern or southern Australia. This study showed that SBLs are likely to provide breeders with the opportunity to significantly improve wheat yield beyond what was previously possible in a number of diverse production environments.  相似文献   

14.
Normalized difference vegetation index (NDVI), which is a measure of leaf greenness (chlorophyll content), is considered to be correlated with crop productivity. This study was conducted to examine genotypic variations for NDVI at different growth stages and its relationship to yield in winter wheat under terminal heat stress. Thirty winter wheat genotypes were evaluated at two locations in 2009–2010 and 2010–2011 in Uzbekistan. The NDVI was recorded at booting, heading, milk and dough stages. The wheat genotypes differed significantly for NDVI at each stage. Grain yield ranged from 3.9 to 6.1 t/ha. Wheat genotypes differed in per cent decline in NDVI from booting to dough stage. However, several high‐yielding genotypes maintained higher NDVI than low‐yielding genotypes when heat stress was evident. The findings suggest change in NDVI during heat stress could be a measure of tolerance. The positive correlation of NDVI with grain yield suggests that it could be used as an indirect selection criterion for identifying physiologically superior, high‐yielding wheat lines under terminal heat stress.  相似文献   

15.
Genotypic variation for competitive ability in spring wheat   总被引:1,自引:0,他引:1  
D. G. Huel  P. Hucl 《Plant Breeding》1996,115(5):325-329
Herbicides are the primary method of weed control for crop production in developed countries. For economic and environmental reasons alternative control strategies are being devised. One of these strategies is the development of competitive crop cultivars. The objectives of this research were to establish whether spring wheat (Triticum aestivum L.) genotypes differed in competitive ability and if those differences were related to specific growth characteristics. Sixteen genotypes of spring wheat were grown under simulated weed competition conditions at Saskatoon, Canada over a 3–year period. Four high and four low tillering genotypes from each of two crosses (Neepawa/M1417 and Ingal/M1417) were studied. Weeds consisted of cultivated oat (Avena saliva cv. ‘Waldern’) and oriental mustard (Brassicajuncea cv. ‘Cutlass’) sown at two densities (48 and 96 seeds/m2 per weed species). Seedling establishment, ground cover, and seed yield for the three species were determined, as was wheat tiller number, spike number, maximum height, leaf area index, leaf orientation, and flag leaf length and size. Significant (P = 0.001) weed rate by genotype interactions involving changes in genotype rank were detected for wheat grain yield, indicating that the 16 wheat genotypes differed in competitive ability. Wheat grain yield reductions averaged over the two weed densities ranged from 45% to 59%. The highest-yielding genotypes under weed-free conditions were not necessarily the highest yielding under weedy conditions. Genotypes which suffered smaller yield reductions were more effective in suppressing weed growth. Although competitive genotypes were generally taller than non-competitive genotypes, other traits such as large seedling ground cover and flag leaf length were associated with wheat yield under competitive conditions.  相似文献   

16.
Summary To determine the levels of heterosis in F1 hybrids, four current pea (Pisum sativum L.) cultivars from southern Australia were used as female parents and crossed with 18 introduced genotypes. The 22 parents, 72 F1 hybrids and, depending on the environment, either 54 or all 72 F2 families were grown in replicated plots in four environments. Grain yield, total dry matter, harvest index, branches per plant, pods per plant, seeds per pod, hundred seed weight, plant height, onset of flowering and flowering periods were evaluated. For both the F1 and F2 generation, heterosis was determined as the superiority over the mid-parent and also over the better parent. In addition, the superiority over the best commercial cultivar was calculated. Most hybrids were higher yielding than their mid-parent but were less stable in yield across environments. Four F1 hybrids were significantly higher yielding than the best parent, by up to 26%. There were significant correlations between F1 hybrid and mid-parent value for plant height, pods per plant and hundred seed weight but not for yield. Overall, grain yield heterosis was mainly due to more pods per plant in the hybrids. The level of heterosis for yield in a poor yielding environment was higher than that in a high yielding one. Both additive and non-additive gene effects were important in the expression of all studied traits. The average level of heterosis for grain yield and total dry matter in the F2 population was half of that in F1 hybrids. The low level of inbreeding depression from the F1 to the F2 generation suggested that epistatic gene action also contributed to the expression of grain yield. Some F2 populations maintained the high yield levels of the corresponding F1 hybrids.  相似文献   

17.
Summary In 1981/82 60 barleys varieties were grown at 18 environments (three locations, three seed rates, two soil fertility regimes) and in 1982/83 22 varieties were grown again at 21 environments (seven locations, three seed rates). Grain yield was recorded only in the second year. The estimates of variances sx 2 (untransformed data) and s2 logx (transformed data) for number of tillers and grain yield varied significantly among varieties. When untransformed data were used, high tillering varieties had a higher variance for number of tillers per unit area than low tillering varieties. When the variation was measured by CV of untransformed data or by s2 logx on transformed data a reverse relation occurred, i.e. the correlation coefficient between number of tillers and the variation of number of tillers was negative.High grain yielding varieties had a high mean number of tillers and a low variance for number of tillers per unit area when transformed data were used to compute variances. All interactions between variety, seed rate and location for grain yield were significant. The regression analysis of variety grain yield (Y) on environment mean grain yield (X) gave regression coefficients, b, ranging from 0.51 to 1.69. There was no significant correlation between regression coefficient and grain yield. The highest yielding varieties had b values around 1.0. High grain yielding varieties had low variance of yield over environments and low values for deviations from the regression when transformed data were used. However, the correlations between mean yield and variance for yield or mean yield and deviations from regression were positive when untransformed data were used.From this study it is concluded that high mean number of tillers per unit area and low variance for number of tillers could be used in selecting varieties with consistently high yield at varying environments. Techniques are proposed for application early in the breeding programme, i.e. in segregating population or in nurseries.  相似文献   

18.
Summary Two-way classification analysis, combined with analysis of variance and linear regression techniques, was applied to a set of yield data from twenty-one genotypes grown at twelve locations for two years in International Mungbean Nursery trials. Genotypes and environments with similar yield response patterns were grouped and differences between groups identified. Genotypes were also grouped on the basis of flowering time and the relation between days to flower and yield was examined. It was concluded that cluster and associated analyses are of value in determining response patterns of mungbean genotypes to a wide range of environments, and a useful aid in the selection of materials and locations for mungbean evaluation. In particular we note the adaptation of genotypes M409 and M1134 to high elevation locations, and the positive yield response of M374 (MG50-10A) to high yielding environments. Highest yielding lines were also the earliest to flower. Disease resistance was considered the most important breeding objective for mungbean yield improvement.  相似文献   

19.
Genotype × environment interaction (GEI) affects marketable fruit yield and average fruit weight of both hybrid and open-pollinated (OP) tomato genotypes. Cultivars vary significantly for marketable fruit yield, with hybrid cultivars having, on average, higher yield than OP cultivars. However, information is scanty on environmental factors affecting the differential response of tomato genotypes across environments. Hence, the aim of this research was to use factorial regression (FR) and partial least squares (PLS) regression, which incorporate external environmental and genotypic covariables directly into the model for interpreting GEI. In this research, data from an FAO multi-environment trial comprising 15 tomato genotypes (7 hybrid and 8 OP) evaluated in 18 locations of Latin America and the Caribbean were analyzed using FR and PLS. Environmental factors such as days to harvest, soil pH, mean temperature (MET), potassium available in the soil, and phosphorus fertilizer accounted for a sizeable portion of GEI for marketable fruit yield, whereas trimming, irrigation, soil organic matter, and nitrogen and phosphorus fertilizers were important environmental covariables for explaining GEI of average fruit weight. Locations with relatively high minimum and mean temperatures favored the marketable fruit yield of OP heat-tolerant lines CL 5915-223 and CL 5915-93. An OP cultivar (Catalina) and a hybrid (Apla) showed average marketable fruit yield across environments, while two hybrids (Sunny and Luxor) exhibited outstanding marketable fruit yield in high yielding locations (due to lower temperatures and higher pH) but a sharp yield loss in poor environments. Two stable hybrid genotypes in high yielding environments, Narita and BHN-39, also showed high and stable yield in average and low yielding environments.  相似文献   

20.
Genetic architecture of seedling drought tolerance is complex and needs to be better understood. To address this challenge, we developed a protocol to identify the most promising drought-tolerant genotypes at the seedling stage in winter wheat. A population of 146 recombinant inbred lines (F9) derived from a cross between wheat cultivars, ‘Harry’ (seedling drought tolerant) and ‘Wesley’ (seedling drought susceptible) were used in this study. All genotypes were sown in three replications in a randomized complete block design under controlled conditions in a greenhouse. Seven traits were scored and grouped into tolerance traits; days to wilting, leaf wilting, and stay green and survival traits; days to regrowth, regrowth, drought survival rate, and recovery after irrigation. Three selection indices were calculated (1) tolerance index, (2) survival index, and (3) drought tolerance index (DTI). The same set of genotypes were also tested for grain yield in two low rainfall environments for two seasons. High genetic variation was found among all genotypes for all seedling traits scored in this study. Correlations between tolerance and survival traits were weak or did not exist. Heritability estimates ranged from 0.53 to 0.88. DTI had significant phenotypic and genotypic correlations with all seedling traits. Genotypes were identified with a high drought tolerance at the seedling stage combined with high grain yield in low rainfall. Breeding for tolerance and survival traits should be taken into account for improving winter wheat drought tolerance at seedling stage. The selected genotypes can be used for to further improve drought tolerance in high yielding wheat for Nebraska.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号