首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In order to estimate drought tolerance in two species ofPopulus, Populus alba var. pyramidalis Bunge andPopulus nigra L. var. thevestina (Dode), widely planted at the southern margin of the Taklimakan Desert, responses of net photosynthesis and chlorophylla fluorescence to irradiance and water stress were examined under laboratory conditions. Results showed thatP. alba exhibited stronger drought tolerance thanP. nigra. A linear relationship between net photosynthetic rates (A n) and electron transport rates (ETR) was found in both poplars under different irradiance and leaf water potentials. Net photosynthetic rates (A n) in the two poplars significantly correlated linearly with the photochemical efficiency of the saturation light-adapted leaves throughout the range of leaf water potentials, suggesting that the leaf photochemical efficiency in saturation light-adapted leaves can be used to estimate leaf photosynthetic capacity and leaf water conditions in the two poplars within a magnitude of air temperature between 20 and 30°C. This research was supported by the Japan Society for the Promotion of Science (CAS-9601), the Chinese Academy of Sciences and partly supported by the National Natural Foundation of China (39870154).  相似文献   

2.
Plants in the neotropical savannas of central Brazil are exposed to high irradiances, high air temperatures and low relative humidities. These conditions impose a selection pressure on plants for strong stomatal regulation of transpiration to maintain water balance. Diurnal adjustments of non-photochemical energy dissipation in photosystem II (PSII) provide a dynamic mechanism to reduce the risk of photoinhibitory damage during the middle of the day when irradiances and leaf temperatures are high and partial closure of the stomata results in considerable reductions in internal CO(2) concentration. At the end of the dry season, we measured diurnal changes in gas exchange, chlorophyll fluorescence parameters and carotenoid composition in two savanna tree species differing in photosynthetic capacity and in the duration and extent of the midday depression of photosynthesis. Non-photochemical quenching and its quantum yield were tightly correlated with zeaxanthin concentrations on a total chlorophyll basis, indicating that the reversible de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin within the xanthophyll cycle plays a key role in the regulation of thermal energy dissipation. In both cases, a single linear relationship fitted both species. Although efficient regulation of photochemical and non-photochemical quenching and adjustments in the partitioning of electron flow between assimilative and non-assimilative processes were operating, these trees could not fully cope with the rapid increase in irradiance after sunrise, suggesting high vulnerability to photoinhibitory damage in the morning. However, both species were able to recover quickly. The effects of photoinhibitory quenching were largely reversed by midday, and zeaxanthin rapidly converted back to violaxanthin as irradiance decreased in late afternoon, resulting in the maximal quantum yield of PSII of around 0.8 just before sunrise.  相似文献   

3.
Little is known about the effect of flowering on leaf photosynthesis. To understand why net photosynthesis (A(net)) is lower in Mangifera indica L. leaves close to inflorescences than in leaves on vegetative shoots, we measured nitrogen and carbohydrate concentrations, chlorophyll a fluorescence and gas exchange in recently matured leaves on vegetative terminals and on floral terminals of 4-year-old trees. We used models to estimate photosynthetic electron fluxes and mesophyll conductance (g(m)). Lower A(net) in leaves close to developing inflorescences was attributable to substantial decreases in stomatal conductance and g(m), and also in photosynthetic capacity as indicated by the decrease in the light-saturated rate of photosynthetic electron transport (J(max)). The decrease in J(max) was the result of decreases in the amount of foliar nitrogen per unit leaf area, and may have been triggered by a decrease in sink activity as indicated by the increase in the hexose:sucrose ratio. Parameters measured on leaves close to panicles bearing set fruits were generally intermediate between those measured on leaves on vegetative shoots and on leaves close to inflorescences, suggesting that the changes in A(net) associated with flowering are reversible.  相似文献   

4.
Specific leaf area (SLA), nitrogen and chlorophyll concentrations and photosynthetic characteristics were studied in upper and lower canopy leaves of Salix viminalis and S. dasyclados grown at two nutrition levels. Fertilization increased SLA and leaf mass-based nitrogen concentration in most cases. Positive effects of fertilization on leaf light-saturated photosynthetic rate (A max A ) and maximum carboxylation rate (V cmax) were not detected. Significant differences between the leaves from upper and lower canopy layers in area-based nitrogen, A max A , SLA, mass-based chlorophyll, V cmax and stomatal conductance were found for most plots. We attempted to estimate the fraction of non-photosynthetic nitrogen and found that it tended to be higher due to fertilization. Thus, the insensitivity of leaf photosynthesis to fertilization could be caused by higher proportion of non-photosynthetic nitrogen in the leaves of fertilized plots. Though leaf-level photosynthesis was not increased by fertilization, considerably higher leaf area index of fertilized plots still resulted in increased canopy carbon gain.  相似文献   

5.
In order to quantify the effects of thinning on biochemical photosynthesis parameters and changes in leaf nitrogen contents associated with the process of crown reclosure, the maximum rate of carboxylation (V cmax), the leaf nitrogen concentration per unit area (N a), and the photosynthetic photon flux density (PPFD) were measured at four crown heights in both thinned (1500 trees ha−1) and unthinned control (3000 trees ha−1) stands of ten-year-old Chamaecyparis obtusa (36°3′N, 140°7′E) trees during four consecutive growing seasons after thinning. Thinning increased V cmax in the lower and middle crowns in the first year after thinning, and leaves in the lower crown of the thinned stand maintained high V cmax for four years, whereas they abscised in the second year in the control stand. Significant increases in V cmax were detected even in the upper crowns of trees in the thinned stand in the second year. Thinning did not affect N a at any of the crown positions in the first year, but significantly increased N a in the middle crowns from the second year after thinning. Thus, the redistribution of nitrogen between leaves, driven by increases in light and nutrient availability due to the 50% thinning, appears to have enhanced photosynthetic rates in the thinned stand. Thinning also significantly affected the slope of the linear relationship between N a and V cmax initially after thinning, but its effect on this relationship was negligible after the second year. These quantitative results may be used to simplify the estimation of the likely effects of management practices on carbon fixation in forest canopies.  相似文献   

6.
Patchy stomatal closure occurs in plants with heterobaric leaves, in which vertical extensions of bundle sheath cells delimit the mesophyll and restrict the diffusion of CO(2). The scale of patchy stomatal behavior was investigated in this study. The distribution of PSII quantum yield (Φ(II)) obtained from chlorophyll fluorescence images was used to evaluate the scale of stomatal patchiness and its relationship with leaf photosynthesis in the sun leaves of 2-year-old saplings of Quercus crispula Blume. Fluorescent patches were observed only during the day with low stomatal conductance. Comparison of numerical simulation of leaf gas exchange and chlorophyll fluorescence images showed that heterogeneous distribution of electron transport rate through PSII (J) was observed following stomatal closure with a bimodal manner under both natural and saturated photosynthetic photon flux densities. Thus, fluorescence patterns can be interpreted in terms of patchy stomatal closure. The mapping of J from chlorophyll fluorescence images showed that the scale of stomatal patchiness was approximately 2.5-fold larger than that of anatomical patches (lamina areas bounded by bundle sheath extensions within lamina). Our results suggest the spatial scale of stomatal patches in Q. crispula leaves.  相似文献   

7.
Selection of quality seedlings in nursery is important for raising fast-growing trees for production of fuelwood and other products. In order to identify the morphophysiological variables that can be used in nursery for selection purpose, a study on growth, drymatter production, and rate of photosynthesis was undertaken with seedlings of four tree species, viz, Acacia nilotica, Albizzia lebbeck, Dalbergia sissoo and Eucalyptus camaldulensis. The species varied significantly in growth, drymatter production and photosynthetic rate in nursery. E. camaldulensis was the fastest in growth and A. nilotica had maximum number of leaves. Total drymatter production was maximum in D. sissoo followed by A. lebbeck. The rate of photosynthesis was maximum in D. sissoo followed by A. nilotica and lowest in A. lebbeck. Among the various seedling attributes, height, number of leaves per plant, rootweight and photosynthetic rate exhibited significant correlations with seedling drymatter. Seedling diameter showed weak positive correlations with drymatter of both seedlings as well as two-year old field trees. However, number of leaves per plant, rootweight, shootweight and leafweight showed significant correlations with two-year field tree drymatter, the strongest correlation (r = 0.96, P = 0.001) was found between number of leaves per plant and field tree drymatter. Although plant height and leaf photosynthetic rate showed a positive correlation with two-year field growth, the relationship was statistically non-significant. The study reveals that maximum value for leaf number and dryweight of seedling components such as root, shoot and leaf can be used as criteria for selecting nursery stocks for field planting in semiarid conditions.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
An experiment in open-top chambers was carried out in summer 2008 at Curno (Northern Italy) in order to study the effects of ozone and mild water stress on poplar cuttings (Oxford clone). In this experiment direct fluorescence parameters (JIP-test) were measured in leaves from different sections of the crown (L: lower; M: medium; U: upper parts of the crown). The parameters considered were calculated at the different steps of the fluorescence transient, and include maximum quantum yield efficiency in the dark-adapted state (F(v)/F(M)); the L-band, at 100?∝?s, that expresses the stability of the tripartite system reaction centre-harvesting light complex-core antenna; the K-band, at 300?∝?s, that expresses the efficiency of the oxygen-evolving complex; the J-phase, at 2 ms, that expresses the efficiency with which a trapped exciton can move an electron into the electron transport chain from Q(A)(-) to the intersystem electron acceptors; the IP-phase, which expresses the efficiency of electron transport around the photosystem 1 (PSI) to reduce the final acceptors of the electron transport chain, i.e., ferredoxin and NADP; and finally the performance index total (PItot) for energy conservation from photons absorbed by PSII to the reduction flux of PSI end acceptors. The main results are: (i) different dynamics were observed between leaves in the lower section, whose PItot decreased over time, and those in the upper sections in which it increased, with a dynamic connected to the leaf age; (ii) ozone depressed all the considered fluorescence parameters in basal leaves of well-watered plants, while it had little or no damaging effect on medium-level or upper-section leaves; (iii) PItot and IP-phase increased in upper leaves of plants subjected to ozone stress, as well as the net photosynthesis; (iv) water stress increased PItot of leaves in all levels of the crown. The results suggest that ozone-damaged poplar plants compensate, at least partially, for the loss of photosynthesis with higher photosynthetic rates in young leaves (in the upper section of the crown), more efficient to fix carbon.  相似文献   

9.
Leaf hairs may assist in maintaining high leaf water use efficiency in tropical secondary forest tree species. We compared leaf temperature, transpiration, photosynthesis and water use efficiency between hairy and depilated leaves in Mallotus macrostachyus (Euphorbiaceae), to determine the role of leaf hair in leaf water use efficiency (WUE) in tropical degraded secondary forest in Malaysia. Measurements were made on five mature individuals growing in sun-exposed conditions and five in shaded conditions. The hair dry weight per unit leaf area was significantly greater in sun leaves than in shade leaves. The transpiration rate (Trmax) of depilated leaves in sun-exposed conditions was slightly higher than in hairy leaves in both morning and afternoon measurements. In contrast, Trmax in the shade leaves was almost identical in hairy and depilated leaves. Leaf stomatal conductance (g s) in the morning showed almost the same value among leaf types and light conditions. In the afternoon, g s slightly decreased from the morning values in both sun and shade conditions. In the morning, the leaf water use efficiency (A max/Trmax) in both conditions did not differ significantly between hairy and depilated leaves. However, in the afternoon, WUE in the depilated leaves was significantly lower than in hairy leaves in sun-exposed conditions. These observations suggest that leaf hairs in M. macrostachyus contribute to the high leaf water use efficiency in drought conditions, such as high vapor pressure deficit experienced at midday in degraded tropical secondary forests.  相似文献   

10.
Urban L  Lu P  Thibaud R 《Tree physiology》2004,24(4):387-399
Carbohydrate and nitrogen contents, chlorophyll fluorescence and gas exchange were measured in leaves from both vegetative and reproductive terminal shoots of 12-year-old flowering mango trees. Reproductive shoot leaves were close to swelling floral buds, inflorescences or panicles bearing set fruits. Leaves close to inflorescences had lower rates of mitochondrial respiration (Rd) and net photosynthesis (Anet), and lower stomatal conductance (gs) and quantum efficiency of photosystem II under actinic light than vegetative shoot leaves. Leaf nitrogen concentration, which decreased from the beginning until the end of flowering, was lower in leaves close to inflorescences than in vegetative shoot leaves. However, these differences and changes were counterbalanced by an increase in leaf mass-to-area ratio so that leaf nitrogen per unit leaf area (Na) remained nearly constant during the whole flowering period, except in leaves close to panicles bearing set fruits. Net CO2 assimilation rate simulated by a biochemical model of leaf photosynthesis (Urban et al. 2003) was much higher than Anet measured at an ambient CO2 partial pressure (Ca) of either 36 or 70 Pa. The overestimation of Anet was more pronounced in leaves close to inflorescences, to panicles bearing set fruits and to reversing inflorescences (characterized by the appearance of leaves in terminal positions on inflorescences) than in vegetative shoot leaves. It is concluded that low Anet in leaves close to inflorescences was probably due neither to changes in Na nor to a decrease in Rubisco activity induced by low gs, but rather to a decrease in electron flow in photosystem II. This decrease was not directly associated with higher starch or soluble sugar contents.  相似文献   

11.
A quantitative analysis was applied to the stomatal and biochemical limitations to light-saturated net photosynthesis under optimal field conditions in mature trees and seedlings of the co-occurring evergreen oak, Quercus ilex L., and the deciduous oak, Q. faginea Lam. Stomatal limitation to photosynthesis, maximal Rubisco activity and electron transport rate were determined from assimilation versus intercellular leaf carbon dioxide concentration response curves of leaves that were subsequently analyzed for nitrogen (N) concentration, mass per unit area, thickness and percent internal air space. In both species, seedlings had a lower leaf mass per unit area, thickness and leaf N concentration than mature trees. The root system of seedlings during their third year after planting was dominated by a taproot. A lower leaf N concentration of seedlings was associated with lower maximal Rubisco activity and electron transport rate and with assimilation rates similar to or lower than those of mature trees, despite the higher stomatal conductances and potential photosynthetic nitrogen-use efficiencies of seedlings. Consequently, stomatal limitation to photosynthesis increased with tree age in both species. In both seedlings and mature trees, a lower assimilation rate in Q. ilex than in Q. faginea was associated with lower stomatal conductance, N allocation to photosynthetic functions, maximal Rubisco activity and electron transport rate, and potential photosynthetic nitrogen-use efficiency but greater leaf thickness and leaf mass per unit area. Tree-age-related changes differed quantitatively between species, and the characteristics of the two species were more similar in seedlings than in mature trees. Despite higher stomatal conductances, seedlings are more N limited than adult trees, which contributes to lower biochemical efficiency.  相似文献   

12.
Muehlewbeckia complera was introduced to China in 2002 as indoor-hanging ornamental foliage plant. The experiment of the shade tolerance for this species was carried out in different light intensities (0.14–946.00 μmol·m−2·s−1). After 40 days in experimental areas, leaf photosynthentic characteristics indexes ofM. complera in different photosynthesis active radiation (PAR) were measured with LI-COR6400 apparatus, such as the light compensation point, light saturation point, and maximum net photosynthesis rate, at the same time, the increments of total leaf area and leaf amount were measured. The results showed that the optimum light intensity range forM. complera was from 9.26 μmol·m−2·s−1 to 569.00 μmol·m−2·s−1 (463–28150 lx, relative humidity (RH) for 46–60%, temperature at 16–22°C). Under this condition, leaf photosynthetic efficiency was tiptop. AlthoughM. complera belonged to the moderate sun-adaptation plant species, the plant growth was inhibited when PAR increased to the level of 569.000 μmol·m−2·s−1 or above.M. complera could sprout new leaves in photosynthesis active radiation of 0.16–19.22 μmol·m−2·s−1 (8–961 lx), or 10 μmol·m−2·s−1 for above 6 h. Foundation item: This study was supported by the Research Foundation of Northeast Forestry University. Biography: YUE Hua (1962-), female, Associate professor in Northeast Forestry University, Harbin 150040, P. R. China. Responsible editor: Zhu Hong  相似文献   

13.
A combined model of stomatal conductance and photosynthesis was developed for Festuca pallescens (St. Ives) Parodi, a forage species in Patagonia. Curves showing the relationship between photosynthesis and photosynthetic photon flux density (PPFD) were constructed for plants grown under differing levels of water availability, relative humidity (RH) and air temperature (T). Stomatal conductance (gs) was related to these variables and pre-dawn leaf water potential (ψpd) using an empirical multiplicative submodel. Parameters of the photosynthesis-PPFD curves were related to the average gs values for each curve to introduce stomatal limitation on photosynthesis. Considering the simplicity of the models, estimated stomatal conductance and photosynthesis agree satisfactorily with independent measured values in the field and in the glasshouse, particularly in the range of low and medium values of both variables (R2 = 0.84 and 0.87 for gs and photosynthesis models, respectively). Photosynthesis–PPFD curves were also determined under field conditions for plants growing under shade and in the open, in a silvopastoral trial in northwestern Patagonia. No significant differences in the photosynthetic light response curves were found between these locations, but slight increases in maximum assimilation rate and quantum yield (light use efficiency) were found for leaves grown under shade. This study of environmental influences on photosynthesis in F. pallescens may help to predict its capacity to grow under trees in silvopastoral systems. In addition, this simple model may be easily parameterised for other species to predict photosynthetic responses under different environmental conditions.  相似文献   

14.
The biochemically based leaf photosynthesis model proposed by Farquhar et al. (1980) and the stomatal conductance model proposed by Jarvis (1976) were parameterized for walnut. Responses of photosynthesis to CO(2) and irradiance were used to determine the key parameters of the photosynthesis model. Concurrently, stomatal conductance responses to leaf irradiance (Q), leaf temperature (T(l)), water vapor pressure deficit at the leaf surface (D), and air CO(2) concentration at the leaf surface (C(s)) were used to parameterize the stomatal conductance model. To test the generality of the model parameters, measurements were made on leaves from a 20-year-old tree growing in the field, and from sunlit and shaded greenhouse-grown seedlings. The three key parameters of the photosynthesis model (maximum carboxylation rate V(cmax), electron transport capacity J(max), and dark respiration rate R(d)) and the key parameter of the conductance model (reference stomatal conductance, g(sref)) were linearly correlated with the amount of leaf nitrogen per unit leaf area. Unique relationships could be used to describe nitrogen effects on these parameters for leaves from both the tree and the seedlings. Our data allowed separation of the effects of increasing total photosynthetic apparatus per unit leaf area from the effects of partitioning nitrogen among different pools of this apparatus for foliage acclimation to leaf irradiance. Strong correlations were found between stomatal conductance g(s) and Q, D and C(s), whereas the relationship between g(s) and T(l) was weak. Based on these parameterizations, the model adequately predicted leaf photosynthesis and stomatal conductance when tested with an independent set of data obtained for the tree and seedlings. Total light-driven electron flows derived from chlorophyll fluorescence data obtained at different leaf temperatures were consistent with values computed by the model. The model was also tested with branch bag data acquired from a three-year-old potted walnut tree. Despite a relatively large variance between observed and simulated values, the model predicted stomatal conductance and photosynthesis reasonably well at the branch scale. The results indicate that the photosynthesis-conductance model developed here is robust and can be applied to walnut trees and seedlings under various environmental conditions where water is non-limiting.  相似文献   

15.
In 2000, one-year-old seedlings of pyrenean oak (Quercus pyrenaica Willd.) and sessile oak (Quercus petraea [Matt.] Liebl) were planted in a thinned and an unthinned plot in a pinewood (Pinus sylvestris), and in a nearby clearing. In summer 2002 and 2003, water relations and gas exchange parameters were measured to address the impact of drought on the seedlings. Chlorophyll a fluorescence was also measured to explore leaf photochemistry and a possible non-stomatal limitation to photosynthesis (A). Reduction in stomatal conductance (g) in response to the decrease of predawn water potential (Ψpd) resulted the main cause affecting net carbon uptake. Water potential at midday (Ψmd) was similar in both species but Quercus petraea was more sensitive to soil water deployment occurred along summer, showing slightly lower Ψpd because worse recover of water potential during night. Rate of photosynthesis was higher in Q.␣pyrenaica probably in relation to its greater leaf mass per area (LMA) and nitrogen content per leaf area (Na). Mortality was highest in the clearing and lowest in the thinned pinewood. Throughout the summer, soil moisture was higher in the thinned area, possibly because of the reduction in tree transpiring surface and interception of rainfall. Accordingly, Ψpd of both species was higher in the thinned site.  相似文献   

16.
The nature of damage of sweetpotato whitefly, Bemisia tabaci (Gennadius) B biotype was investigated at the vegetative stage on eggplant (Solanum melongena L., family Solanasae, variety Baiyu) under laboratory conditions (temperature 25 ± 1°C, RH 70 ± 10% and photoperiod 12 h L:12 h D). The investigations were carried out after completing one generation of whitefly on the basis of morphology, physiology and anatomy of eggplant leaf. Significant differences were observed on three morphological parameters—leaf area, leaf fresh weight, and leaf dry weight. The reduction percentages of these three parameters were 26.6, 21.8 and 19.27%, respectively. Significant differences were also observed on two physiological parameters—chlorophyll content and rate of photosynthesis. The reduction percentages of these two parameters were 9.7 and 65.9%, respectively. There were no damaged tissue observed in the epidermis and mesophyll, but there were some damage tissue observed in the vascular bundle of infested leaf. There were no damaged vascular bundles observed in the control leaves. The non-damaged vascular bundles contained both xylem and phloem; while some damaged vascular bundles contained either xylem or phloem. Associated with the non-damaged vascular bundles on whitefly infested leaves were two settled whitefly nymphs apparently deriving nutrition from phloem sap. After one generation of whitefly infestation, the number of damaged and non-damaged vascular bundles of eggplant leaf was significantly different.  相似文献   

17.
Daily net canopy photosynthesis (P n) was predicted for cocksfoot (Dactylis glomerata L.) canopies grown under different light regimes by integration of a leaf photosynthesis model developed for the light-saturated photosynthetic rate (P max), photosynthetic efficiency (α) and the degree of curvature (θ) of the leaf light–response curve. When shade was the only limiting factor, the maximum P n (P nmax) was predicted to decrease approximately linearly from 33.4 g CO2 m−2 d−1 to zero as photosynthetic photon flux density (PPFD) fell from full sunlight (1800 μmol m−2 s−1 PPFD) to 10% of this in a fluctuating light regime. It was also predicted that at 50% transmissivity P nmax was higher for a continuous light regime (10.4 g CO2 m−2 d−1) than for a fluctuating light regime with the same intensity (8.4 g CO2 m−2 d−1). The canopy photosynthesis model was then used to predict dry matter (DM) production for cocksfoot field grown pastures under a diverse range of temperature, herbage nitrogen content and water status conditions in fluctuating light regimes. This prediction required inclusion of leaf area index and leaf canopy angle from field measurements. The model explained about 85% of the variation in observed cocksfoot DM production for a range from 6 to 118 kg DM ha−1 d−1. The proposed model improves understanding of pasture growth prediction through integration of relationships between shade limitations in fluctuating light regimes and other environmental factors that affect the canopy photosynthetic rate of cocksfoot pastures in silvopastoral systems.  相似文献   

18.
We analyzed the partition of nocturnal sap flow into refilling of internal water storage and transpiration in Acacia mangium. Sap flow of trees was monitored continuously with Granier’s sensors for estimating the whole-tree transpiration. Possible night transpiration and stomatal conductance at the leaf level in the canopy were measured with a LI-6400 photosynthesis measuring system. For nocturnal leaf transpiration and stomatal conductance were weak, nocturnal sap flow of mature A. mangium trees was mainly associated with water recharge in the trunk. No significant change in night water recharge of the trunk was found at both seasonal and inter-annual scales. Morphological features of trees including diameter at the breast height (DBH), tree height, and canopy size could explain variances of night water recharge. Furthermore, although the contribution of nocturnal sap flow to the total transpiration varied among seasons and DBH classes, the error caused by night water recharge on wholetree transpiration was negligible. __________ Translated from Journal of Plant Ecology (Chinese Version), 2007, 31 (5): 777–786 [译自: 植物生态学报]  相似文献   

19.
目的]探究抑制剂对大叶黄杨生长的抑制作用以及对其叶片形态和光合作用的影响,为灌木绿篱的化学修剪提供技术指导。[方法]在北京林业大学林场苗圃采用3种生长抑制剂(多效唑(PP_(333))、三碘苯甲酸(TIBA)以及脱落酸(ABA))对密植成绿篱状的1年生大叶黄杨扦插苗进行叶面喷施,对其生长、叶片形态及光合作用等指标进行测定。[结果]3种抑制剂均有矮化植株、抑制新梢生长的作用,矮化效果最佳、抑制作用最强的为PP_(333),且高浓度PP_(333)对于高生长的抑制作用持效性较长。叶宽、叶厚以及叶面积在短期PP_(333)处理下高于对照。PP_(333)能提高大叶黄杨净光合速率,主要通过增加叶厚、气孔导度、叶肉导度及叶绿素含量来实现,并且PP_(333)使蒸腾速率提高的同时降低了水分利用效率。TIBA有显著减小叶长、叶宽的作用,但能使叶厚增加,且随浓度的增加作用效果增强,主要通过减小叶面积,降低叶肉导度、气孔导度、胞间CO_2浓度及叶绿素含量来降低净光合速率。ABA能增加叶面积(10 mg·L~(-1)处理除外)、叶长以及减小叶片厚度,通过抑制气孔导度、叶肉导度、叶绿素含量降低净光合速率。TI-BA及ABA均通过降低蒸腾速率,使水分利用效率提高。[结论]3种抑制剂均有矮化植株、抑制新梢生长的作用,并且影响叶片发育,进而影响叶片光合作用,且800 mg·L~(-1)的多效唑对大叶黄杨具有较好的正向作用。  相似文献   

20.
六个杨树无性系苗木(2年生根1年生于)叶面积、苗高和地径的季生长用Richards方程模拟,根据模拟参数分别计算最大绝对生长速率,平均绝对生长速率,生长期和拐点。结果为:六个无性系之间在生长速率、拐点和生长期方面均有明显的差异;最好的欧美杨64号生长季末的总生物量是赤峰杨34号的六倍多;六个无性系的总生物量与它们的总叶面积、平均单个叶片的面积、叶面积的平均生长速率和每株树的日净光合总量等呈正相关,而与单位叶面积的日净光合总量呈负相关;总生物量生产依赖于叶面积、苗高、直径的生长速率及其生长期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号