首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
This study examines the potential of hyperspectral sensor systems for the non-destructive detection and differentiation of plant diseases. In particular, a comparison of three fungal leaf diseases of sugar beet was conducted in order to facilitate a simplified and reproducible data analysis method for hyperspectral vegetation data. Reflectance spectra (400–1050 nm) of leaves infected with the fungal pathogens Cercospora beticola, Erysiphe betae, and Uromyces betae causing Cercospora leaf spot, powdery mildew and rust, respectively, were recorded repeatedly during pathogenesis with a spectro-radiometer and analyzed for disease-specific spectral signatures. Calculating the spectral difference and reflectance sensitivity for each wavelength emphasized regions of high interest in the visible and near infrared region of the spectral signatures. The best correlating spectral bands differed depending on the diseases. Spectral vegetation indices related to physiological parameters were calculated and correlated to the severity of diseases. The spectral vegetation indices Normalised Difference Vegetation Index (NDVI), Anthocyanin Reflectance Index (ARI) and modified Chlorophyll Absorption Integral (mCAI) differed in their ability to assess the different diseases at an early stage of disease development, or even before first symptoms became visible. Results suggested that a distinctive differentiation of the three sugar beet diseases using spectral vegetation indices is possible using two or more indices in combination.  相似文献   

2.
色素在植物的生理生态过程中非常重要,利用高光谱数据,揭示光谱反射率上特征波段与光合色素含量间的关系将有助于理解光合色素光谱反射特征的规律,同时为利用高光谱遥感技术快速无损监测植物叶片光合色素提供了技术支持.利用野外采集的桉树叶片样本,在实验室内测定了叶片的高光谱反射率及对应的叶绿素、类胡萝卜素含量.利用光谱分析技术和统计学方法对光谱数据进行处理分析,提取了光谱特征参量,并建立叶绿素、类胡萝卜素含量与光谱特征参量间的估算模型.通过精度检验,研究结果表明以(SDr-SDb)/(SDr+SDb)为变量建立的指数模型估算效果最佳.  相似文献   

3.
接种不同浓度松材线虫的黑松光谱学特征分析   总被引:1,自引:0,他引:1  
利用光谱学进行植物病害的早期诊断是近年来植物病害监测预警研究的一个热点。本试验采用人工接种不同浓度松材线虫的方法,研究了野外健康黑松不同发病阶段黑松松针的反射光谱特征曲线,分析了多个光谱特征参数。结果表明:绿光波段(500~560 nm)和近红外波段(750~900 nm)反射光谱曲线对松树发病程度有一定的指示作用;红边(680~780 nm)位置蓝移、绿峰(510~580 nm)反射高度及红谷(640~700 nm)吸收深度降低、红边斜率减小等光谱特征参数的变化能够很好地反映松树的感病情况。本研究结果可为利用高光谱遥感技术进行松材线虫病监测与预警提供理论依据。  相似文献   

4.
In situ, non-destructive and real time mineral nutrient stress monitoring is an important aspect of precision farming for rational use of fertilizers. Studies have demonstrated the ability of remote sensing to monitor nitrogen (N) in many crops, phosphorus (P) and potassium (K) in very few crops and none so far to monitor sulphur (S). Specially designed (1) fertility gradient experiment and (2) test crop experiments were used to check the possibility of mineral N–P–S–K stress detection using airborne hyperspectral remote sensing. Leaf and canopy hyperspectral reflectance data and nutrient status at booting stage of the wheat crop were recorded. N–P–S–K sensitive wavelengths were identified using linear correlation analysis. Eight traditional vegetation indices (VIs) and three proposed (one for P and two for S) were evaluated for plant N–P–S–K predictability. A proposed VI (P_1080_1460) predicted P content with high and significant accuracy (correlation coefficient (r) 0.42 and root means square error (RMSE) 0.180 g m?2). Performance of the proposed S VI (S_660_1080) for S concentration and content retrieval was similar whereas prediction accuracies were higher than traditional VIs. Prediction accuracy of linear regressive models improved when biomass-based nutrient contents were considered rather than concentrations. Reflectance in the SWIR region was found to monitor N–P–S–K status in plants in combination with reflectance at either visible (VIS) or near infrared (NIR) region. Newly developed and validated spectral algorithms specific to N, P, S and K can further be used for monitoring in a wheat crop in order to undertake site-specific management.  相似文献   

5.
Spectral mixture analysis and hyperspectral remote sensing are analytical and hardware tools new to precision agriculture. They can allow detection and identification of various crop stresses and other plant and canopy characteristics through analysis of their spectral signatures. One stressor in cotton, the strawberry spider mite (Tetranychus turkestani U.N.), feeds on plants causing leaf puckering and reddish discoloration in early stages of infestation and leaf drop later. To determine the feasibility of detecting the damage caused by this pest at the field level, AVIRIS imagery was collected from USDA-ARS cotton research fields at Shafter, CA on 4 dates in 1999. Additionally, cotton plants and soil were imaged in situ in 10 nm increments from 450 to 1050 nm with a liquid-crystal tunable-filter camera system. Mite-damaged areas on leaves, healthy leaves, tilled shaded soil, and tilled sunlit soil were chosen as reference endmembers and used in a constrained linear spectral mixture analysis to unmix the AVIRIS data producing fractional abundance maps. The procedure successfully distinguished between adjacent mite-free and mite-infested cotton fields although shading due to sun angle differences between dates was a complicating factor. The resulting healthy plant, soil, mite-damaged, and shade fraction maps showed the distribution and relative abundance of these endmembers in the fields. These hardware and software technologies can identify the location, spatial extent, and severity of crop stresses for use in precision agriculture.  相似文献   

6.
In the context of a growing interest in remote sensing for precision agriculture applications, the utility of space-borne hyperspectral imaging for the development of a crop-specific spectral library and automatic identification and classification of three cultivars for each of rice (Oryza sativa L.), chilli (Capsicum annuum L.), sugarcane (Saccharum officinarum L.) and cotton (Gossipium hirsutum L.) crops have been investigated in this study. The classification of crops at cultivar level using two spectral libraries developed using hyperspectral reflectance data at canopy scale (in-situ hyperspectral measurements) and at pixel scale (Hyperion data) has shown promising results with 86.5 and 88.8% overall classification accuracy, respectively. This observation highlights the possible integration of in-situ hyperspectral measurements with space-borne hyperspectral remote sensing data for automatic identification and discrimination of various crop cultivars. However, considerable spectral similarity is observed between cultivars of rice and sugarcane crops which may pose problems in the accurate identification of various crop cultivars.  相似文献   

7.
Glyphosate is a non-selective, systemic herbicide highly toxic to sensitive plant species. Its use has seen a significant increase due to the increased adoption of genetically modified glyphosate-resistant crops since the mid-1990s. Glyphosate application for weed control in glyphosate-resistant crops can drift onto an off-target area, causing unwanted injury to non-glyphosate resistant plants. Thus, early detection of crop injury from off-target drift of herbicide is critical in crop production. In non-glyphosate-resistant plants, glyphosate causes a reduction in chlorophyll content and metabolic disturbances. These subtle changes may be detectable by plant reflectance, which suggests the possibility of using optical remote sensing for early detection of drift damage to plants. In order to determine the feasibility of using optical remote sensing, a greenhouse study was initiated to measure the canopy reflectance of soybean plants using a portable hyperspectral image sensor. Non-glyphosate resistant soybean (Glycine max L. Merr.) plants were treated with glyphosate using a pneumatic track sprayer in a spray chamber. The three treatment groups were control (0 kg ae/ha), low dosage (0.086 kg ae/ha), and high dosage (0.86 kg ae/ha), each with four 2-plant pots. Hyperspectral images were taken at 4, 24, 48, and 72 h after application. The extracted canopy reflectance data was analyzed with vegetation indices. The results indicated that a number of vegetation indices could identify crop injury at 24 h after application, at which time visual inspection could not distinguish between glyphosate injured and non-treated plants. To improve the results a modified method of spectral derivative analysis was proposed and applied to find that the method produced better results than the vegetation indices. Four selected first derivatives at wavelength 519, 670, 685, and 697 nm could potentially differentiate crop injury at 4 h after treatment. The overall false positive rate was lower than the vegetation indices. Furthermore, the derivatives demonstrated the ability to separate treatment groups with different dosages. The study showed that hyperspectral imaging of plant canopy reflectance could be a useful tool for early detection of soybean crop injury from glyphosate, and that the modified spectral derivative analysis had a better performance than vegetation indices.  相似文献   

8.
实测了不同水肥耦合作用下,大豆冠层高光谱反射率与叶绿素含量数据,并对光谱反射率、微分光谱与叶绿素含量进行了相关分析;采用叶绿素A与叶绿素B诊断波段构建了特定植被指数,对叶绿素A、叶绿素B进行了回归分析;采用小波分析对采集的光谱反射率数据进行了能量系数提取,并以小波能量系数作为自变量进行了单变量与多变量回归分析,对叶绿素含量进行估算。经分析发现,叶绿素A、B与光谱反射率在可见光与近红外波段的相关系数的变化趋势基本一致——在可见光谱波段呈负相关,近红外波段呈正相关,红边处相关系数由负变正。特定色素植被指数可以提高大豆叶绿素估算精度(R2>0.73);小波能量系数回归模型可以进一步提高大豆叶绿素含量的估算水平,以一个特定小波能量系数作为自变量的回归模型,叶绿素A其确定性系数R2为0.76,叶绿素B为0.78;以4变量与9变量回归分析结果表明:叶绿素A实测值与预测值的线性回归确定性系数R2分别大于0.85、0.89;叶绿素B实测值与预测值的线性回归确定性系数R2分别为0.86、0.90。  相似文献   

9.
Bacterial leaf blight (BLB) is an important vascular disease of irrigated rice and serious infestations may cause a significant loss of yield. This study analyzed hyperspectral canopy reflectance spectra of two rice cultivars with different susceptibilities to BLB to establish spectral models for assessing disease severity for future site-specific management. The results indicated that wavebands from 757 to 1039 nm were the most sensitive region of the spectrum for the moderately susceptible cultivar TNG 67, whereas most narrow bands showed a significant relationship for the highly susceptible cultivar TCS 10. All the spectral indices (SIs) calculated had significant relationships with proportions of infested area in cultivar TCS 10, but only two SIs correlated significantly with cultivar TNG 67. The relation between the severity of the disease and spectral reflectance for the less susceptible cultivar TNG 67 can be improved by using a multiple linear regression approach.  相似文献   

10.
The reflectance from rice (Oryza sativa L.) leaves and canopy damaged by rice leaf folder (RLF), Cnaphalocrocis medinalis (Guenée) was studied at the booting stage in order to establish a monitoring method for RLF based on hyperspectral data. The results showed that reflectance from rice leaves significantly decreased in the green (530–570 nm) and near infrared (700–1000 nm) regions, and significantly increased in the blue (450–520 nm) and red (580–700 nm) regions as the leaf-roll rate of rice increased. Reflectance from rice canopy significantly decreased in the spectral regions from 737 to 1000 nm as the infestation scale of RLF increased, and the most correlation appeared at 938 nm. Seven spectral regions 503–521, 526–545, 550–568, 581–606, 688–699, 703–715, and 722–770 nm at leaf-level, and one region 747–754 nm at canopy-level were found to be sensitive bands to exhibit the damage severity in rice by RLF. The position of the red edge peak remarkably moved to blue region, and the amplitude and area of the red edge significantly decreased when rice leaves were severely infected by RLF. Thirty-eight spectral indices at leaf-level and 29 indices at canopy-level were found to be sensitive to leaf-roll rate and infestation scale in rice, respectively. The linear regression models were built to detect the leaf-roll rate (0.0–1.0) and infestation scale (0–5) in rice using leaf- and canopy-level reflectance data. The root mean square error of the model was only 0.059 and 0.22 for the leaf-roll rate and infestation scale, respectively. These results suggested that the hyperspectral reflectance was potential to detect RLF damage severity in rice.  相似文献   

11.
  目的  不同农作物种类光谱差异小,通过探测众多窄波段范围的细微差别,提取区分不同农作物的特征波段,是目前实现农作物高光谱遥感识别的重要途径。如何提取区分不同农作物的特征波段,进而实现农作物的精确识别是一个挑战。近来出现的随机森林方法在多变量目标的分类识别方法展现了优势,为解决这一难题提供了一个新手段。  方法  利用随机森林法与传统方法分析杭州地区8种典型农作物的反射光谱,提取特征波段并进行分类,对比不同方法的识别效果。  结果  不同作物的反射光谱及其一阶微分、二阶微分、倒数的对数、去包络线法所提取的特征波段只能区分部分作物;随机森林法无需对反射光谱预处理,直接对全波段反射光谱数据处理,不仅筛选出了区分不同作物的特征波段,且运用所选择的波段对作物进行随机森林分类的效果也是最优的。  结论  随机森林法选择的波段(550、2 490、370、770、560、380、540、530、570、350 nm)不仅能区分不同作物,还能反映农作物生化属性的不同,使得用于分类的波段及分类方法体现了不同作物间物化性质的不同,在展现高光谱遥感识别农作物优势的同时,也为大面积农作物遥感精细分类提供借鉴。  相似文献   

12.
 以马尾松针叶野外高光谱测量数据和针叶灰分金属元素含量为基础,分析了铅锌矿区及对照区马尾松光谱变化、红边效应、植被指数及马尾松针叶金属元素含量特征。结果表明:矿区马尾松叶面在近红外区域反射率要低于背景区,马尾松红边位置发生了6~19nm的蓝移,根据金属元素含量确定马尾松针叶对铅、锌、锰3种元素有较强的积累作用。  相似文献   

13.
[目的]探究不同高度下地物的光谱特征变化以及不同时期、不同高度下地物的有效快速识别方法。[方法]以2016年8月7日200 m高空高光谱影像和2016年9月25日100、200、300 m高空高光谱影像共4景影像为研究对象,研究不同高度下地物的高光谱特征变化以及不同时期、不同高度下地物的分类精度。[结果]不同高度下,植被的光谱反射率差异显著,随着高度的升高,植被特有的特征如"绿峰"降低、"红谷"升高、"红边位置"出现"红移",在近红外范围内,光谱反射率降低;综合考虑人工参与程度、处理时间和分类精度等方面,基于ISODATA法可实现不同时期、不同高度下地物的快速识别研究。[结论]该研究结果为利用无人机高光谱遥感在其他领域的应用奠定了基础。  相似文献   

14.
【目的】研究实时、快速估测冬小麦不同生育时期水分状况并构建模型,为冬小麦水分精准管理提供科学依据。【方法】以新疆典型滴灌冬小麦为研究对象,应用高光谱成像技术获取冬小麦冠层光谱信息,并对原始光谱反射率进行平滑和数据变换,利用一元线性回归(Simple linear regression,SLR)、主成分回归(Principal components regression,PCR)和偏最小二乘回归(Partial least squares regression,PLSR)3种建模方法,对冬小麦冠层原始光谱及变换光谱分别构建植株水分含量估测模型。【结果】冬小麦冠层原始光谱反射率与植株水分含量相关性不高,对原始光谱反射率进行数据变换可以显著增强与水分含量的相关性和相关波段数,其中倒数一阶微分变换与冬小麦植株水分含量的相关系数最大,为-0.893 0,但不同变换最优相关系数所对应的波段位置并不固定。PLSR方法的模型精度最高,对数变换的PLSR模型估测精度最高,模型$R_{p}^{2}$、RMSEpRPD值分别为0.880 8、3.251 2%、2.934 3;冬小麦不同生育时期估测模型精度存在差异,拔节期、抽穗期估测模型精度较低,灌浆中期最高,其估测模型$R_{p}^{2}$、RMSEpRPD值分别为0.904 8、1.381 1%、3.454 7。【结论】利用高光谱成像技术对估测冬小麦植株水分含量是可行的,在灌浆中期的估测效果最佳。  相似文献   

15.
基于人工神经网络的大豆叶面积高光谱反演研究   总被引:26,自引:0,他引:26  
【目的】探索不同高光谱模型监测大豆叶面积指数LAI的精度。【方法】实测不同水肥耦合作用下,大豆冠层的高光谱反射率与叶面积指数(Leaf Area Index)数据,对二者进行相关分析;采用敏感波段(801nm,670nm)构建RVI, NDVI, SAVI, OSAVI 和MTVI2植被指数,建立大豆LAI估算模型;最后采用相关系数较大的波段作为神经网络模型的输入变量进行大豆LAI的估算。【结果】大豆LAI与光谱反射率在可见光波段呈负相关、近红外波段呈正相关、红边处相关系数由负变正;微分光谱在三边处与大豆LAI关系密切,在红边处取得最大回归确定性系数(R2 = 0.86)。植被指数可以较为精确反演大豆LAI,确定性系数R2>0.84。人工神经网络模型可以大大提高大豆LAI的估算水平,当隐藏层节点数为2时,R2为0.92,随着隐藏层节点数的增加,R2可高达0.96;在没有黄熟期数据干扰的情况下,神经网络可以进一步提高大豆LAI的反演精度,R2可高达0.99。【结论】与基于植被指数建立的模型相比,神经网络模型可以有效避免因LAI过高而出现的过饱和现象,大大提高了LAI的反演精度。  相似文献   

16.
A necessary pre-requisite for variable rate application of plant nutrients to manage inputs in a site-specific manner is a technique to detect nutrient stresses in plants in real-time. Spectral reflectance of plant canopy may provide a non-destructive and rapid technique to detect nutrient and water stress in plants. In this study, we investigated the effect of water on nutrient stress discrimination (nitrogen, N; phosphorus, P; and potassium, K) based on the visible and near infrared reflectance of maize leaves grown under controlled greenhouse conditions. The analysis of the spectral data indicated that it was challenging to detect the nutrient deficiencies if the plant water status was unknown. However, if a priori knowledge of water stress existed, such as a well-watered situation, the ability to discriminate nutrient stress improved significantly. The analysis of whole plant behaviour (i.e., mean reflectance data from all leaves within a plant) versus leaves located at a specific location within a plant indicated that knowledge of spatial location of leaves within a plant helped to identify N and P stress and NPK as a multi-stress condition more clearly.  相似文献   

17.
Signals for site-specific nitrogen-top-dressing can be obtained by a sensor mounted on a tractor. The plant appearance can serve as a criterion. The question is which plant criteria provide pertinent information and how this can be indicated. Increasing the nitrogen-supply changes leaf colour from yellow-green to blue-green via the chlorophyll-concentration in the leaves and leads to growth of plants. Present sensing systems measure either chlorophyll concentration in the leaves, total area of the leaves or crop resistance against bending. The aim and purpose of this study is to outline prospects for application. Therefore, the emphasis is on results and not on experimental methods, to which references are given. Mainly optical sensing systems relying on reflectance or fluorescence are dealt with. Good signals of the nitrogen-supply can be obtained from the red edge plus the near infrared range of the reflectance. The results with some new spectral indices were better than those with standard spectral indices. Fluorescence sensing instead of reflectance sensing eliminates erroneous signals from bare soil. However, only low supply rates were clearly indicated. The biomass of the crop or the total area of its leaves is a very important criterion. Reflectance indices can take this into account. Fluorescence signals are barely influenced by this parameter.  相似文献   

18.
In most cases, statistical models for monitoring the disease severity of yellow rust are based on hyperspectral information. The high cost and limited cover of airborne hyperspectral data make it impossible to apply it to large scale monitoring. Furthermore, the established models of disease detection cannot be used for most satellite images either because of the wide range of wavelengths in multispectral images. To resolve this dilemma, this paper presents a novel approach by constructing a spectral knowledge base (SKB) of diseased winter wheat plants, which takes the airborne images as a medium and links the disease severity with band reflectance from environment and disaster reduction small satellite images (HJ-CCD) accordingly. Through a matching process with a SKB, we estimated the disease severity with a disease index (DI) and degrees of disease severity. The proposed approach was validated against both simulated data and field surveyed data. Estimates of DI (%) from simulated data were more accurate, with a coefficient of determination (R 2) of 0.9 and normalized root mean square error (NRMSE) of 0.2. The overall accuracy of classification reached 0.8, with a kappa coefficient of 0.7. Validation of the estimates against field measurements showed that there were some errors in the DI value with the NRMSE close to 0.5. The result of the classification was more encouraging with an overall accuracy of 0.77 and a kappa coefficient of 0.58. For the matching process, Mahalanobis distance performed better than the spectral angle (SA) in all analyses in this study. The potential of SKB for monitoring the incidence and severity of yellow rust is illustrated in this study.  相似文献   

19.
Vegetation indices (VIs) derived from remote sensing imagery are commonly used to quantify crop growth and yield variations. As hyperspectral imagery is becoming more available, the number of possible VIs that can be calculated is overwhelmingly large. The objectives of this study were to examine spectral distance, spectral angle and plant abundance (crop fractional cover estimated with spectral unmixing) derived from all the bands in hyperspectral imagery and compare them with eight widely used two-band and three-band VIs based on selected wavelengths for quantifying crop yield variability. Airborne 102-band hyperspectral images acquired at the peak development stage and yield monitor data collected from two grain sorghum fields were used. A total of 64 VI images were generated based on the eight VIs and selected wavelengths for each field in this study. Two spectral distance images, two spectral angle images and two abundance images were also created based on a pair of pure plant and soil reference spectra for each field. Correlation analysis with yield showed that the eight VIs with the selected wavelengths had r values of 0.73–0.79 for field 1 and 0.82–0.86 for field 2. Although all VIs provided similar correlations with yield, the modified soil-adjusted vegetation index (MSAVI) produced more consistent r values (0.77–0.79 for field 1 and 0.85–0.86 for field 2) among the selected bands. Spectral distance, spectral angle and plant abundance produced similar r values (0.76–0.78 for field 1 and 0.83–0.85 for field 2) to the best VIs. The results from this study suggest that either a VI (MSAVI) image based on one near-infrared band (800 or 825 nm) and one visible band (550 or 670 nm) or a plant abundance image based on a pair of pure plant and soil spectra can be used to estimate relative yield variation from a hyperspectral image.  相似文献   

20.
Spectral unmixing techniques can be used to quantify crop canopy cover within each pixel of an image and have the potential for mapping the variation in crop yield. This study applied linear spectral unmixing to airborne hyperspectral imagery to estimate the variation in grain sorghum yield. Airborne hyperspectral imagery and yield monitor data recorded from two sorghum fields were used for this study. Both unconstrained and constrained linear spectral unmixing models were applied to the hyperspectral imagery with sorghum plants and bare soil as two endmembers. A pair of plant and soil spectra derived from each image and another pair of ground-measured plant and soil spectra were used as endmember spectra to generate unconstrained and constrained soil and plant cover fractions. Yield was positively related to the plant fraction and negatively related to the soil fraction. The effects of variation in endmember spectra on estimates of cover fractions and their correlations with yield were also examined. The unconstrained plant fraction had essentially the same correlations (r) with yield among all pairs of endmember spectra examined, whereas the unconstrained soil fraction and constrained plant and soil fractions had r-values that were sensitive to the spectra used. For comparison, all 5151 possible narrow-band normalized difference vegetation indices (NDVIs) were calculated from the 102-band images and related to yield. Results showed that the best plant and soil fractions provided better correlations than 96.3 and 99.9% of all the NDVIs for fields 1 and 2, respectively. Since the unconstrained plant fraction could represent yield variation better than most narrow-band NDVIs, it can be used as a relative yield map especially when yield data are not available. These results indicate that spectral unmixing applied to hyperspectral imagery can be a useful tool for mapping the variation in crop yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号