首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourty two barley lines direved from the F7 of crosses between barley cultivars and different accessions of Hordeum spontaneum collected in Israel and 30 lines or varieties with known genes for resistance to powdery mildew were included m this study. Eleven European and three Israeli powdery mildew cultures, possessing virulence genes corresponding to known resistance genes, were used to make comparisons between the varieties with known resistance genes and H. spontaneum derived lines. The reaction pattern of 39 H. spontaneum derived lines was clearly different from the reaction pattern o; any of the known genes for mildew resistance included in this study. Only two cases were observed in which the reaction pattern of H. spontaneum derived lines agreed with reaction patterns of known genes for mildew resistance viz. Ml-a9 and Ml-p. Trie Mildew resistance of one line apparently traces back to uncontrolled outcrossing with a Ml-a.6+Ml-g resistant cultivar. Since the majority of the 42 host genotypes tested showed distinctive variation in resistant reaction types against different mildew cultures, this study docs not support the assumption that differences in resistant infection types against distinct mildew cultures are sufficient to indicate the presence of supplementary genes for resistance in a given genotype of the host. The results justify the conclusion that the natural population of H. spontaneum in Israel forms a large gene pool for mildew resistance which is not yet used m cultivated barley.  相似文献   

2.
L. Cséleny    F. Ordon  W. Friedt 《Plant Breeding》1998,117(1):23-26
The inheritance of durable resistance of selected spring barley varieties to Rhynchosporium secalis was investigated. Data from the F2 generation of a 4 × 4 diallel, without reciprocals and the F4 generation of three crosses selected out of this diallel, suggest that resistance in this sample of varieties tested is complex in inheritance. Significant additive effects were detected indicating that the resistance level of barley cultivars may be improved by the hybridisation of suitable varieties. However, the genes conferring resistance seem to be concealed by the expression of one completely dominant resistance gene in our set of varieties. These results are partly in conflict with previous results on the inheritance of resistance to R. secalis in the breeder's line ‘11258/228613A’ indicating that the effectiveness of this resistance gene may be greatly influenced by the genetic background of the current population of R. secalis.  相似文献   

3.
Summary The inheritance of resistance to Nasonovia ribis nigri in L. sativa was investigated. Parents and F1 and F2 populations from crosses between the susceptible cultivar Ravel and two resistant breeding lines were tested. In both breeding lines one dominant gene appeared responsible for resistance.  相似文献   

4.
Summary Accessions of Hordeum vulgare ssp. spontaneum, the wild progenitor of barley, collected in Israel (70), Iran (15) and Turkey (6) were screened for seedling response to four isolates of Rhynchosporium secalis, the pathogen causing leaf scald in barley. Resistance was very common in the collection (77%) particularly among accessions from the more mesic sites (90%). The genetics of this resistance were investigated in fifteen backcross (BC3) lines that contained an isozyme variant from H.v. ssp. spontaneum in a H.v. ssp. vulgare (cv. Clipper) background and were resistant to scald. Segregation in the BC3F2 families conformed with a single dominant resistance gene in 9 of the 15 lines. Scald resistance and the isozyme marker were closely linked in three of the BC3-lines, loosely linked in four and unlinked in the remaining eight. Scald resistance genes were identified on barley chromosomes 1, 3, 4 and 6. Crosses between several of the scald resistant BC-lines together with the linkage data indicated that at least five genetically independent resistances are available for combining together for deployment in barley. The linkage of scald resistance in several BC3-lines to the isozyme locus Acp2 is of special interest as this locus is highly polymorphic in wild barley.  相似文献   

5.
Two-hundred and thirty-two accessions of barley landraces collected from Tunisia were screened for resistance to powdery mildew. A number of race-specific genes were detected using the detached leaf technique. Among the 232 accessions tested, 169 were susceptible to powdery mildew, 20 were resistant and 43 showed differential reactions to the three isolates of powdery mildew used. An attempt was made to determine the number of genes, the types of gene, the types of gene action and the gene loci in 20 resistant accessions. Three types of cross were made: (1) the accessions were crossed to the susceptible variety ‘Pallas’, (2) the accessions were crossed with ‘Pallas’ isolines, and (2) accessions with identical powdery mildew reaction patterns were intercrossed. Three isolates of Erysiphe graminis f. sp. hordei were used: Bzm-1, KM 18-75, R13C. A number of different resistance genes were detected among the 19 resistant accessions. Surprisingly, segregation indicating single genes only were detected with the isolates used. Some of these genes could be associated with loci already known. In 19 cases a dominant and in one a recessive mode of inheritance was detected. The recessive gene was not located at the mlo locus. This investigation represents the first systematic study of race-specific genes for powdery mildew resistance in Tunisian landraces. The newly identified sources of resistance may be used in many strategies of breeding for disease resistance.  相似文献   

6.
In this study, the inheritance of resistance to Beet necrotic yellow vein virus (BNYVV) in accessions Holly-1-4and WB42 was investigated. Crosses between both resistant sources and susceptible parents were carried out and F1F2 and BC1 populations were obtained. Virus concentrations in WB42and its F1 populations were lower than in Holly-1-4. Observed ratios of susceptible and resistant plants in segregating populations of Holly-1-4 as well as WB42 were in agreement with hypothesis of one dominant major gene. Segregation of plants in F2 populations obtained from crosses betweenHolly-1-4 and WB42 revealed that the resistance genes in Holly-1-4 and WB42 were nonallelic and linked loci. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
J. A. Kolmer    L. M. Oelke    J. Q. Liu 《Plant Breeding》2007,126(2):152-157
A genetic analysis of the landrace‐derived wheat accessions Americano 25e, Americano 26n, and Americano 44d, from Uruguay was conducted to identify the leaf rust resistance genes present in these early wheat cultivars. The three cultivars were crossed with the leaf rust susceptible cultivar ‘Thatcher’ and approximately 80 backcross (BC1) F2 families were derived for each cross. The BC1F2 families and selected BC1F4 lines were tested for seedling and adult plant leaf rust resistance with selected isolates of leaf rust, Puccinia triticina. The segregation and infection type data indicated that Americano 25e had seedling resistance genes Lr3, Lr16, an additional unidentified seedling gene, and one adult plant resistance gene that was neither Lr12 nor Lr13, and did not phenotypically resemble Lr34. Americano 26n was postulated to have genes Lr11, Lr12, Lr13, and Lr14a. Americano 44d appeared to have two possibly unique adult plant leaf rust resistance genes.  相似文献   

8.
Summary Four newly detected accessions of wild barley (Hordeum vulgare ssp. spontaneum) resistant to powdery mildew caused by Blumeria graminis f. sp. hordei were studied with the aim of finding the number of genes/loci conferring the resistance of individual accessions, the type of inheritance of the genes and their relationships to the Mla locus. F2 populations after crosses between the winter variety ‘Tiffany’ and four wild barley accessions and use of microsatellite DNA markers were focused on the identification of individual resistance genes/loci by means of their chromosomal locations. In PI466495, one locus conferring powdery mildew resistance was identified in highly significant linkage with the marker Bmac0213. This location is consistent with the known locus Mla on chromosome 1HS. In the other three accessions the resistance was determined by two independent loci. In PI466197, PI466297 and PI466461, one locus was identified on chromosome 1HS and three new loci were revealed on chromosomes 2HS (highly significant linkage with Bmac0134), 7HS (highly significant linkage with Bmag0021) and 7HL (significant linkage with EBmac0755). Our prospective aim is identification of further linked DNA markers and the exact location of the resistance genes on the barley chromosomes.  相似文献   

9.
Langdon durum D-genome disomic substitution lines were used to study the chromosome locations of adult-plant leaf rust resistance genes identified from tetraploid wheat accessions. The accessions are 104 (Triticum turgidum subsp. dicoccum var. arras) and 127 (T. turgidum subsp. durum var. aestivum). The complete sets of the substitution lines were crossed as female parents with the accessions and F1 double monosomic individuals selected at metaphase I. Segregating F2 individuals were inoculated during the flag leaf stage with pathotype UVPrt2 of Puccinia triticina. The substitution analysis involving accession 104 showed that the gene for leaf rust resistance is located on chromosome 6B. The analysis with accession 127 indicated that chromosome 4A carries a gene for leaf rust resistance. The two novel genes are temporarily designated as Lrac104 and Lrac127, respectively from accessions 104 and 127.  相似文献   

10.
H. Dong    J. S. Quick  Y. Zhang 《Plant Breeding》1997,116(5):449-453
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) has caused serious reduction in wheat production in 17 Western states of the United States since 1986. Inheritance of resistance to RWA in seven wheat lines and the allelism of the resistance genes in these lines with three known resistance genes Dn4, Dn5, and Dn6 were studied. The seven resistant lines were crossed to a susceptible wheat cultivar ‘Carson’ and three resistant wheats: CORWA1 (Dn4), PI 294994 (Dn5), and PI 243781 (Dn6). Seedlings of the parents, F1, and F2 were screened for RWA resistance in the greenhouse by artificial infestation. Seedling reactions were evaluated 21–28 days after the infestation using a 1–9 scale. The resistance level of all the F1 hybrids was similar to that of the resistant parent, indicating dominant gene control. Only two distinctive classes were present and no intermediate types were observed in the F2 population, suggesting qualitative, nonadditive gene action, in which the presence of any one of the dominant alleles confers complete resistance to RWA. Resistance in CI 2401 is controlled by two dominant genes. Resistance in CI 6501 and PI 94365 is governed by one dominant gene. Resistance in PI 94355 and PI 151918 may be conditioned by either one dominant gene or one dominant and one recessive gene. No conclusion can be made on how many resistance genes are in AUSVA1-F3, since the parent population was not a pure line. Allelic analyses showed that one of resistance genes in CI 2401 and PI 151918 was the same allele as Dn4, the resistance gene in CI 6501 was the same allele as Dn6, and AUS-VA1-F3 had one resistance gene which was the same allele as one of the resistance genes in PI 294994. One non-allelic resistance gene different from the Dn4, Dn5, and Dn6 genes in CI 2401, PI 94355, PI 94365, and PI 222668 was identified and should be very useful in diversifying gene sources in wheat breeding.  相似文献   

11.
Bruchid beetles or seed weevils are the most devastating stored pests of grain legumes causing considerable loss to mungbean (Vigna radiata (L.) Wilczek). Breeding for bruchid resistance is a major goal in mungbean improvement. Few sources of resistance in cultivated genepool were identified and characterized, however, there has been no study on the genetic control of the resistance. In this study, we investigated the inheritance of seed resistance to Callosobruchus chinensis (L.) and C. maculatus (F.) in two landrace mungbean accessions, V2709BG and V2802BG. The F1, F2 and BC generations were developed from crosses between the resistant and susceptible accessions and evaluated for resistance to the insects. It was found that resistance to bruchids in seeds is controlled by maternal plant genotype. All F1 plants derived from both direct and reciprocal crosses exhibited resistance to the bruchids. Segregation pattern of reaction to the beetles in the F2 and backcross populations showed that the resistance is controlled by a major gene, with resistance is dominant at varying degrees of expressivity. Although the presence of modifiers was also observed. The gene is likely the same locus in both V2709BG and V2802BG. The resistant gene is considered very useful in breeding for seed resistance to bruchids in mungbean.  相似文献   

12.
A breeding programme was developed to obtain barley yellow dwarf virus (BYDV)-resistant winter genotypes using the Yd2 gene. The aim was to incorporate the Yd2 allele into the new high-yielding genotypes to release cultivars that allow barley cultivation in areas where BYDV is endemic. The resistant lines were developed using pedigree selection. An ICARDA resistant line (83RCBB130) carrying the Yd2 gene was crossed with three susceptible, high-yielding winter varieties and their F1 lines were either selfed or backcrossed to the matching susceptible parent. The best lines selected from subsequent selfing generations were evaluated in replicated trials in the presence or absence of BYDV, starting from F6 and BC1F5 to F8 and BC1F7 generations. Four genotypes with superior agronomic traits and BYDV resistance were selected.  相似文献   

13.
Eight spring barley accessions from the gene bank in Gatersleben, Germany, and 10 cultivars were tested for stripe rust resistance. Tests were performed at the seedling stage in the growth chamber and as adult plants in the field. All accessions and six cultivars were scored as resistant against race 24 under all test conditions, with very few plants as exceptions, while the susceptible control cultivars ‘Karat’ and ‘Certina’, and four other cultivars were attacked in all cases. Differences between accessions and between cultivars were detected after infection with isolates from ‘Trumpf’ and ‘Bigo’ (seedling tests only). Infection structures within seedling leaves without pustules and for the first time within leaves of adult plants from the field were analysed by fluorescence microscopy. With this method additional genetic Differences in the resistance reaction could be detected which could not to be seen in the resistance test. Crosses between the accessions and the susceptible cultivar ‘Karat’ led to segregating F2 progenies. The percentage of resistant plants varied between the accessions. This also indicates a different genetic basis of resistance in the accessions. The infection structures observed by fluorescence microscopy stopped earlier in leaves of the two accessions HOR 8979 and HOR 8991 than in leaves of other accessions in all the tests. These accessions were the only ones with more than 50% resistant plants in all F2 tests. In general, the accessions from the gene bank can be used as new resistance sources against stripe rust.  相似文献   

14.
R. Götz  W. Friedt 《Plant Breeding》1993,111(2):125-131
Barley yellow mosaic disease is caused by several viruses, i.e. barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV) and BaYMV-2. The reaction of different barley germplasms to the barley mosaic viruses was studied in field and greenhouse experiments. The results show a complex situation; some varieties are resistant to all the viruses, while others are resistant to one or two of them only. Crosses between different barley germplasms were earned out in order to test whether genetic diversity of resistance against mosaic viruses does exist, particularly, BaMMV. A total of 45 foreign barley varieties were crossed to German cultivars carrying the resistance gene ym4. In F2 of 27 crosses, no segregation could be detected, leading to the conclusion that the resistance genes of the foreign parents are allelic with ym4 e.g. Ym1 (‘Mokusekko 3’) and Ym2 (‘Mihori Hadaka 3’). A total of 18 crosses segregated in F2 indicating that foreign parents, like ‘Chikurin Ibaraki 1’, ‘Iwate Omugi 1’, and “Anson Barley”, carry resistance genes different from the gene of German cultivars, e.g. ‘Asorbia’ or ‘Franka’. By means of statistical evaluation (Chi2-test), the observed segregation ratios were analyzed in order to obtain significant information on the heredity of resistance. All the resistance genes described here as being different from the gene ym4, act recessively. Most of the exotic varieties seem to carry only one resistance gene. In a few cases, more than one gene may be present.  相似文献   

15.
R. Jonsson    T. Säll    T. Kraft  M. Gustafsson 《Plant Breeding》1999,118(4):313-317
The inheritance of seedling resistance to a Swedish isolate of Pyrenophora teres f. teres was investigated in four resistance sources of spring barley. Accessions CI 2330, CI 5791, CI 5822 and CI 9779 were used as resistance sources, and the cultivar ‘Alexis’ was used as a susceptible parent in different crosses. From the disease reaction in the F1, F2 and F3 generations it was concluded that the resistance was governed by the same two complementary genes in CI 5791, CI 822 and CI 9776. One of these genes was present in CI 2330. The first three cultivars were highly resistant to the isolate used in this investigation. These results, when combined with earlier studies, suggest that CI 5791, CI 5822 and CI 9776 may be of great value as sources of resistance to barley net blotch. Spearman's rank correlation between the disease reaction of F2 plants and their F3 progeny was highly significant (r = 0.75; P ≥ 0.001) It is suggested that selection in the F2 generation is effective. In a backcross breeding scheme, single plant reactions in F1 or F2 need to be confirmed in later generations.  相似文献   

16.
R. Ecker    A. Cahaner  A. Dinoor 《Plant Breeding》1990,104(3):224-230
The genetics of resistance to Septoria glume blotch (caused by the pathogen Septoria nodorum Berk.) in the wild wheat species Ae. longissima was investigated. The resistance was characterized by two parameters measured on detached leaves — lesion size (LS) and length of latent period (LP), and by disease severity (DS) under field conditions. Generations F1, F2 and F3, derived from a cross between two Ae. longissima accessions, were analyzed. The two parameters measured on detached leaves (LS and LP) were highly correlated, while DS was moderately correlated to both LS and LP. The mean LS and the mean LP of F1 generation indicated considerable dominance for resistance in both parameters. The estimates of broad-sense and narrow-sense heritability were moderate for LS and LP (0.21—0.55). Narrow-sense heritability for DS was high (0.77). Estimates of the number of genes controlling each of the parameters (LS, LP, DS) were between 2.5—3.2. It is suggested that the resistance is controlled by three to four quantitative genes with a partial dominance of the alleles for resistance. Indications for genie interaction were found in LS and in LP. A model of inheritance containing complementation between dominant resistance-alleles is suggested. Highly resistant Ae. longissima accessions are recommended as sources of germplasm for improving the resistance of cultivated wheats to Septoria glume blotch. The possibility of using dominant alleles for resistance in hybrid cultivars is discussed.  相似文献   

17.
Summary Studies were conducted to determine the inheritance and allelic relationships of genes controlling resistance to the Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), in seven wheat germplasm lines previously identified as resistant to RWA. The seven resistant lines were crossed to a susceptible wheat cultivar Carson, and three resistant wheats, CORWA1, PI294994 and PI243781, lines carrying the resistance genes Dn4, Dn5 and Dn6, respectively. Seedlings of the parents, F1 and F2 were screened for RWA resistance in the greenhouse by artificial infestation. Seedling reactions were evaluated 21 to 28 days after the infestation using a 1 to 9 scale. All the F1 hybrids had equal or near equal levels of resistance to the resistant parent indicating dominant gene control. Only two distinctive classes were present and no intermediate types were observed in the F2 segregation suggesting major gene actions. The resistance in PI225262 was controlled by two dominant genes. Resistance in all other lines was controlled by a single dominant gene. KS92WGRC24 appeared to have the same resistance gene as PI243781 and STARS-9302W-sib had a common allele with PI294994. The other lines had genes different from the three known genes.  相似文献   

18.
Genetic basis of adult plant leaf rust resistance in three released Indian wheat cultivars viz. DWR195, RAJ3765 and HP1731 was investigated through detailed inheritance study under controlled polythene house condition at Flowerdale, India. The F2, F3, F4 and F5 generations were analyzed with the most frequent and virulent Indian leaf rust pathotype 121R63-1. Two complementary recessive genes imparted resistance in DWR195, two complementary dominant genes governed the resistance of RAJ3765 whereas two independent dominant genes were involved in the resistance of HP1731. The genes responsible for adult plant resistance in the three cultivars were not allelic. The two complementary genes of DWR195 and two independent dominant genes of HP1731 have been isolated as single gene lines. Utilization of resistance from HP1731, which carries two independent dominant genes, will be easy as compared to DWR195 and RAJ3765.  相似文献   

19.
The inheritance of resistance to root‐lesion nematode was investigated in five synthetic hexaploid wheat lines and two bread wheat lines using a half‐diallel design of F1 and F2 crosses. The combining ability of resistance genes in the synthetic hexaploid wheat lines was compared with the performance of the bread wheat line ‘GS50a’, the source of resistance to Pratylenchus thornei used in Australian wheat breeding programmes. Replicated glasshouse trials identified P. thornei resistance as polygenic and additive in gene action. General combining ability (GCA) of the parents was more important than specific combining ability (SCA) effects in the inheritance of P. thornei resistance in both F1 and F2 populations. The synthetic hexaploid wheat line ‘CPI133872’ was identified as the best general combiner, however, all five synthetic hexaploid wheat lines possessed better GCA than ‘GS50a’ The synthetic hexaploid wheat lines contain novel sources of P. thornei resistance that will provide alternative and more effective sources of resistance to be utilized in wheat breeding programmes.  相似文献   

20.
Leaf‐rust resistance (Rph) genes in 61 Czech and Slovak barley cultivars and 32 breeding lines from registration trials of the Czech Republic were postulated based on their reaction to 12 isolates of Puccinia hordei with different combinations of virulence genes. Five known Rph genes (Rph2, Rph3, Rph4, Rph7, and Rph12) and one unknown Rph gene were postulated to be present in this germplasm. To corroborate this result, the pedigree of the barley accessions was analysed. Gene Rph2, as well as Rph4, originated from old European cultivars. The donor of Rph3, which has been mainly used by Czech and Slovak breeders, is ‘Ribari’ (‘Baladi 16’). Rph12 originates from barley cultivars developed in the former East Germany. Rph7 in the registered cultivar ‘Heris’ originates from ‘Forrajera’. A combination of two genes was found in 10 cultivars. Nine heterogeneous cultivars were identified; they were composed of one component with an identified Rph gene and a second component without any resistance gene. No gene for leaf rust resistance was found in 17 of the accessions tested. This study demonstrates the utility of using selected pathotypes of P. hordei for postulating Rph genes in barley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号