首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effects of long‐term extenders on post‐thaw sperm quality characteristics following different holding times (HT) of boar semen at 17 and 10°C. Sperm‐rich fractions, collected from five boars, were diluted in Androhep® Plus (AHP), Androstar® Plus (ASP), Safecell® Plus and TRIXcell® Plus (TCP) extenders. The extended semen samples were held for 2 hr at 17°C (HT 1) and additionally for 24 hr at 10°C (HT 2), after they were evaluated and frozen. CASA sperm motility and motion patterns, mitochondrial membrane potential (MMP), plasma membrane integrity (PMI) and normal apical ridge (NAR) acrosome integrity were assessed in the pre‐freeze and frozen‐thawed semen. The Vybrant Apoptosis Assay Kit was used to analyse the proportions of viable and plasma membrane apoptotic‐like changes in spermatozoa. Results indicated that boar variability, extender and HT significantly affected the sperm quality characteristics, particularly after freezing‐thawing. Differences in the pre‐freeze semen were more marked in the sperm motion patterns between the HTs. Pre‐freeze semen in HT 2 showed significantly higher VCL and VAP, whereas no marked effects were observed in the sperm membrane integrity and viability (YO‐PRO‐1?/PI?) among the extenders. Post‐thaw sperm TMOT and PMOT were significantly higher in the AHP and ASP extenders of HT 2 group, whereas VSL, VCL and VAP were markedly lower in the TCP extender. Furthermore, spermatozoa from the AHP‐ and ASP‐extended semen of HT 2 group were characterized by higher MMP, PMI and NAR acrosome integrity following freezing‐thawing. In most of the extenders, the incidence of frozen‐thawed spermatozoa with apoptotic‐like changes was greater in HT 1. The findings of this study indicate that holding of boar semen at 10°C for 24 hr in long‐term preservation extenders modulates post‐thaw sperm quality characteristics in an extender‐dependent manner. These results will further contribute to the improvement in the cryopreservation technology of boar semen.  相似文献   

2.
Development of new semen cryopreservation techniques improving sperm survival and ensuring availability of viable spermatozoa for a prolonged time‐period after AI is promising tools to reduce sensitivity of timing of AI and enhance overall fertility. The SpermVital® technology utilizes immobilization of bull spermatozoa in a solid network of alginate gel prior to freezing, which will provide a gradual release of spermatozoa after AI. The objective of this study was to compare post‐thaw sperm quality and in vitro sperm survival over time of Norwegian Red bull semen processed by the SpermVital® (SV) technology, the first commercialized production line of SpermVital® (C) and by conventional procedure applying Biladyl® extender (B). Post‐thaw sperm motility was not significantly different between SV, C and B semen (p > .05). However, sperm viability and acrosome intactness were higher for SV than C and B semen (p < .05). Small differences in DNA quality were observed (p < .05). Sperm viability after storage in uterus ex vivo was higher for SV than for C semen (p < .05). Furthermore, sperm survival in vitro over time at physiological temperature was significantly higher for SV semen than C semen as well as B semen during the incubation period of 48 hr (p < .05). In conclusion, the SpermVital® technology is improved and is more efficient in conserving post‐thaw sperm quality and results in higher sperm viability over time in vitro for SV than for C and B semen.  相似文献   

3.
The addition of 0.5% (v/v) of Equex STM Paste (Nova Chemical Sales, Scituate Inc., MA, USA), whose active ingredient is sodium dodecyl sulphate (SDS), to a Tris–egg yolk extender was demonstrated to improve the longevity of frozen–thawed dog spermatozoa during in vitro incubation at 38°C. The aim of the first experiment was to compare the effects of two SDS‐containing compounds, Equex STM Paste and Equex Pasta (Minitüb, Tiefenbach, Germany), when added to a Tris–egg yolk based extender, on the post‐thaw longevity of dog spermatozoa, as well as on the intracellular Ca2+ concentration of spermatozoa, during post‐thaw incubation at 38°C. The post‐thaw sperm survival and longevity, as well as the quality of the sperm movement, were significantly better when using Equex STM Paste. Such prolonged sperm longevity, however, was associated to a higher intracellular Ca2+ concentration in a large subpopulation of the live spermatozoa. A second experiment was aimed to evaluate the effects of sperm dilution immediately post‐thaw with a Tris buffer containing glucose or fructose. The two Tris buffers were no different for any of the sperm parameters studied. The aim of a third experiment was to evaluate the sperm longevity, motility patterns and intracellular Ca2+ concentration of cryopreserved dog spermatozoa during post‐thaw incubation in capacitating conditions [canine capacitating medium (CCM) with or without 5 μg/ml of heparin]. Heparin had no significant effects on any of the sperm parameters evaluated. During the first 8 h of incubation, the majority of the live spermatozoa had a high intracellular Ca2+ content. However, after 8–10 h of incubation, it had significantly declined. The highest proportion of fast motile sperm, and the highest curvilinear velocity, average path velocity and amplitude of lateral head displacement for the total motile sperm were observed during the 2–4‐h incubation period. It was concluded that: (a) the addition of 0.5% (v/v) of Equex STM Paste to a Tris–egg yolk based extender significantly improved the post‐thaw longevity of dog spermatozoa, but the same concentration of Equex Pasta had no significant beneficial effects; (b) sperm dilution after thawing with a Tris buffer containing glucose or fructose made no difference in post‐thaw sperm longevity; (c) the addition of 5 μg/ml of heparin to CCM had no significant capacitating effects on frozen–thawed dog spermatozoa.  相似文献   

4.
The objective of this research was to improve the techniques in processing chilled and frozen‐thawed horse semen. In a preliminary experiment (Exp. I), different techniques for sperm selection and preparation [Swim‐up, Glass wool (GW) filtration, Glass wool Sephadex (GWS) filtration; Percoll] were tested for their suitability for equine spermatozoa and results were compared with the routine procedure by dilution (Exp. I). In the main experiment (Exp. II), two sperm preparation techniques (GWS, Leucosorb®) refering to the results of Exp. I and a previous study of our group (Pferdcheilkunde 1996 12, 773) were selected for processing complete ejaculates either for cooled‐storage or cryopreservation. In a third experiment (Exp. III), pregnancy rates from inseminations with semen processed according to the techniques tested in Exp. II were compared with those obtained with semen processed according to routine procedures. In Exp. I (six stallions, six ejaculates/stallion), between 48 and 92% of spermatozoa were lost following the different sperm selection procedures (p < 0.05). Preparation of sperm increased percentage of progressively motile spermatozoa (pms) [Swim‐up, GW, GWS vs dilution, Percoll (p < 0.05)] and decreased percentage of sperm head abnormalities [Swim‐up, GW, GWS vs dilution, Percoll (p < 0.05)] probably by not improving the quality of individual cells, but by elimination of spermatozoa of inferior quality. In Exp. II (eight stallions, three ejaculates/stallion) Leucosorb® and GWS procedures allowed the filtration of large volumes (extended ejaculates) for routine laboratory practice. GWS and Leucosorb® filtration resulted in increased motility, membrane integrity and sperm viability after storage of spermatozoa until 48 h at +5°C when compared with control (diluted) and centrifuged semen (p < 0.05). Significantly more spermatozoa were recovered after centrifugation (87.8 ± 15.4%) compared with GWS (63.5 ± 18.6%) and Leucosorb® filtration (53.6 ± 22.3%). GWS or Leucosorb® procedure resulted in successful cryopreservation of stallion semen without centrifugation for removal of seminal plasma. The per cycle conception rate of inseminated mares using 200 × 106 pms transferred within 8 h after collection of semen was not affected by GWS filtration or Leucosorb® separation when compared with centrifugation (n.s.; Exp. III). In conclusion, GWS and Leucosorb® filtration results in the improvement of semen quality and should be considered as a method for stallion semen processing. Additional studies are needed for the evaluation of potentially higher fertilizing ability of stallion spermatozoa separated by techniques for sperm selection.  相似文献   

5.
The traditional stripping procedure for collecting fish semen is associated with the risk of urine contamination, which may significantly affect semen quality and quantity. The use of a catheter as an alternative method for semen collection may overcome this problem. Therefore, this study compared Caspian brown trout (Salmo trutta caspius) semen parameters (i.e. sperm density, seminal plasma osmolality, motility parameters of spermatozoa analysed using computer‐assisted sperm analysis and fertility) between the traditional stripping method and the use of a catheter. All parameter values of the semen collected with a catheter were significantly higher (< .05; density = 7.67 ± 1.02 × 109 ml?1 and osmolality = 279.28 ± 32.84 mOsm kg?1) than those collected with stripping method (density = 4.85 ± 0.47 × 109 ml?1 and osmolality = 216.42 ± 20.75 mOsm kg?1). Semen collected with a catheter was characterized by higher spermatozoa motility compared with sperm collected via stripping. Similarly, the fertilization ability of sperm collected with a catheter was significantly greater (< .05) than sperm collected with the traditional stripping method. In conclusion, collection of sperm with a catheter was shown to effectively reduce urine contamination and is therefore recommended for the collection of Caspian brown trout sperm.  相似文献   

6.
Sperm DNA fragmentation is one of the major causes of infertility; the sperm chromatin dispersion test (SCDt) evaluates this parameter and offers the advantage of species‐specific validated protocol and ease of use under field conditions. The main purpose of this study was to evaluate sperm DNA fragmentation dynamics in both fresh and post‐thaw bottlenose dolphin sperm using the SCDt following different cryopreservation protocols to gain new information about the post‐thaw differential sperm DNA longevity in this species. Fresh and cryopreserved semen samples from five bottlenose dolphins were examined for sperm DNA fragmentation dynamics using the SCDt (Halomax®). Sperm DNA fragmentation was assessed immediately at collection and following cryopreservation (T0) and then after 0.5, 1, 4, 8, 24, 48 and 72 h incubation at 37°C. Serially collected ejaculates from four dolphins were frozen using different cryopreservation protocols in a TES‐TRIS‐fructose buffer (TTF), an egg‐yolk‐free vegetable lipid LP1 buffer (LP1) and human sperm preservation medium (HSPM). Fresh ejaculated spermatozoa initially showed low levels of DNA fragmentation for up to 48 h. Lower Sperm DNA fragmentation (SDF) was found in the second fresh ejaculate compared to the first when more than one sample was collected on the same day (p < 0.05); this difference was not apparent in any other seminal characteristic. While there was no difference observed in SDF between fresh and frozen–thawed sperm using the different cryopreservation protocols immediately after thawing (T0), frozen–thawed spermatozoa incubated at 37°C showed an increase in the rate of SDF after 24 h. Sperm frozen in the LP1? buffer had higher levels (p < 0.05) of DNA fragmentation after 24‐ and 48‐h incubation than those frozen in TTF or HSPM. No correlation was found between any seminal characteristic and DNA fragmentation in either fresh and/or frozen–thawed samples.  相似文献   

7.
Little information is available on the quality of stallion spermatozoa after sex sorting. The objectives of the present study were to assess the quality of sex‐sorted stallion spermatozoa and determine its fertilizing ability after hysteroscopic low dose insemination. Ejaculates from four stallions were collected and sorted by a MoFlo SX® flow cytometer/sperm sorter. Before and after sorting, spermatozoa were evaluated for motility by Computer Assisted Sperm Analysis, viability (SYBR 14‐propidium iodide), mitochondrial function (JC‐1) and acrosomal status (fluorescein isothiocyanate Pisum sativum agglutinin conjugated). A fertility trial was carried out on four mares (seven oestrous cycles) by hysteroscopic insemination, depositing 5 × 106 X‐bearing spermatozoa. Sex sorting resulted in a significant decrease (p < 0.001) in all motility characteristics. Sperm viability and percentage of spermatozoa with functional mitochondria were not affected by the sorting process, while the percentage of reacted spermatozoa was higher (p < 0.01) for non‐sorted than sorted spermatozoa. Pregnancy rate was 28.6% (2/7) after low dose hysteroscopic insemination. Only one pregnancy was carried to term with the birth of a healthy filly. In conclusion, despite the reduction in sperm motility, sex sorting did not impair stallion sperm viability and mitochondrial activity immediately post‐thaw; moreover, the sexed spermatozoa retained the ability to fertilize in vivo.  相似文献   

8.
Twenty ejaculates from five dairy AI‐bulls were used to compare, in a split‐sample experiment, the fertility [56 day‐non‐return‐rate (NRR) from more than 14000 AI) and sperm viability post‐thaw of semen diluted with an egg yolk‐ (Triladyl®) or soybean‐based (Biociphos‐Plus®) commercial extender. The in vitro evaluations were divided in two experiments. Experiment 1 (n = 20) included post‐thaw evaluations of motility (subjective and computerized), membrane integrity (CalceinAM/EthD‐1, SYBR‐14/PI, and osmotic resistance test; ORT), and capacitation status (CTC/EthD‐1). Experiment 2 (n = 10) included evaluations of the capacitation‐(CTC/EthD‐1) and acrosome status (FITC‐PSA/EthD‐1) during incubation with/without a challenge with solubilized zona pellucida proteins (SZP). No significant difference in the fertility (69.1 ± 0.8 versus 69.2 ± 0.8) results was found between the two extenders. In experiment 1, the computerized motility evaluations post‐thaw (CASA) showed higher values for Biociphos‐Plus® processed semen for the velocity patterns and lateral sperm head displacement. After 6 h at room temperature (20–22°C) all the CASA motility patterns were significantly higher for Biociphos‐Plus®. The proportion of spermatozoa with intact membranes assessed by CalceinAM was significantly higher in Biociphos‐Plus® (p < 0.001) compared to Triladyl®, but such difference was not seen when using SYBR‐14 or the ORT‐assay. When using the CTC/EthD‐1 assay, a lower proportion of acrosome reacted (AR) spermatozoa post‐thaw (p < 0.01) was found in Biociphos‐Plus® processed semen, as well as a tendency (p < 0.07) for a higher number of uncapacitated spermatozoa. In experiment 2, the proportion of uncapacitated spermatozoa was significantly higher for Biociphos‐Plus® when semen was incubated (38°C and 5% CO2) without SZP at both 0 (p < 0.001) and 30 min (p < 0.05). Concomitantly, Triladyl® showed a higher percentage of capacitated spermatozoa at 0 (p < 0.01), 30 (p < 0.05) and 120 min (p < 0.05). A higher (p < 0.05) incidence of AR‐spermatozoa was seen in Triladyl® at the beginning of the incubation with SZP. No significant difference between extenders was detected for the acrosome status by the FITC‐PSA‐assay. Incubation with SZP induced acrosome reaction of capacitated spermatozoa in both extenders, which was detected by CTC and FITC‐PSA assays. In conclusion, fertility was not affected by Biociphos‐Plus® when 15 × 106 of spermatozoa per AI dose were inseminated. The finding that higher frequencies of spermatozoa seemed more membrane stable post‐thaw, when frozen in Biociphos‐Plus®, might indicate that this extender better protects the sperm viability compared with Triladyl®.  相似文献   

9.
The aim of this study was to evaluate home‐made and commercial extenders for the cryopreservation of Rusa deer semen. After collection by electroejaculation, six ejaculates were diluted and frozen in TES‐based, Tris‐based and Triladyl® extenders. Subjective motility, viability, morphology, acrosome integrity and membrane functionality were assessed post‐thawing and after 1‐hr incubation at 37°C (Thermal stress test). Total and progressive motility, and kinematic parameters were also assessed through CASA system. Post‐thawing sperm progressive motility (PM), velocity according to the straight path (VSL) and linearity (LIN) showed significant differences, and higher values were detected for spermatozoa diluted with Triladyl® and TES (p < 0.05) as compared with Tris (PM of Triladyl® 14.7% vs. 3.2% TES and 2.5% Tris; VSL 56 for Triladyl®, 59.2 for TES and 41.7 for Tris; LIN 45.6 for Triladyl®, 52 for TES and 36.5 for Tris). Triladyl® and TES extender led to better post‐thawing sperm parameters, but these preliminary results need to be verified through artificial insemination trials.  相似文献   

10.
Cryopreservation of epididymal spermatozoa is often performed after shipping the excised testis–epididymis complexes, under refrigeration, to a specialized laboratory. However, epididymal spermatozoa can be collected immediately after excision of the epididymis and sent extended and refrigerated to a laboratory for cryopreservation. In this experiment, we evaluated the effect of both methods of cold storage bovine epididymal spermatozoa as well as of two different extenders on spermatozoa characteristics after freeze–thawing. For that, spermatozoa collected from the caudae epididymis of 19 bulls were extended and cryopreserved in either AndroMed® or a Tris–egg yolk (TEY)‐based extender. Cryopreservation of sperm cells was performed immediately after castration (Group A, n = 9) or after cold storage for 24 h diluted in the two extenders and (Group B, n = 9) and also after cold storage for 24 h within the whole epididymis (Group C, n = 10). Sperm subjective progressive motility (light microscopy), plasma membrane integrity (hypoosmotic swelling test) and sperm viability (eosin–nigrosin) were evaluated. In vitro fertilization and culture (IVF) was performed to assess the blastocyst rate. No differences (p > 0.05) were observed on post‐thaw sperm parameters between samples from Group A, B and C. TEY extended samples presented a higher (p < 0.01) percentage of progressive motile and live sperm, than those extended in AndroMed®. Blastocyst rate after IVF differed only (p < 0.05) between the reference group (IVF performed with frozen semen with known in vitro fertility) and Group A extended in AndroMed®. We conclude that when cryopreservation facilities are distant from the collection site, bovine epididymal sperm can be shipped chilled overnight either within the epididymal tail or after dilution without deleterious effect on post‐thaw sperm quality. TEY extender was more suitable for cold storage and freezing bovine epididymal sperm, than the commercial extender AndroMed®.  相似文献   

11.
The objective of this study was to optimize protocols for the cryopreservation of sex‐sorted boar spermatozoa. In the experiment 1, we evaluated the effects of a standard boar sperm cryopreservation procedure (3% final glycerol concentration) on the in vitro characteristics of sex‐sorted sperm frozen at low sperm concentrations (20 × 106 sperm/ml; S20 group). Non‐sorted spermatozoa frozen at 1000 × 106 (C1000 group) and 20 × 106 (C20 group) sperm/ml were used as the freezing control groups. In experiment 2, the effects of different final glycerol concentrations (0.16%, 0.5%, 1.0%, 2.0% and 3.0%) on post‐thaw quality of the S20 and C20 groups were evaluated. In both experiments, the samples were evaluated prior to freezing (5°C) and at 30, 90 and 150 min after thawing. Experiment 1 indicated that freezing sperm at low concentrations decreased (p < 0.05) the total motility (TM) and progressive motility (PM) at 90 and 150 min after thawing regardless of whether the sperm were sorted or not. However, the sperm membrane integrity was not affected at any evaluation step. Inexperiment 2, significant effects on the TM and PM because of increased glycerol concentrations in the S20 and C20 groups were observed only at 90 and 150 min after thawing. The samples frozen in 3% glycerol showed lower (p < 0.05) TM and PM values when compared to those frozen in the presence of 0.5% and 1% glycerol. In both experiments, non‐sorted control samples displayed higher percentages of spermatozoa with damaged DNA than sorted spermatozoa. In conclusion, the optimization of cryopreservation conditions by decreasing the glycerol concentrations can improve post‐thaw motility of sex‐sorted spermatozoa frozen at low concentrations.  相似文献   

12.
Two experiments were designed to evaluate the effect of silymarin on stored spermatozoa using four rams. In experiment 1, silymarin was evaluated as a supplement for Tris–glucose extender. Semen samples (n = 20) were diluted with extender containing 0, 50, 100, 150 and 200 μg/ml silymarin and incubated at 5°C for 72 h. Membrane integrity, acrosome integrity, sperm viability and motility were evaluated at 72 h. Concentration of malondialdehyde (MDA) was determined after 48 h. Membrane integrity was higher in 100 μg/ml silymarin (65.2%) than control group (43.2%, p < 0.05). Acrosome integrity was highest in 100 μg/ml silymarin (71.3%, p < 0.05). Progressive motility was higher in 100 (58.5%), 150 (60.62%) and 200 μg/ml silymarin (54.7%) than control group (30.7%, p < 0.05). The highest MDA concentration was observed in control group (400 mm /10 × 106 sperm; p < 0.05). The goal of experiment 2 was to determine the interaction between silymarin and caproic acid on ram stored sperm. Ejaculates (n = 20) were diluted by Tris–glucose extender, added 0 (S?) or 100 μg/ml (S+) silymarin and 0 (C?) or 0.3125% (C+) caproic acid, and thereafter, aliquots were incubated at 5°C for 72 h. Membrane integrity was lower in C?S? (57.6%) than C?S+ (73.2%), C+S? (80.2%) and C+S+ (72.1%, p > 0.05). The highest sperm viability and acrosome integrity were observed in C+S (82.4 and 80.1%, respectively; p < 0.05). There was no difference between CS+ and C+S+ on sperm viability and membrane integrity, progressive motility and MDA concentration (p > 0.05). Therefore, the supplementation of extender with silymarin and caproic acid improved sperm quality and caproic acid was superior to caproic acid plus silymarin.  相似文献   

13.
Flow cytometry has been shown to be an accurate and highly reproducible tool for the analysis of sperm function. The main objective of this study was to assess sperm function parameters in ejaculated alpaca sperm by flow cytometry. Semen samples were collected from six alpaca males and processed for flow cytometric analysis of sperm viability and plasma membrane integrity using SYBR‐14?PI staining; acrosomal membrane integrity using FITC‐conjugated Pisum Sativum Agglutinin?PI labelling; mitochondrial membrane potential (Δψm) by staining with JC‐1 and DNA Fragmentation Index (DFI) by TUNEL. The results indicate that the mean value for sperm viability was 57 ± 8 %. Spermatozoa with intact acrosome membrane was 87.9 ± 5%, and viable sperm with intact acrosomal membrane was 46.8 ± 9%, high mitochondrial membrane potential (Δψm) was detected in 66.32 ± 9.51% of spermatozoa and mean DFI value was 0.91 ± 0.9%. The DFI was inversely correlated with high Δψm (p = 0.04; r = ?0.41) and with plasma membrane integrity (p = 0.01; r = ?0.47). To our knowledge, this is the first report of the assessment on the same sample of several parameters of sperm function in ejaculated alpaca sperm by flow cytometry.  相似文献   

14.
The aim of this study was to investigate the impact of a 24-h cooling period prior to freezing on domestic cat epididymal sperm viability. Fifteen tomcats were submitted to routine orchiectomy and sperm samples were retrieved from both epididymides in a Tris–glucose–20% egg yolk extender. For each tomcat, the diluted sperm was split into two equal volumes and cooled to 5°C at a rate of 0.5°C/min; one sample for 60 min (control) and the other for 24 h (cooled). After the cooling period, samples from both groups were frozen using an identical freezing protocol. Sperm samples were evaluated in three different periods: immediately after harvesting, after cooling at 5°C for 24 h (cooled group) and after freezing–thawing of control and cooled groups. Evaluations consisted of sperm motility and progressive status, sperm morphology and plasma membrane integrity (PMI) using two fluorescent probes. After cooling for 24 h, a decrease (p < 0.05) in sperm motility, progressive status and PMI was observed when compared to sperm samples immediately after collection. Comparing the results obtained after thawing, no difference (p < 0.05) was found regarding sperm motility, progressive status, PMI and sperm morphology between control and cooled groups. The results from the present study show that cooling cat epididymal spermatozoa at 5°C for 24 h prior to freezing does not lead to major damage of spermatozoa impairing the freeze–thaw process.  相似文献   

15.
Successful sex‐sorting of goat spermatozoa and subsequent birth of pre‐sexed kids have yet to be reported. As such, a series of experiments were conducted to develop protocols for sperm‐sorting (using a modified flow cytometer, MoFlo SX®) and cryopreservation of goat spermatozoa. Saanen goat spermatozoa (n = 2 males) were (i) collected into Salamon's or Tris catch media post‐sorting and (ii) frozen in Tris–citrate–glucose media supplemented with 5, 10 or 20% egg yolk in (iii) 0.25 ml pellets on dry ice or 0.25 ml straws in a controlled‐rate freezer. Post‐sort and post‐thaw sperm quality were assessed by motility (CASA), viability and acrosome integrity (PI/FITC‐PNA). Sex‐sorted goat spermatozoa frozen in pellets displayed significantly higher post‐thaw motility and viability than spermatozoa frozen in straws. Catch media and differing egg yolk concentration had no effect on the sperm parameters tested. The in vitro and in vivo fertility of sex‐sorted goat spermatozoa produced with this optimum protocol were then tested by means of a heterologous ova binding assay and intrauterine artificial insemination of Saanen goat does, respectively. Sex‐sorted goat spermatozoa bound to sheep ova zona pellucidae in similar numbers (p > 0.05) to non‐sorted goat spermatozoa, non‐sorted ram spermatozoa and sex‐sorted ram spermatozoa. Following intrauterine artificial insemination with sex‐sorted spermatozoa, 38% (5/13) of does kidded with 83% (3/5) of kids being of the expected sex. Does inseminated with non‐sorted spermatozoa achieved a 50% (3/6) kidding rate and a sex ratio of 3 : 1 (F : M). This study demonstrates for the first time that goat spermatozoa can be sex‐sorted by flow cytometry, successfully frozen and used to produce pre‐sexed kids.  相似文献   

16.
There is need for standardization of freezing–thawing protocol for rooster semen to minimize variability among results. Therefore, we aimed to compare effect of four different permeating cryoprotectants and two thawing temperatures (37 vs. 5°C) on sperm post‐thaw motility and to analyse combined effect of the best permeating cryoprotectant (P‐CPA) with one of four non‐permeating cryoprotectants (N‐CPA) on post‐thaw quality of rooster semen evaluated in vitro. Pooled semen from Ross PM3 rooster heavy line was diluted in Kobidil extender and frozen in cryoprotectant solution containing 6% dimethylacetamide, 7.5% dimethylformamide, 9% N‐methylacetamide or 8% ethylene glycol (EG) in liquid nitrogen vapours. To determine the best thawing rate, straws were thawed either at 37 or 5°C. Furthermore, samples were frozen in the presence of the best N‐CPA either with 0.75 mol/L ficoll, 0.2 mol/L sucrose, 0.2 mol/L trehalose or 0.05 mol/L glycine. Sperm motility, membrane destabilization and viability were analysed to compare different freezing–thawing conditions. In addition, morphology and ultrastructure analysis were performed to compare fresh and frozen‐thawed sperm quality. Our results indicate that the combination of EG and the thawing at 5°C improves (p ≤ .05) sperm post‐thaw motility. Moreover, ficoll addition to EG‐based freezing extender provided additional beneficial effect (p ≤ .05) on progressive movement and apoptosis incidence. Further work should evaluate different N‐CPA concentrations to improve freezing protocol. In addition, fertility evaluation and testing on different chicken lines are needed in order to contribute to animal genetic resources bank.  相似文献   

17.
The objectives of the present study were to determine ionic and organic composition of seminal plasma, sperm concentration and their relationships in the Persian sturgeon (Acipenser persicus). In this regard, ionic content (Na+, K+, Cl?, Ca2+ and Mg2+) and organic content (total protein, glucose, cholesterol and triglyceride) along with sperm concentration were measured in 17 specimens of the Persian sturgeon. The seminal plasma contained 59.53 ± 2.56 mm /l sodium, 9.1 ± 1.42 mm chloride, 4.72 ± 0.3 mm potassium, 1.45 ± 0.075 mm calcium and 0.7 ± 0.072 mm magnesium. The following organic contents were found: total protein 0.11 ± 0.02 g/dl, glucose 22.18 ± 4.16 mg/dl, cholesterol 6.67 ± 1.04 mg/dl and triglyceride 15.2 ± 0.65 mg/dl. The mean sperm concentration was estimated to be 1.6 ± 0.12 (×109 sperm/ml). A significant relationship was found between sperm concentration and K+ of seminal plasma (r = 0.533, p < 0.05). Significant correlations were observed between ionic contents: Na+ vs Cl? (r = ?0.854, p < 0.01) and Mg2+ vs K+ (?0.583, p < 0.05). Also, level of triglyceride was negatively correlated with Mg2+ (r = ?0.503, p < 0.05). Presented data could be considered as a complementary study for developing special extenders and protectant solutions for improving artificial fertilization in this valuable species.  相似文献   

18.
The present study aimed to compare cat sperm quality after thawing using two different temperatures (37 and 70°C) and to investigate the effects of post‐thaw dilution on the sperm quality and longevity of ejaculated cat spermatozoa. Six ejaculates of each of six male cats were collected using an electroejaculator (total 36 ejaculates). The semen was frozen in 0.25‐ml straws using a Tris egg yolk extender containing Equex STM paste. Four straws prepared from each ejaculate were thawed at four different occasions; (i) at 37°C for 15 s, (ii) at 37°C for 15 s and diluted 1 : 2 with Tris buffer (v/v), (iii) at 70°C for 6 s, (iv) at 70°C for 6 s and diluted 1 : 2 with Tris buffer (v/v). The percentages of motile spermatozoa, the scores of progressive motility, the percentages of spermatozoa with intact plasma membrane (using SYBR‐14/EthD‐1 stains) and intact acrosome (using fluorescein isothiocyanate conjugated peanut agglutinin/propidium iodide stains) were evaluated in fresh semen at 0, 2, 4 and 6 h after thawing. The thawing temperature had no effect on any sperm parameters throughout the incubation period (p > 0.05). The dilution after thawing improved sperm motility, progressive motility and acrosome integrity (p < 0.05). The thawing of cat spermatozoa and subsequently diluting with Tris buffer resulted in an immediate (at 0 h) overall (combined over temperature) percentage of motile sperm of 64.8 ± 10.7 (mean ± SD), a score of progressive motility of 4.0 ± 0.5, a percentage of spermatozoa with intact plasma membrane of 64.4 ± 12.1 and intact acrosome of 44.8 ± 20.2. In conclusion, frozen cat semen can be thawed either at 37 or 70°C and post‐thaw dilution is recommended to reduce the toxic effect of some ingredients in the extender during post‐thaw incubation.  相似文献   

19.
The aim of the present study was to evaluate the effect of sperm selection by single-layer centrifugation (SLC) performed before freezing on sperm quality after thawing of Fleckvieh bull semen. Ejaculates from 22 bulls were collected by artificial vagina and divided into two aliquots. One aliquot (control sample) was diluted with Steridyl® and frozen over nitrogen vapour in a Digitcool freezer (IMV Technologies). Sperm from the second aliquot (SLC sample) was selected using the SLC technique with Bovicoll colloid and then frozen over nitrogen vapour in a Digitcool freezer. After thawing, both samples (control and SLC) were evaluated by computer-aided sperm analysis (CASA; SCA 6.4 System; Microptic S.L) for sperm motility parameters. Integrity of the plasma membrane (viability), high mitochondrial membrane potential (HMMP) and acrosome integrity were assessed using a Guava® easyCyte flow cytometer (IMV Technologies). Morphological examination of spermatozoa was performed by Differential Interference Contrast microscopy (Leica DMi8). Morphological examination of live, immobilized spermatozoa was analysed under high magnification (≥6,600×). After thawing, the mean sperm viability of the control sample was 51.57%, compared to 40.37% for the SLC sample (p < .01). HMMP was higher (p < .01) in the control sample (40.37% versus 28.96%), and the mean of live spermatozoa with damaged acrosome was significantly higher (p < .03) in the SLC sample (1.63% versus 1.95%). The mean percentage of motile spermatozoa was 80.17% in the control sample, compared to 75.14% in the SLC sample (p < .0195), and rapid subpopulation reduced from 20.08% to 8.99% (p < .0001) after SLC. Percentage of hyperactivated sperm decreased from 12.23% to 4.28% (p < .0001) after SLC. Given the overall results, the sperm quality of thawed Fleckvieh bull semen was not improved when sperm were selected by SLC before freezing.  相似文献   

20.
This study was designed to compare the quality of liquid‐stored buffalo bull spermatozoa in soya lecithin based extender Bioxcell® (BIOX), milk (MILK), tris‐citric egg yolk (TEY) and egg yolk‐citrate (EYC) extender at 5°C. Semen was collected from five Nili‐Ravi buffalo (Bubalus bubalis) bulls of 6–7 years of age with artificial vagina over a period of 3 weeks (two consecutive ejaculates once in a week). Semen ejaculates having more than 60% motility were pooled, split into four aliquots, diluted (37°C; 10 × 106 motile spermatozoa/ml), cooled from 37 to 5°C in 2 h (0.275°C/min) and stored for 5 days. Sperm motility, viability, plasma membrane integrity (PMI) and normal acrosomal ridge were studied at first, third and fifth day of storage. Higher values of progressive sperm motility (%), sperm viability (%), sperm PMI (%) and normal apical ridge (%) were observed in BIOX, MILK and TEY extenders at first, third and fifth day of storage than EYC extender. Progressive sperm motility, sperm viability and sperm PMI in BIOX® extender were not different from MILK and TEY extenders at 1st and third day storage period. However, at fifth day of storage, the values for these parameters remained significantly higher (p < 0.05) in BIOX® compared with MILK, TEY and EYC extenders. At fifth day of storage, the semen quality parameters for Bioxcell® were comparable to those with MILK and TEY extenders at third day of storage. In conclusion, motility, viability and PMI of buffalo bull spermatozoa remained similar in Bioxcell®, milk and TEY extender at first and third days of storage at 5°C. Yet, the values for the aforementioned parameters in Bioxcell® were higher compared with milk, TEY and EYC extender at fifth day of storage at 5°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号