首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Data (n = 1,746) collected from 1985 through 1995 on Korean Native Cattle by the National Livestock Research Institute of Korea were used to estimate genetic parameters for marbling score, dressing percentage, and longissimus muscle area, with backfat thickness, slaughter age, or slaughter weight as covariates. Estimates were obtained with REML. Model 1 included animal genetic and residual random effects. Model 2 was extended to include an uncorrelated random effect of the dam. Model 3 was based on Model 1 but also included sire x region x year-season interaction effects. Model 4 combined Models 2 and 3. All models included fixed effects for region x year-season and age of dam x sex combinations. From single-trait analyses, estimates of heritability with covariates to adjust for backfat thickness, slaughter age, and slaughter weight from Model 4 were, respectively, .10, .08, and .01 for marbling score; .09, .12, and .16 for dressing percentage; and .18, .17, and .24 for longissimus muscle area. From three-trait analyses, estimates of genetic correlations between marbling score and dressing percentage, marbling score and longissimus muscle area, and dressing percentage and longissimus muscle area were, respectively, -.99, .20, and -.11 with backfat thickness as covariate; -.88, .47, and .01 with slaughter age as covariate; and -.03, .39, and .91 with slaughter weight as covariate. Results of this study suggest that choice of covariate (backfat thickness, slaughter age, or slaughter weight) for the model seems to be important for carcass traits for Korean Native Cattle. Including sire x region x year-season interaction effects in the model for marbling score and dressing percentage may be important because whether sire x region x year-season interaction effects were in the model affected estimates of other variance components for the three carcass traits. Whether the maternal effect was in the model had little effect on estimates of other parameters. With backfat thickness and slaughter age end points, selection for increasing marbling score would be expected to result in decreasing dressing percentage for Korean Native Cattle. With slaughter weight as a covariate for end point, increased longissimus muscle area would be associated with increased dressing percentage, and increased marbling score would be related to increased longissimus muscle area. The differences in estimates associated with choice of end point, however, need further study.  相似文献   

2.
Estimates of genetic parameters resulting from various analytical models for birth weight (BWT, n = 4,155), 205-d weight (WWT, n = 3,884), and 365-d weight (YWT, n = 3,476) were compared. Data consisted of records for Line 1 Hereford cattle selected for postweaning growth from 1934 to 1989 at ARS-USDA, Miles City, MT. Twelve models were compared. Model 1 included fixed effects of year, sex, age of dam; covariates for birth day and inbreeding coefficients of animal and of dam; and random animal genetic and residual effects. Model 2 was the same as Model 1 but ignored inbreeding coefficients. Model 3 was the same as Model 1 and included random maternal genetic effects with covariance between direct and maternal genetic effects, and maternal permanent environmental effects. Model 4 was the same as Model 3 but ignored inbreeding. Model 5 was the same as Model 1 but with a random sire effect instead of animal genetic effect. Model 6 was the same as Model 5 but ignored inbreeding. Model 7 was a sire model that considered relationships among males. Model 8 was a sire model, assuming sires to be unrelated, but with dam effects as uncorrelated random effects to account for maternal effects. Model 9 was a sire and dam model but with relationships to account for direct and maternal genetic effects; dams also were included as uncorrelated random effects to account for maternal permanent environmental effects. Model 10 was a sire model with maternal grandsire and dam effects all as uncorrelated random effects. Model 11 was a sire and maternal grandsire model, with dams as uncorrelated random effects but with sires and maternal grandsires assumed to be related using male relationships. Model 12 was the same as Model 11 but with all pedigree relationships from the full animal model for sires and maternal grandsires. Rankings on predictions of breeding values were the same regardless of whether inbreeding coefficients for animal and dam were included in the models. Heritability estimates were similar regardless of whether inbreeding effects were in the model. Models 3 and 9 best fit the data for estimation of variances and covariances for direct, maternal genetic, and permanent environmental effects. Other models resulted in changes in ranking for predicted breeding values and for estimates of direct and maternal heritability. Heritability estimates of direct effects were smallest with sire and sire-maternal grandsire models.  相似文献   

3.
Genetic parameter estimates for growth traits in Horro sheep   总被引:5,自引:0,他引:5  
Variance components and genetic parameters were estimated for growth traits: birth weight (BWT), weaning weight (WWT), 6‐month weight (6MWT) and yearling weight (YWT) in indigenous Ethiopian Horro sheep using the average information REML (AIREML). Four different models: sire model (model 1), direct animal model (model 2), direct and maternal animal model (model 3) and direct–maternal animal model including the covariance between direct and maternal effects (model 4) were used. Bivariate analysis by model 2 was also used to estimate genetic correlation between traits. Estimates of direct heritability obtained from models 1–4, respectively, were for BWT 0.25, 0.27, 0.18 and 0.32; for WWT, 0.16, 0.26, 0.1 and 0.14; for 6MWT 0.18, 0.26, 0.16 and 0.16; and for YWT 0.30, 0.28, 0.23, and 0.31. Maternal heritability estimates of 0.12 and 0.23 for BWT; 0.19 and 0.24 for WWT; 0.09 and 0.09 for 6MWT and 0.08 and 0.14 for YWT were obtained from models 3 and 4, respectively. The correlations between direct and maternal additive genetic effects for BWT, WWT, 6MWT and YWT were –0.64, –0.42, 0.002 and –0.46, respectively. On the other hand, the genetic correlations between BWT and the rest of growth traits (WWT, 6MWT and YWT, respectively) were 0.45, 0.33 and 0.31, whereas correlations between WWT and 6MWT, WWT and YWT and 6MWT and YWT were 0.98, 0.84 and 0.87, respectively. The medium to high direct and maternal heritability estimates obtained for BWT and YWT indicate that in Horro sheep faster genetic improvement through selection is possible for these traits and it should consider both (direct and maternal) h2 estimates. However, since the direct‐maternal genetic covariances were found to be negative, caution should be made in making selection decisions. The high genetic correlation among early growth traits imply that genetic improvement in any one of the traits could be made through indirect selection for correlated traits.  相似文献   

4.
Estimates of direct and maternal genetic parameters in beef cattle were obtained with a random regression model with a linear spline function (SFM) and were compared with those obtained by a multitrait model (MTM). Weight data of 18,900 Gelbvieh calves were used, of which 100, 75, and 17% had birth (BWT), weaning (WWT), and yearling (YWT) weights, respectively. The MTM analysis was conducted with a three-trait maternal animal model. The MTM included an overall linear partial fixed regression on age at recording for WWT and YWT, and direct-maternal genetic and maternal permanent environmental effects. The SFM included the same effects as MTM, plus a direct permanent environmental effect and heterogeneous residual variance. Three knots, or breakpoints, were set to 1, 205, and 365 d. (Co)variance components in both models were estimated with a Bayesian implementation via Gibbs sampling using flat priors. Because BWT had no variability of age at recording, there was good agreement between corresponding components of variance estimated from both models. For WWT and YWT, with the exception of the sum of direct permanent environmental and residual variances, there was a general tendency for SFM estimates of variances to be lower than MTM estimates. Direct and maternal heritability estimates with SFM tended to be lower than those estimated with MTM. For example, the direct heritability for YWT was 0.59 with MTM, and 0.48 with SFM. Estimated genetic correlations for direct and maternal effects with SFM were less negative than those with MTM. For example, the direct-maternal correlation for WWT was -0.43 with MTM and -0.33 with SFM. Estimates with SFM may be superior to MTM due to better modeling of age in both fixed and random effects.  相似文献   

5.
The objective of this study was to determine an appropriate method for using yearling scrotal circumference observations and heifer pregnancy observations to produce EPD for heifer pregnancy. We determined the additive genetic effects of and relationship between scrotal circumference and heifer pregnancy for a herd of Hereford cattle in Solano, New Mexico. The binary trait of heifer pregnancy was defined as the probability of a heifer conceiving and remaining pregnant to 120 d, given that she was exposed at breeding. Estimates of heritability for heifer pregnancy and scrotal circumference were .138+/-.08 and .714+/-.132, respectively. Estimates of fixed effects for age of dam and age were significant for heifer pregnancy and bull scrotal circumference. The estimate of the additive genetic correlation between yearling heifer pregnancy and yearling bull scrotal circumference was .002+/-.45. Additional analyses included models with additive genetic groups for scrotal circumference EPD for heifer pregnancy or heifer pregnancy EPD for scrotal circumference to account for a potential nonlinear relationship between scrotal circumference and heifer pregnancy. Results support the development of a heifer pregnancy EPD because of a higher estimated heritability than previously reported. The development of a heifer pregnancy EPD would be an additional method for improving genetic merit for heifer fertility.  相似文献   

6.
Weaning weights from nine sets of Angus field data from three regions of the United States were analyzed. Six animal models were used to compare two approaches to account for an environmental dam-offspring covariance and to investigate the effects of sire x herd-year interaction on the genetic parameters. Model 1 included random direct and maternal genetic, maternal permanent environmental, and residual effects. Age at weaning was a covariate. Other fixed effects were age of dam and a herd-year-management-sex combination. Possible influence of a dam's phenotype on her daughter's maternal ability was modeled by including a regression on maternal phenotype (fm) (Model 3) or by fitting grandmaternal genetic and grandmaternal permanent environmental effects (Model 5). Models 2, 4, and 6 were based on Models 1, 3, and 5, respectively, and additionally included sire x herd-year (SH) interaction effects. With Model 3, estimates of fm ranged from -.003 to .014, and (co)variance estimates were similar to those from Model 1. With Model 5, grandmaternal heritability estimates ranged from .02 to .07. Estimates of maternal heritability and direct-maternal correlation (r(am)) increased compared with Model 1. With models including SH, estimates of the fraction of phenotypic variance due to SH interaction effects were from .02 to .10. Estimates of direct and maternal heritability were smaller and estimates of r(am) were greater than with models without SH interaction effects. Likelihood values showed that SH interaction effects were more important than fm and grandmaternal effects. The comparisons of models suggest that r(am) may be biased downward if SH interaction and(or) grandmaternal effects are not included in models for weaning weight.  相似文献   

7.
Weaning weight records of 44,357 Australian Angus calves produced by 1,020 sires in 90 herds were used to evaluate the importance of sire x herd interactions. Models fitted fixed effects of contemporary group (herd-year-date of weighing subclass), sex, calf age, and dam age and random effects of sire or of sire and sire x herd interaction using REML. Effects of standardizing the data, including sire relationships and including dam maternal breeding values (MBV) as a covariate were also investigated. Sire x herd interactions were found (P less than .05) in all cases and, in the most complete model, accounted for 3.3% of phenotypic variance. Across-herd heritabilities ranged from .19 to .28. Differential nonrandom mating among herds seemed to occur in the data. Significant sire x herd effects were observed for dam MBV, and adjustment for dam MBV yielded the smallest estimates of interaction variance and across-herd heritability. If sire x herd interactions were due only to genotype x environment interaction, within-herd heritabilities would range from .33 to .49. These estimates are larger than previously reported estimates. Thus, unreported environmental effects common to progeny of individual sires may also be involved in the observed interaction but could not be disentangled from true genotype x environment interaction effects using these data. Results of these analyses suggest that some accommodation of sire x herd interaction effects on weaning weight may be needed in beef cattle genetic evaluations, but a compelling case for development of herd-specific breeding value prediction cannot be made.  相似文献   

8.
Records of 9,055 lambs from a composite population originating from crossing Columbia rams to Hampshire x Suffolk ewes at the U.S. Meat Animal Research Center were used to estimate genetic parameters among growth traits. Traits analyzed were weights at birth (BWT), weaning (7 wk, WWT), 19 mo (W19), and 31 mo (W31) and postweaning ADG from 9 to 18 or 19 wk of age. The ADG was also divided into daily gain of males (DGM) and daily gain of females (DGF). These two traits were analyzed with W19 and with W31 in three-trait analyses. (Co)variance components were estimated with REML for an animal model that included fixed effects of sex, age of dam, type of birth or rearing, and contemporary group. Random effects were direct and maternal genetic of animal and dam with genetic covariance, maternal permanent environmental, and random residual. Estimates of direct heritability were .09, .09, .35, .44, .19, .16, and .23 for BWT, WWT, W19, W31, ADG, DGM, and DGF, respectively. Estimates of maternal permanent environmental variance as a proportion of phenotypic variance were .09, .12, .03, .03, .03, .06, and .02, respectively. Estimates of maternal heritability were .17 and .09 for BWT and WWT and .01 to .03 for other traits. Estimates of genetic correlations were large among W19, W31, and ADG (.69 to .97), small between BWT and W31 or ADG, and moderate for other pairs of traits (.32 to .45). The estimate of genetic correlation between DGM and DGF was .94, and the correlation between maternal permanent environmental effects for these traits was .56. For the three-trait analyses, the genetic correlations of DGM and DGF with W19 were .69 and .82 and with W31 were .67 and .67, respectively. Results show that models for genetic evaluation for BWT and WWT should include maternal genetic effects. Estimates of genetic correlations show that selection for ADG in either sex can be from records of either sex (DGM or DGF) and that selection for daily gain will result in increases in mature weight but that BWT is not correlated with weight at 31 mo.  相似文献   

9.
Birth weights (4,155) and weaning weights (3,884) of Line 1 Herefords collected at the Fort Keogh Livestock and Range Research Laboratory in Miles City, MT, between the years of 1935 to 1989 were available. To study the effect of misidentification on estimates of genetic parameters, the sire identification of calf was randomly replaced by the identification of another sire based on the fraction of progeny each sire contributed to a yearly calf crop. Misidentification rates ranged from 5 to 50% with increments of 5%. For each rate of misidentification, 100 replicates were obtained and analyzed with single-trait and two-trait analyses with a restricted maximum likelihood (REML) algorithm. Two different models were used. Both models contained year x sex combinations and ages of dam as fixed effects, calendar birth date as a fixed covariate, and random animal and maternal genetic effects and maternal permanent environment effects. Model 2 also included sire x year combinations as random effects. As the rate of misidentification increased, estimates of the direct-maternal genetic correlation increased for both traits, with both models, for all analyses. With singletrait analyses, estimates of the fraction of variance that were due to sire x year interaction effects increased slightly for birth weight (near zero) and decreased slightly (0.015 to 0.004) for weaning weight as misidentification increased. With two-trait analyses, estimates of fraction of variance that were due to sire x year effects gradually decreased for weaning weight as misidentification increased. With the two-trait analyses, and with both models, as the level of sire misidentification increased, estimates of the genetic correlation between direct effects gradually increased, and estimates of the correlation between maternal effects gradually decreased. Estimates of the direct-maternal genetic correlation were more positive with Model 2 than with Model 1 for all levels of misidentification. Results of this study indicate that misidentification of sires would severely bias estimates of genetic parameters and would reduce genetic gain from selection.  相似文献   

10.
Genotype x environment interaction (G x E) is increasingly important, because breeding programs tend to be more internationally oriented. The aim of this theoretical study was to investigate the effects of G x E on genetic gain in sib-testing and progeny-testing schemes. Loss of genetic gain due to G x E was predicted for different values of heritability, number of progeny per dam, number of progeny per sire, proportion of selected sires, and population size in the selection environment. Two environments were considered: a selection environment (SLE) and a production environment (PDE). The breeding goal was only for performance in PDE. A pseudo-BLUP selection index was used to predict genetic gain. Recording of half-sibs or progeny in PDE limited the loss in genetic gain in PDE due to G x E between SLE and PDE. Progeny-testing schemes had less loss in genetic gain than sib-testing schemes. Higher heritability increased the loss in genetic gain, whereas increasing the number of progeny per sire in PDE decreased the loss in genetic gain. The number of progeny per sire required to minimize loss in genetic gain due to G x E was greater for sib-testing schemes than for progeny-testing schemes. More progeny per dam slightly increased the loss in genetic gain. Genetic gains for sex-limited and carcass traits were less affected by G x E than traits measured on both sexes. Loss in genetic gain was due to decreased accuracy of selection in most situations, but it was due to decreased selection intensity in situations with small population size and a low proportion of selected sires. It was concluded that recording performance of relatives in PDE minimizes loss in genetic gain due to G x E, and that progeny-testing schemes rather than sib-testing schemes are preferable in situations with low to moderate heritability (h(2) 相似文献   

11.
Fifteen models were compared for the birth weight of 33,994 lambs recorded at the U.S. Sheep Experimental Station (1950 to 1998). The initial intent was to estimate fractions of variance due to cytoplasmic line (c2; n = 892) and sire by cytoplasmic line interaction (sc2; n = 17,557). The basic model included direct genetic (fractional variance, a2; n = 35,684), maternal genetic (m2, with correlation r-am), and maternal permanent environmental (p2; n = 8,418) effects. The model with sc2 was significantly better than the basic model with and without c2. When other random effects were added, sc2 became zero. Significant effects were associated with random dam x year (dy2; n = 24,801), sire x dam (sd2; n = 23,924), and dam x number born (dn2; n = 12,944) interaction effects. Estimates with all effects in the model were a2, 0.24; m2, 0.19; r-am, 0.11; p2, 0.05; c2, 0.00; dn2, 0.04; dy2, 0.06; sd2, 0.05; sc2, 0.00. Estimates for a2, m2, and r-am were the same for all models. Estimate of p2 changed when other effects were added to the model. Largest estimates for nongenetic effects were: p2, 0.08; c2, 0.00; dy2, 0.13; sd2, 0.11; and sc2, 0.04. Regardless of whether Westell groups (n = 91) were in the model, estimates were similar. For weaning weight (120-d, n = 32,715), estimates of variances of effects added to the basic model were all near zero (a2, 0.18; m2, 0.12; r-am, -0.01; p2, 0.06). For number born (NB, n = 37,020) and fleece weight (FW, n = 36,197), animal permanent environmental effects were added to the model (ap2; n = 9,871 and 9,760) and r-am was dropped. For these traits, effects not in the basic model had small variances. Nonzero estimates with full model were a2, 0.10; ap2, 0.01; dy2, 0.02; and sc2, 0.01 for NB, and a2, 0.54; m2, 0.02; ap2, 0.02; dy2, 0.04; and sc2, 0.02 for FW. Cytoplasmic effects were not important. The addition of unusual random effects to the model did not change estimates for the basic parameters. Although some of these effects were significant, especially for BW, the effects on genetic evaluations are likely to be small.  相似文献   

12.
Growth and reproductive data were obtained on 779 beef heifers at the San Juan Basin Research Center, Hesperus, Co. Genetic parameters were estimated for age of puberty (AOP), age of first calving (AOC), julian day of first calving (DOC), julian day of second calving (DOSC), birth weight, weaning weight, yearling weight, and average daily gain from weaning to yearling and to cycling weights. The least squares model included birth year, age of dam and breed as fixed effects, sire/breed as a random variable, and day of birth and percent inbreeding as covariates. Day of birth was not included in the analyses of AOC, DOC or DOSC. Paternal half-sib estimates of heritability were: AOP, .10 +/- .17; AOC, .01 +/- .12; DOC, .09 +/- .13 and DOSC, .36 +/- .18. Genetic and phenotypic correlations were generally favorable, but genetic correlations were variable with large standard errors. Inbreeding had a detrimental effect on reproductive traits, and a seasonal effect was present for AOP.  相似文献   

13.
The aim of the present study was to estimate genetic parameters for flight speed and its association with growth traits in Nellore beef cattle. The flight speed (FS) of 7,402 yearling animals was measured, using a device composed of a pair of photoelectric cells. Time interval data (s) were converted to speed (m/s) and faster animals were regarded as more reactive. The growth traits analyzed were weaning weight (WW), ADG from weaning to yearling age, and yearling scrotal circumference (SC). The (co)variance components were estimated using REML in a multitrait analysis applying an animal model. The model included random direct additive genetic and residual effects, fixed effects of contemporary groups, age of dam (classes), and age of animal as covariable. For WW, the model also included maternal genetic and permanent environmental random effects. The direct heritability estimate for FS was 0.26 ± 0.05 and direct heritability estimates for WW, SC, and ADG were 0.30 ± 0.01, 0.48 ± 0.02, and 0.19 ± 0.01, respectively. Estimates of the genetic correlation between FS and the growth traits were -0.12 ± 0.07 (WW), -0.13 ± 0.08 (ADG), and -0.11 ± 0.07 (SC). Although the values were low, these correlations showed that animals with better temperaments (slower FS) tended to present better performance. It is possible to infer that longterm selection for weight and scrotal circumference can promote a positive genetic response in the temperament of animals. Nevertheless, to obtain faster genetic progress in temperament, it would be necessary to perform direct selection for such trait. Flight speed is an easily measured indicator of temperament and can be included as a selection criterion in breeding programs for Nellore cattle.  相似文献   

14.
An experiment was designed to evaluate the effects of five sire breeds (Dorset, Finnsheep, Romanov, Texel, and Montadale), two dam breeds (Composite III [CIII] and northwestern whiteface [WF]), and three shearing seasons (December, February, and April, corresponding to August, October, and December breeding seasons) and their interactions on wool and other characteristics of F1 ewes. Fleeces were collected and characterized from six 2-yr-old F1 ewes representing each of the 90 sire breed x dam breed x shearing season x year (three) subclasses. Characteristics measured objectively were grease and clean fleece weights, clean yield, mean fiber diameter and SD, and mean staple length and SD. Visual assessments of fleece color were also made. Data collected on the F1 ewes were analyzed using a mixed model analysis of variance procedure. The model included fixed effects of year of birth, sire breed, dam breed, shearing season, six two-way interactions, and the three-way interaction of sire breed x dam breed x shearing season. The random effect of individual sire within year of birth x sire breed was also fitted. Texel- and Montadale-sired ewes produced more clean wool (P < 0.05) (approximately 0.24 kg) than Dorset-, Finnsheep-, and Romanov-sired ewes. Texel-sired ewes produced the coarsest wool (28.7 microm) (P < 0.05), whereas Romanov-sired ewes produced the finest (24.9 microm) and longest (9.12 cm) fleeces (P < 0.05). Ewes from WF dams produced more and finer wool (0.15 kg and 2.7 microm) than ewes from CIII dams (P < 0.001). Ewes shorn in December produced more, coarser, and longer wool (P < 0.05) than those shorn in February and April. This trend in wool production is opposite to that in conception rate (reported previously). Romanov-sired ewes produced the lowest percentage of white fleeces (62.6%), whereas Dorset-sired ewes produced the most (P < 0.001) white fleeces (96.3%). Estimates of heritability were calculated for grease and clean fleece weights (0.36), percentage of clean yield (0.31), average fiber diameter and SD (0.86 and 0.42, respectively), and average staple length and SD (0.49 and 0.00, respectively). Although necessary for a thorough evaluation of these 10 types of crossbred ewes, it is estimated that wool income would only constitute a small portion (1 to 5%) of overall income from sheep of this type.  相似文献   

15.
Selection criteria for yearling bulls commonly include indicators of fertility and carcass merit, such as scrotal circumference (SC) and intramuscular fat percentage (IMF). Genetic correlation estimates between ultrasound traits such as IMF and carcass marbling score (MS) with fertility traits SC and heifer pregnancy (HP) have not been reported. Therefore, the objective of this study was to estimate the genetic parameters among the indicator traits IMF and SC, and the economically relevant traits MS and HP. Records for IMF (n=73,051), MS (n=15,260), SC (n=43,487), and HP (n=37,802) were obtained from the Red Angus Association of America, and a 4-generation ancestral pedigree (n=10,460) was constructed from the 8,915 sires represented in the data. (Co)variance components were estimated using a multivariate sire model and average information REML to obtain estimates of heritability and genetic correlations. Fixed effects included contemporary group and the linear effect of age at measurement for all traits, and an additional effect of age of dam for both HP and SC. The random effect of sire was included to estimate additive genetic effects, which were assumed to be continuous for IMF, MS, and SC, but a probit threshold link function was fitted for HP. Generally moderate heritability estimates of 0.29 ± 0.01, 0.35 ± 0.06, 0.32 ± 0.02, and 0.17 ± 0.01 were obtained for IMF, MS, SC, and HP on the underlying scale, respectively. The confidence interval for the estimated genetic correlation between MS and HP (0.10 ± 0.15) included zero, suggesting a negligible genetic association. The genetic correlation between MS and IMF was high (0.80 ± 0.05), but the estimate for HP and SC (0.05 ± 0.09) was near zero, as were the estimated genetic correlations of SC with MS (0.01 ± 0.08) and IMF (0.05 ± 0.06), and for HP with IMF (0.13 ± 0.09). These results suggest that concomitant selection for increased fertility and carcass merit would not be antagonistic.  相似文献   

16.
The objective of this project was to determine the genetic control of conception rate, or pregnancy percentage in Angus beef heifers. Producers from 6 herds in 5 states provided 3,144 heifer records that included breeding dates, breeding contemporary groups, service sires, and pregnancy check information. Two hundred fourteen sires of the heifers were represented; with 104 sires having less than 5 progeny, and 14 sires having greater than 50 progeny. These data were combined with performance and pedigree information, including actual and adjusted birth weights, weaning weights, and yearling weights, from the American Angus Association database. Heifer pregnancy rate varied from 75 to 95% between herds, and from 65 to 100% between sires, with an overall pregnancy rate of 93%, measured as the percentage of heifers pregnant at pregnancy check after the breeding season. Pregnancy was analyzed as a threshold trait with an underlying continuous distribution. A generalized linear animal model, using a relationship matrix, was fitted. This model included the fixed effects of contemporary group, age of dam, and first AI service sire, and the covariates of heifer age at the beginning of breeding, adjusted birth weight, adjusted weaning weight, and adjusted yearling weight. The relationship matrix included 4 generations of pedigree. The heritability of pregnancy and first-service conception rates on the underlying scale was 0.13 +/- 0.07 and 0.03 +/- 0.03, respectively. Estimated breeding values for pregnancy rate on the observed scale ranged from -0.02 to 0.05 for sires of heifers. Including growth traits with pregnancy rate as 2-trait analyses did not change the heritability of pregnancy rate. As expected for a reproductive trait, the heritability of pregnancy rate was low. Because of its low heritability, genetic improvement in fertility by selection on heifer pregnancy rate would be expected to be slow.  相似文献   

17.
Horn fly population density on 215 beef cows representing seven breed groups and 51 sires was used to obtain estimates of repeatability (rXX) and heritability (h2) for resistance to the horn fly (Haematobia irritans [L.] Diptera: Muscidae). Total horn fly densities were determined weekly on each cow beginning in May and ending in late October or early November of 1988, 1989, and 1990. No insecticides were used on cattle in this study. Estimates of h2 for horn fly resistance (low horn fly number per cow) were obtained by the paternal half-sib method (4 sigma 2S) and as twice the intrasire regression of offspring on dam (2bDD/S). Variance component estimates were obtained using a completely nested ANOVA that included overall mean, breed, sire/breed, cow/sire, and residual error. One hundred twenty-six daughter-dam pairs were available for regression analysis. In a preliminary analysis, the within-breed regression was nonsignificant (P greater than .05), implying that the regression was the same for all breeds; therefore, breed was deleted from the model. The regression model included an overall mean, year, and the intrasire regression of daughter on dam (bDD/S). The estimate of rXX was .47 +/- .02. Estimates of h2 were .78 +/- .16 and .59 +/- .10 from the 4 sigma 2S and 2bDD/S methods, respectively. Similar estimates of rXX and h2 were obtained when each observation of horn fly number per cow (x) was transformed to both log10 (x) and square root of x. These estimates suggest the possibility of selection procedures as an environmentally safe alternative to the use of chemical control.  相似文献   

18.
Weight (CW, n = 61,798), weight adjusted for condition score (WA), hip height (CH, n = 56,494), and condition score (CS, n = 61,434) of cows (2 through 8 yr of age) produced by crosses of 22 sire breeds with Angus and Hereford dams in the first four cycles of the Germplasm Evaluation (GPE) Program at the U.S. Meat Animal Research Center were used to estimate genetic parameters with REML. The model included sire breed, dam breed, age in years, season of measurement (1 to 4) and their interactions, and year of birth and pregnancy-lactation code (PL) as fixed effects for CW and CS. The model for CH excluded PL. Random effects were additive genetic and permanent environmental effects. Univariate analyses of all data, by season and by year of age, bivariate analyses between pairs of seasons and ages (2 to 6), and between traits were done. Estimates of heritability and repeatability over all ages were 0.49, 0.54, 0.68, and 0.16, and 0.65, 0.67, 0.75, and 0.30 for CW, WA, CH, and CS, respectively. Corresponding estimates for each age and season were similar for all traits and cycles. Estimates of genetic and permanent environmental correlations were close to unity for all pairs of seasons and traits. Genetic correlations were greater than 0.92 for all pairs of ages for CW, WA, and CH, and greater than 0.67 for CS. Genetic correlations were 0.80, 0.86, 0.43, and -0.04 for CW-CH, WA-CH, CW-CS, and CH-CS, respectively. Results suggest that repeatability models can be used to model weights and heights in this population.  相似文献   

19.
Records for yearling scrotal circumference (SC; n = 7,580), age at puberty in heifers (AP; n = 5,292), age at first calving (AFC; n = 4,835), and pregnancy, calving, or weaning status following the first breeding season (PR1, CR1, or WR1, respectively; n = 7,003) from 12 Bos taurus breeds collected at the Meat Animal Research Center (USDA) between 1978 and 1991 were used to estimate genetic parameters. Age at puberty (AP) was defined as age in days at first detected ovulatory estrus. Pregnancy (calving or weaning) status was scored as one for females conceiving (calving or weaning) given exposure during the breeding season and as zero otherwise. The final model for SC included fixed effects of age of dam at breeding (AD), year of breeding (Y), and breed (B) and age in days at measurement as a covariate. Fixed effects in models for AP and AFC were AD, Y, B, and month of birth. Fixed effects in models for PR1, CR1, and WR1 included AD, Y, and B. For all traits, random effects in the model were direct genetic, maternal genetic, maternal permanent environmental, and residual. Analyses for a three-trait animal model were carried out with SC, AP, and a third trait (the third trait was AFC, PR1, CR1, or WR1). A derivative-free restricted maximum likelihood algorithm was used to estimate the (co)variance components. Direct and maternal heritability estimates were 0.41 and 0.05 for SC; 0.16 and 0.03 for AP; 0.08 and 0.00 for AFC; 0.14 and 0.02 for PR1; 0.14 and 0.03 for CR1; and 0.12 and 0.01 for WR1. Genetic correlations between direct and maternal genetic effects within trait were -0.26, -0.63, -0.91, -0.79, -0.66, and -0.85 for SC, AP, AFC, PR1, CR1, and WR1, respectively. Direct genetic correlations between SC and AP and between those traits and AFC, PR1, CR1, and WR1 ranged from -0.15 (between SC and AP) to 0.23 (between AP and WR1). Estimates of heritability indicate that yearling SC should respond to direct selection better than AP, AFC, PR1, CR1, and WR1. Variation due to maternal genetic effects was small for all traits. No strong genetic correlations were detected between SC and female reproductive traits or between AP and the other female traits. These results suggest that genetic response in female reproductive traits through sire selection on yearling SC is not expected to be effective.  相似文献   

20.
This study investigated the effects of genotype–environment interaction on yearling weight, age at first calving and post‐weaning weight gain in Nellore cattle using multi‐trait reaction norm models. The environmental gradient was defined as a function of the mean yearling weight of the contemporary groups. A first‐order random regression sire model with four classes of residual variance was used in the analyses and Bayesian methods were applied to estimate the (co)variance components. The heritability estimates ranged from 0.284 to 0.547, 0.222 to 0.316 and 0.256 to 0.522 for yearling weight, age at first calving and post‐weaning weight gain, respectively. The lowest genetic correlations between environment groups for each trait were 0.38, 0.02 and 0.04 for yearling weight, age at first calving and post‐weaning weight gain, respectively. Differences in the correlation estimates were observed between traits in the same environments, with the magnitude of the estimates tending toward zero as the environment improved. The results highlight the importance of including genotype–environment interactions in genetic evaluation programs considering the differences observed between environmental groups not only in terms of heritability, but also of genetic correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号