首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Two experiments were conducted to examine the effect of previous BW gain during winter grazing on subsequent growth, carcass characteristics, and change in body composition during the feedlot finishing phase. In each experiment, 48 fall-weaned Angus x Angus-Hereford steer calves were assigned randomly to one of three treatments: 1) high rate of BW gain grazing winter wheat (HGW), 2) low rate of BW gain grazing winter wheat (LGW), or 3) grazing dormant tallgrass native range (NR) supplemented with 0.91 kg/d of cottonseed meal. Winter grazing ADG (kg/d) for HGW, LGW, and NR steers were, respectively, 1.31, 0.54, 0.16 (Exp. 1) and 1.10, 0.68, 0.15 (Exp. 2). At the end of winter grazing, four steers were selected randomly from each treatment to measure initial carcass characteristics and chemical composition of carcass, offal, and empty body. All remaining steers were fed a high-concentrate diet to a common backfat end point. Six steers were selected randomly from each treatment for final chemical composition, and carcass characteristics were measured on all steers. Initial fat mass and proportion in carcass, offal, and empty body were greatest (P < 0.001) for HGW, intermediate for LGW, and least for NR steers in both experiments. Live BW ADG and gain efficiency during the finishing phase did not differ (P = 0.24) among treatments, but DMI (% of mean BW) for NR and LGW was greater (P < 0.003) than for HGW steers. Final empty-body composition did not differ (P = 0.25) among treatments in Exp. 1. In Exp. 2, final carcass and empty-body fat proportion (g/kg) was greater (P < 0.03) for LGW and NR than for HGW steers. Accretion of carcass fat-free organic matter was greater (P < 0.004) for LGW than for HGW and NR steers in Exp. 1, but did not differ (P = 0.22) among treatments in Exp. 2. Fat accretion in carcass, offal, and empty body did not differ (P = 0.19) among treatments in Exp. 1, but was greater (P < 0.05) for LGW and NR than for HGW steers in Exp. 2. Heat production by NR steers during finishing was greater (P < 0.02) than by HGW steers in Exp. 1 and 2. Differences in ADG during winter grazing and initial body fat content did not affect rate of live BW gain or gain efficiency during finishing. Feeding steers to a common backfat thickness end point mitigated initial differences in carcass and empty-body fat content. However, maintenance energy requirements during finishing were increased for nutritionally restricted steers that were wintered on dormant native range.  相似文献   

2.
To evaluate the effects of balancing total diet degradable intake protein with dietary total digestible nutrients (TDN), we conducted two studies during 2 yr with 100 (302 +/- 8 kg initial BW) mixed-breed yearling steers and 12 ruminally cannulated steers (526 +/- 28 kg). Steers individually received one of four supplements 5 d/wk while grazing dormant native tallgrass prairie. Supplements included: 1) corn and soybean meal, balanced for total diet degradable intake protein in relation to total diet TDN (CRSBM), 2) corn and soybean hulls, equal in supplemental TDN to CRSBM (CORN), 3) soybean meal, equal in supplemental degradable intake protein to CRSBM (SBM), or 4) a cottonseed hull-based control supplement (CONT). At each feeding (5 d/wk), steers consumed 13.6, 13.6, or 4.2 g of dry matter/kg of body weight, or 178 g of DM, respectively, of supplement. Steers fed CRSBM had greater (P < 0.01) average daily gain than cattle fed CORN or SBM. Feeding soybean meal (CRSBM, SBM) resulted in improved (P < 0.01) efficiency of supplement. Grazing time, intensity, and harvesting efficiency were reduced (P < 0.05) by corn supplementation (CRSBM and CORN), whereas the number of grazing bouts per day was increased (P < 0.08). Intake and digestibility of forage organic matter were reduced (P < 0.01) for steers supplemented with corn (CORN and CRSBM) vs cattle not fed corn (SBM and CONT). Total diet digestibility (P < 0.12) and digestible organic matter intake (P < 0.01) were greater for CRSBM-fed steers than for cattle fed either CORN or SBM. Steers fed CRSBM had greater (P < 0.01) fecal nitrogen and serum insulin than cattle fed CORN or SBM. Corn-fed cattle had lesser (P < 0.01) fecal pH and ADF concentrations than steers not consuming grain. Cattle fed supplements with soybean meal (CRSBM and SBM) had greater (P < 0.01) serum urea nitrogen than steers fed supplements without soybean meal (CORN, CONT). Supplemented steers grazing dormant tallgrass prairie had a greater rate of gain, with the greatest response in animal performance occurring when grain supplements were balanced for total diet degradable intake protein in relation to total diet TDN. These results lead us to suggest that grain-supplemented cattle grazing dormant tallgrass prairie require a balance of total diet degradable intake protein in relation to total diet TDN to optimize animal performance.  相似文献   

3.
A winter grazing/feedlot performance experiment repeated over 2 yr (Exp. 1) and a metabolism experiment (Exp. 2) were conducted to evaluate effects of grazing dormant native range or irrigated winter wheat pasture on subsequent intake, feedlot performance, carcass characteristics, total-tract digestion of nutrients, and ruminal digesta kinetics in beef cattle. In Exp. 1, 30 (yr 1) or 67 (yr 2) English crossbred steers that had previously grazed native range (n = 38) or winter wheat (n = 59) for approximately 180 d were allotted randomly within previous treatment to feedlot pens (yr 1 native range = three pens [seven steers/pen], winter wheat = two pens [eight steers/pen]; yr 2 native range = three pens [eight steers/pen], winter wheat = four pens [10 or 11 steers/pen]). As expected, winter wheat steers had greater (P < 0.01) ADG while grazing than did native range steers. In contrast, feedlot ADG and gain efficiency were greater (P < 0.02) for native range steers than for winter wheat steers. Hot carcass weight, longissimus muscle area, and marbling score were greater (P < 0.01) for winter wheat steers than for native range steers. In contrast, 12th-rib fat depth (P < 0.64) and yield grade (P < 0.77) did not differ among treatments. In Exp. 2, eight ruminally cannulated steers that had previously grazed winter wheat (n = 4; initial BW = 407 +/- 12 kg) or native range (n = 4; initial BW = 293 +/- 23 kg) were used to determine intake, digesta kinetics, and total-tract digestion while being adapted to a 90% concentrate diet. The adaptation and diets used in Exp. 2 were consistent with those used in Exp. 1 and consisted of 70, 75, 80, and 85% concentrate diets, each fed for 5 d. As was similar for intact steers, restricted growth of cannulated native range steers during the winter grazing phase resulted in greater (P < 0.001) DMI (% of BW) and ADG (P < 0.04) compared with winter wheat steers. In addition, ruminal fill (P < 0.01) and total-tract OM digestibility (P < 0.02) were greater for native range than for winter wheat steers across the adaptation period. Greater digestibility by native range steers early in the finishing period might account for some of the compensatory gain response. Although greater performance was achieved by native range steers in the feedlot, grazing winter wheat before finishing resulted in fewer days on feed, increased hot carcass weight, and improved carcass merit.  相似文献   

4.
Our objective was to determine the effect of repeated use of implants on feedlot performance and carcass characteristics of Holstein cattle. Holstein steers (n = 128) weighing an average of 211 kg were blocked by weight and randomly assigned to 16 pens. At the start of the trial (d 0), pens were assigned to one of four treatments: 1) nonimplanted control (C); 2) implant on d 0, 112, and 224 (T3); 3) implant on d 112 and 224 (T2); and 4) implant on d 224 (T1). Component TE-S implants (120 mg of trenbolone acetate and 24 mg of estradiol per implant) were used for all treatments during the 291-d feeding period. Over the course of the study, T2 and T3 cattle had greater ADG and final weights than C and T1 cattle (P < 0.05). Steers were harvested at a commercial abattoir on d 291. Hot carcass weights of T3 steers were greater than those of C and T1 steers (P < 0.05). Dressing percentage, adjusted 12th-rib fat, percentage of kidney, pelvic, and heart fat, yield grade, and longissimus color were not different among treatments (P > or = 0.26). Longissimus muscle areas (LMA) of T2 and T3 carcasses were larger than LMA of C (P < 0.01). No USDA Select carcasses were produced from C cattle, whereas the percentage of Select carcasses from implanted cattle ranged from 10 to 18%. Skeletal maturity advanced (P < 0.05) progressively with each additional implant. Steaks from T3 carcasses had a higher percentage of protein than controls (P < 0.05) and were less tender than all other treatments (P < 0.05). Repeated administration of combination trenbolone acetate and estradiol implants increased ADG and resulted in heavier carcasses with larger LMA. Administration of three successive implants decreased tenderness of Holstein beef, and resulted in more advanced skeletal maturity scores.  相似文献   

5.
The purpose of this experiment was to evaluate the effects of energy intake, implantation, and fat end point on feedlot performance and carcass composition of steers. Three hundred eighty-four yearling crossbred steers (368 +/- 23.1 kg) were allotted in a completely randomized design. Treatments were arranged in a 2 x 3 x 2 factorial experiment. Main effect factors were two levels of intake, three implant strategies, and two compositional fat end points at slaughter. The levels of intake were ad libitum (AL) and restricted (RS) intake (90% ad libitum). The three implant strategies were Revalor-S (REV) (120 mg trenbolone acetate, 24 mg estradiol), Synovex-Plus (SYN) (200 mg trenbolone acetate, 28 mg estradiol benzoate), and no implant (control). The compositional target end points were 1.0 and 1.4 cm s.c. fat cover over the 12th and 13th rib. Restricted-intake steers consumed 9.2% less (P < .01) DM than AL steers. Ad libitum-intake steers gained weight 15.5% more rapidly (P < .01) than RS-intake steers. Steers implanted with REV tended (P < .07) to gain faster than SYN steers, who in turn gained 15.2% more (P < .01) than control steers. Ad libitum-intake steers were 4.8% more (P < .01) efficient than RS steers. Steers fed to a targeted 1.4 cm s.c. backfat cover were 2.9% less (P < .05) efficient than steers fed to 1.0 cm, and steers implanted with either REV or SYN had similar (P = .47) feed efficiencies, whereas control steers had lower (P < .01) feed efficiencies. Steers fed to a targeted compositional fat end point of 1.4 cm had 1.3% higher (P < .01) dressing percentage (DP) than steers fed to 1.0 cm. Control and SYN steers had similar (P = .13) DP; however, REV steers had 6.1% greater (P < .01) DP than SYN steers. Steers fed to 1.4 cm s.c. fat end point had higher (P < .01) numerical yield grades than steers fed to 1.0 cm (3.34 vs 2.71). There was an interaction (P < .01) for intake level and implant for marbling score. Marbling scores were lower (P < .05) for RS x SYN and AL x REV than in other treatments. Steers on the RS x REV treatment were intermediate in marbling to all treatments except AL control, which was higher (P < .01) than RS x SYN, AL x REV, and RS x REV. No interaction for dry matter intake level and anabolic implants was observed for growth performance. The depression in carcass quality resulting from implanting is reduced as backfat increases from 1.0 to 1.4 cm at slaughter.  相似文献   

6.
7.
One hundred ninety-five steer calves were assigned to five zeranol implant treatment (trial 1). Treatments were no implants (0000), two implants during the finishing period (00XX), three implants during growing and finishing periods (0XXX), one implant at 1 to 2 mo of age during the suckling period and two during the finishing period (X0XX) or four implants (XXXX). The growing period implant was administered at weaning. Weaning weights (211 vs 208 kg) of implanted and nonimplanted suckling calves were not different (P greater than .05). Calves implanted at weaning, before shipment to the feedlot, had greater (P less than .05) weight loss in shipment than nonimplanted calves. In the feedlot, finishing-period daily gains of steers implanted in the growing and finishing period (0XXX) were greater (P less than .05) than gains of steers that had received a suckling period implant (X0XX and XXXX). Nonimplanted steer gains were less (P less than .05) than gains of steers from the other four treatment groups. Postweaning daily gains and final weights were 1.18 and 517 (0000), 1.26 and 533 (00XX), 1.32 and 551 (0XXX), 1.26 and 540 (X0XX) and 1.25 and 533 kg (XXXX), respectively. Gains and final weights of nonimplanted steers were less (P less than .05) than gains of steers implanted only in the feedlot growing and finishing periods (0XXX). In a second trial, 82 steers were assigned either to a 0XXX or XXXX implant scheme. Weaning weights were 11 kg greater (P less than .05) for the implanted steers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Feedlot performance, carcass characteristics, and diet composition data were collected from a survey of finishing steer experiments (40 experiments; 347 kg average initial weight; data excluded Holstein steers). Data were analyzed by weighted (observations/mean) analyses of variance to determine effects of protein intake and implanting strategy on feedlot performance and carcass characteristics. Implanting strategies were defined according to prevalent or last implant type used: no implant (None); medium-potency implants (Medium): zeranol 72 mg per dose, steroid-based implants (Synovex-S or Compudose) or trenbolone acetate (TBA) alone; high-potency implants (High): TBA in combination with either steroids or zeranol. Regression procedures were utilized to estimate CP and DIP, or MP requirements. Implant effects were independent (P>0.60) of dietary protein effects and included faster (P<0.05) gains at higher intakes (P<0.05) that resulted in improved (P<0.05) feed efficiencies. Steers responded to higher dietary CP (13.3 vs 11.4%) by increasing intake (P<0.05) which resulted in faster (P<0.05) and more efficient (P=0.09) gains. Compared to nonimplanted steers, implanted steers had heavier (P<0.05) carcasses with larger (P<0.05) ribeyes and lower (P<0.05) marbling scores. Nonimplanted steers fed 13.3% CP diets had heavier (P<0.05) carcasses than nonimplanted steers fed 11.4% CP diets. Maintenance MP requirements of nonimplanted steers were greater than those of implanted steers and similar to established MP requirements. Diets of steers implanted with high-potency implants must be supplemented to contain more than 7.5 g MP/kg BW0.75/d, especially at heavy (>450 kg) initial BW, to maximize implant response. Implanted steers have a greater ability to respond to increased dietary protein because of reduced protein requirements for maintenance.  相似文献   

10.
A 64-d grazing study was conducted with a 2 × 2 factorial arrangement of treatments to evaluate the impact of implant treatment on growth performance, hair score, and serum prolactin levels of steers grazing tall fescue with high (HE) or low (LE) levels of infection with the endophytic fungus Neotyphodium coenophialum. Mixed-breed steers (n = 130; 246 ± 3.5 kg initial BW) were allocated randomly to one of three HE or one of four LE pastures beginning April 13. Within each replication, one-half of the steers were implanted (IMP) with trenbolone acetate (40 mg) and estradiol (8 mg), and one-half were not implanted (NI). No implant treatment × endophyte level interactions were detected (P>0.10). Steers grazing HE had lower (P<0.01) BW gain, inferior (P<0.05) hair scores, and lower (P<0.01) serum prolactin concentrations on d 64 than those steers grazing LE. Total BW gains were greater (P=0.01) from IMP steers than from NI steers, but serum prolactin concentrations and hair scores did not differ (P>0.10) between IMP and NI steers on either d 36 or 64. When tabulated across forage and implant treatments, correlations were negative between overall BW gains and hair scores measured on d 64 (r = 0.28; P<0.01), and positive between overall BW gains and serum prolactin levels measured on d 36 and 64 (r = 0.33 and 0.43, respectively; P<0.001). Therefore, fescue toxicity symptoms were manifested in HE steers, and implanting trenbolene acetate and estradiol improved grazing BW gain, but no endophyte level × implant interactions were detected.  相似文献   

11.
Fifty-four crossbred steers (275 kg) were assigned randomly to one of three isoenergetic but not isonitrogenous ruminal escape protein (EP) supplements: high ruminal escape protein (HEP), low ruminal escape protein (LEP), or corn. The supplements contained corn, distillers' dried grains with solubles (DDGS), and fish meal. Supplements were fed at approximately 1.5 kg/d; the HEP and LEP supplements provided .25 and .12 kg more EP per day than corn, respectively. These supplements also supplied .20 and .10 kg more CP per day than corn. Fish meal and DDGS provided 66.7 and 33.3% of the supplemental EP, respectively. One-half of the steers in each supplement treatment were implanted once with 36 mg of zeranol. Steers grazed wheat (Triticum aestivum L.)-annual ryegrass (Lolium multiflorum Lam.) pastures for 73 d (March 1 to May 12). Daily gains (kg/d) increased linearly (P less than .07) as EP increased (HEP, 1.61; LEP, 1.54; corn, 1.47); responses were apparent only during the later periods as forage quality declined. Zeranol implants increased (P less than .02) ADG (kg/d) by 9.7% (1.58 vs 1.44). After grazing, all cattle were fed a finishing ration for 76 d. Pre-feedlot EP level produced a negative linear (P less than .04) response on feedlot ADG (kg/d) (HEP, 1.44; LEP, 1.50; corn, 1.59). Zeranol implantation during the grazing phase did not affect (P greater than .2) performance during the feedlot phase or carcass characteristics other than increased ribeye area (P less than .08). Compensatory feedlot performance negated all weight gain advantages elicited by EP supplementation during the grazing period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Two experiments were conducted to examine the effect of BW gain during winter grazing on mass, cellularity, and oxygen consumption of splanchnic tissues before and after the feedlot finishing phase. In each experiment, 48 fall-weaned Angus x Angus-Hereford steer calves were assigned randomly to one of three treatments: 1) high rate of BW gain grazing winter wheat (HGW), 2) low rate of BW gain grazing winter wheat (LGW), or 3) grazing dormant tallgrass native range supplemented with 0.91 kg/d of a 41% CP supplement (NR). At the end of winter grazing, four steers were selected randomly from each treatment for initial slaughter to measure organ mass, cellularity, and oxygen consumption. All remaining steers were placed into a feedlot and fed to the same backfat end point (1.27 cm). Six steers were selected randomly from each treatment for final organ mass, cellularity, and oxygen consumption. Initial empty BW (EBW) was greatest (P < 0.001) for HGW, intermediate for LGW, and least for NR steers in both Exp. 1 and 2 (355 > 263 > 207 +/- 6.5 kg and 337 > 274 > 205 +/- 8.7 kg, respectively). For both experiments, the initial total gastrointestinal tract (GIT; g/kg of EBW) proportional weight was greater (P < 0.05) in NR steers than in LGW, and LGW steers had greater (P < 0.05) initial GIT proportional weight than HGW steers. Proportional weight of total splanchnic tissues (TST; g/kg of EBW) did not differ (P < 0.19) among treatments. Initial duodenal RNA concentration and RNA:protein were greater (P < 0.02) in LGW than in HGW steers, and NR steers were intermediate. Initial in vitro liver O2 consumption was greater (P < 0.09) in HGW and LGW than in NR steers (34.5 > 16.9 mL/min), whereas initial small intestinal oxygen consumption was greater (P < 0.01) in LGW than in HGW and NR steers (12.1 > 5.2 mL/min). Ruminal papillae oxygen consumption did not differ (P < 0.55) among treatments. The rate of decrease of GIT (g x g EBW(-1) x d(-1)) during finishing was greater in NR than in HGW and LGW steers in both Exp. 1 and 2, but mesenteric fat (g x g EBW(-1) x d(-1)) increased for NR steers, resulting in a similar (P < 0.75) increase in TST across the finishing period for all treatments. Similar rates of increase in TST across the finishing phase corresponded with similar rates of live and carcass weight gain among treatments. Our data support the hypothesis that increased visceral organ mass increases maintenance energy requirements of growing cattle.  相似文献   

13.
To evaluate effects of previous forage systems on feedlot performance, yearling Hereford steers (average initial weight of 249 kg) were grazed on tall fescue (TF), smooth bromegrass-red clover (BG-RC) or orchardgrass-red clover (OG-RC) pastures before finishing. Serial slaughter was utilized during the first 2 yr of this study to determine changes in carcass characteristics throughout finishing, while steers were slaughtered at approximately 29% body fat during the third year. Steers grazing TF entered the feedlot at lighter weights and maintained lighter weights throughout finishing (P less than .05) even though dry matter intakes and feed conversions were similar (P greater than .05) among treatments. Steers that previously grazed TF had less (P less than .05) body fat, body protein, fat thickness and marbling, smaller (P less than .05) ribeye areas and lower (P less than .05) USDA yield and quality grades than than those that grazed BG-RC and OG-RC. However, linear contrasts indicated that steers grazing TF were compensating in ribeye area, marbling and quality grade as days in feedlot increased. This was confirmed in the third-year study, since carcass characteristics were similar among all steers. During the third year, linear and quadratic contrasts indicated that steers that grazed TF partially compensated in body protein. As days in feedlot increased, live and hot carcass weights, body fat, fat thickness, kidney, pelvic and heart fat, marbling, and USDA yield and quality grades increased (P less than .05), while ribeye area and body protein plateaued. Although carcass characteristics were similar among treatments, steers backgrounded on TF entered the feedlot at lighter weights, and partially compensated in weight after 134 d of finishing.  相似文献   

14.
The impact of using 2 beta-adrenergic agonists in feedlot cattle fed finishing diets was evaluated using 54 steers (45 crossbred Charolais and 9 Brangus) initially weighing 424 +/- 26.6 kg in a randomized complete block design with 3 treatments and 6 blocks (i.e., 18 pens with 3 steers per pen). Response variables were feedlot performance, carcass characteristics, and meat quality. Treatments were 1) control (no supplement added); 2) zilpaterol hydrochloride (ZH; 60 mg.steer(-1).d(-1)); and 3) ractopamine hydrochloride (RH; 300 mg.steer(-1).d(-1)). The beta-agonists were added to the diets during the final 33 d of the experiment. The groups of steers fed ZH or RH improved (P < 0.01) ADG by 26 or 24%, respectively, compared with control steers. Steers supplemented with RH consumed less (P = 0.03) DM (8.37 kg) than control steers (8.51 kg), whereas intake was similar (P = 0.37) for ZH and control steers. Addition of either beta-agonist to the diet considerably improved (P < 0.01) the G:F (ZH, 0.253 and RH, 0.248 vs. control, 0.185). Hot carcass weight and carcass yield were enhanced (P < 0.05) with both beta-agonists. The LM area was increased (P = 0.026) by ZH (75.2 cm(2)), but that of RH (72.2 cm(2)) was similar (P = 0.132) to the control steers (66.8 cm(2)). Meat from the ZH- (P = 0.0007) and RH- (P = 0.0267) supplemented steers had greater shear force values than control steers (ZH = 5.11; RH = 4.83; control = 4.39 kg/cm(2)). Variables related to meat color indicated that both beta-agonists led to a similar redness of the LM area related to the control group. In general, feedlot performance was greatly enhanced by beta-adrenergic agonists, and meat tenderness from treated animals was classified as intermediate. Furthermore, meat color was not altered by beta-agonist supplementation.  相似文献   

15.
Effects of repetitive use of anabolic implants on beef carcass quality, tenderness, and consumer ratings for palatability were investigated using crossbred steer calves (n = 550). Steers from five ranches were randomly allocated to one of 10 different lifetime implant strategies or to a nonimplanted control group. Cattle were implanted at some or all of five phases of production (branding, weaning, backgrounding, feedlot entry, or reimplant time). Carcasses from the control group had higher (P < 0.05) marbling scores than carcasses from steers in all other treatment groups. Implanting steers at branding, weaning, or backgrounding vs. not implanting steers at these production stages did not affect (P > 0.05) marbling scores. Steers implanted twice during their lifetime produced carcasses with higher (P < 0.05) marbling scores than did steers receiving a total of four or five implants. Steaks obtained from carcasses in the control group had lower (P < 0.05) shear force values and were rated by consumers as more desirable (P < 0.05) for tenderness like/dislike than steaks obtained from carcasses in all other treatment groups. Implanting steers at branding or weaning production stages did not affect (P > 0.05) steak shear force values, consumer ratings for like/dislike of steak tenderness, or percentage of consumers rating overall eating quality of steaks as satisfactory. Implanting steers at backgrounding vs. not implanting steers at this production stage increased (P < 0.05) steak shear force values, but did not influence (P > 0.05) consumer ratings for like/dislike of steak tenderness or percentage of consumers rating overall eating quality of steaks as satisfactory. Steaks from nonimplanted steers were rated as more desirable (P < 0.05) for overall eating quality than steaks from steers implanted two, three, four, or five times. Use of implants increased (P < 0.05) average daily gain by 11.8 to 20.5% from weaning to harvest compared with nonimplanted controls. Implant strategies increased (P < 0.05) hot carcass weight of steers by 8.9 to 13.8% compared with the control group. Use of implants also increased (P < 0.05) longissimus muscle area and decreased (P < 0.05) estimated percentages of kidney/pelvic/heart fat, but did not affect (P > 0.05) dressing percentage or adjusted fat thickness. Our findings suggest that beef quality, palatability, and production characteristics are influenced by lifetime implant protocols.  相似文献   

16.
Two experiments were conducted to determine the effects of Mg-mica supplementation on grazing and feedlot performance of stocker steers. In Exp. 1, eight groups of six steers were fed a basal diet of 80% ground grain sorghum, 15% corn silage, and 5% control protein supplement (DM basis) or a supplement containing Mg-mica (9% of supplement; 4.5 mg/kg diet DM) for 141 d. Marbling scores tended (P<0.10) to be greater, and the percentage of carcasses grading USDA Choice or higher was greater (P<0.05), from steers fed Mg-mica than from those fed the control supplement. In Exp. 2, eight groups of nine head each were offered either a control grain sorghum-based supplement or one containing 34 g/d of Mg-mica (2.7 g Mg) while grazing smooth bromegrass pastures for 112 d. Pasture groups were then placed in feedlot pens for 120 d and fed a basal diet similar to that described above. Two groups fed each pasture supplement received a control supplement, and two received a supplement containing Mg-mica (10% of supplement; 5 mg/kg diet DM). Steers fed Mg-mica during the pasture phase tended to have heavier (P=0.11) hot carcass weights, higher (P<0.05) dressing percentages, numerically (P>0.10) higher marbling scores, and a higher percentage of carcasses grading USDA Choice than steers fed the control supplement during the pasture phase. Therefore, adding Mg-mica to pasture supplements or feedlot diets appears to have no impact on grazing or feedlot performance, but may improve carcass quality.  相似文献   

17.
One hundred forty-three Angus x Simmental crossbred steers (initial BW = 155.1 +/- 4.5 kg) were used in a 2-yr study (yr 1, n = 67; yr 2, n = 76) to determine the effects of weaning age, implant regimen, and the weaning age x implant regimen interaction on steer growth and performance, organ mass, carcass characteristics, and cooked beef palatability. Steers were early-weaned at an average age of 108 d (EW) or normally weaned at an average age of 202 d (NW) and allotted by weight to an aggressive or nonaggressive implant regimen. On their respective weaning dates, EW and NW steers were penned individually and fed a grain-based diet until they were slaughtered at a final BW of 546 kg. A subsample of steers (n = 2 per treatment) were slaughtered at 254 kg. At 254 kg, EW steers implanted with the aggressive implant regimen had 64% greater backfat depth than those implanted with the nonaggressive implant regimen; conversely, NW steers implanted with the aggressive implant regimen had 52% lower backfat depth than those implanted with the nonaggressive implant regimen (weaning status x implant regimen interaction; P < 0.01). A similar interaction was observed for empty visceral organ weights. Early-weaned steers were younger (354.7 vs 372.4 d; P < 0.01) at final slaughter but were in the feedlot longer (246.5 vs 169.6 d; P < 0.01) than NW steers, whereas the aggressive implant regimen decreased days fed (203.3 vs 212.7; P < 0.07) compared to the nonaggressive implant regimen. Overall ADG was greater for EW than for NW steers (1.61 vs 1.50 kg/d; P < 0.01) and for the aggressive compared with the nonaggressive implant regimen (1.59 vs 1.52 kg/d; P < 0.02). Early-weaned steers consumed less DM per day (7.4 vs 8.5 kg/d; P < 0.01) and were more efficient (0.217 vs 0.208 kg/kg; P < 0.02) but consumed more total DM (1,817 vs 1,429 kg; P < 0.01) than NW steers while in the feedlot. Implant regimen did not affect DMI (P > 0.37) or feed efficiency (P > 0.15). Weaning status did not affect carcass characteristics (P > 0.14), final empty body composition (P > 0.25), or final longissimus muscle composition (P > 0.18); however, steaks from EW steers had higher (P < 0.05) taste panel tenderness and juiciness ratings than steaks from NW steers. The aggressive implant regimen decreased yield grade (P < 0.02), but did not affect quality grade (P > 0.86) compared to the nonaggressive implant regimen. Placing early-weaned steers on an aggressive implant regimen is a viable management option.  相似文献   

18.
Seventy Angus x Simmental calves (BW = 166.3 +/- 4.2 kg) were used in a 3 x 2 factorial arrangement to determine the effect of age at feedlot entry and castration on growth, performance, and carcass characteristics. At 82 d of age, steers were castrated. Calves were placed in the feedlot at 111 (early-weaned), 202, or 371 (yearling) d of age. Steers were implanted with Synovex-S followed 93 d later with Revalor-S. Calves were harvested on an individual basis when fat thickness was estimated to be 1.27 cm. During the feedlot phase, yearlings gained faster (P < 0.01) than calves placed in the feedlot at 202 or 111 d of age (1.88, 1.68, and 1.62 kg/d, respectively); however, from 111 d of age until harvest, ADG was greatest for early-weaned calves, intermediate for cattle placed in the feedlot at 202 d of age, and lowest for yearlings (1.62, 1.47, and 1.21 kg/d, respectively; P < 0.01). Early-weaned calves spent the most days in the feedlot, followed by calves placed in the feedlot at 202 d of age; yearlings spent the fewest days in the feedlot (221, 190, and 163 d, respectively; P < 0.01). Total DMI when in the feedlot was similar (P = 0.22) among age groups; however, daily DMI was lowest for early-weaned calves, intermediate for calves placed in the feedlot at 202 d of age, and the highest for yearlings (7.1, 8.1, 10.5 kg/ d, respectively; P < 0.01). Early-weaned calves were the most efficient, followed by calves placed in the feedlot at 202 d of age; yearlings were the least efficient (227, 207, 180 g gain/kg feed, respectively; P < 0.01). Weight at harvest (682, 582, 517 kg, respectively; P < 0.01) and hot carcass weight (413, 358, 314 kg, respectively; P < 0.01) were greatest for yearlings, intermediate for cattle placed in the feedlot at 202 d of age, and lowest for early-weaned calves. Early-weaned calves had the smallest longissimus area, followed by calves placed in the feed-lot at 202 d of age; yearlings had the largest longissimus area (77, 86, 88 cm2, respectively; P < 0.01). Calves placed in the feedlot at 111 and 202 d of age had lower yield grades (3.2, 3.1, 3.5, respectively; P < 0.04), and produced fewer select carcasses than yearlings (25, 13, 48%, respectively; P < 0.01). Bulls and implanted steers both had an ADG of 1.7 kg/d when in the feedlot; however, bulls had a greater (P < 0.09) hot carcass weight (370 vs 354 kg) and a larger (P < 0.01) longissimus area (85.8 vs 81.3 cm2) than steers. Earlier feedlot placement resulted in greater quality grades but lower carcass weights.  相似文献   

19.
Sixty-three Angus x Simmental calves were allotted to a bull or a steer group based on sire, birth date, and birth weight to determine effects of castration status on performance, carcass characteristics, and circulating insulin-like growth factor I (IGF-I) concentrations in early-weaned cattle. At 75 d of age, calves in the steer group were castrated. Calves were not creep-fed prior to weaning. All calves were weaned and weighed at an average age of 115 d and transported by truck to the OARDC feedlot in Wooster, OH. Performance and carcass characteristics were measured in three phases. Phase 1 was from 115 to 200 d of age, phase 2 was from 201 to 277 d of age, and phase 3 was from 278 d of age to slaughter. Before implantation, four bulls and four steers were selected for serial slaughter and carcass evaluation. Steers were implanted with Synovex-C at 130 d of age and with Revalor-S at 200 and 277 d of age. Serum samples were collected from all calves on the day of implantation, 28 and 42 d after implantation, and at slaughter and analyzed for circulating IGF-I concentration. Bulls gained 9.7% faster (1.75 vs 1.60 kg/d; P < 0.01), consumed 25 kg more DM (521 vs 496 kg; P = 0.11), and were 3.3% more efficient (282 vs 273 g/kg, P < 0.10) than steers in phase 1. However, steers gained 10.5% faster (1.62 vs 1.46 kg/d; P < 0.02), consumed similar amounts of DM, and were 6.5% more efficient than bulls (214 vs 201 g/kg; P < 0.06) in phase 2. Overall gains and efficiency were similar between bulls and steers; however, bulls consumed 140 kg more DM (P < 0.05), were 27 kg heavier (P < 0.05), and had to stay in the feedlot 18 more days (P < 0.05) than steers to achieve a similar amount of fat thickness. Implanted steers had greater concentrations of circulating IGF-I than bulls (P < 0.01), and the pattern of IGF-I concentration over time was affected by castration status (castration status x time interaction; P < 0.01). Synovex-C had a lower impact on circulating IGF-I concentration (implant effect, P < 0.01) than either Revalor-S implant. Eighty-five percent of both bulls and steers had marbling scores sufficient to grade low Choice or better. Bulls achieved their target fat thickness later, increased muscle growth, and deposited fat more favorably than steers, possibly due to a gradual increase in IGF-I concentration as the testicles grew rather than the large fluctuations in IGF-I concentration observed in steers following implantation.  相似文献   

20.
Ribonuclease protection assays were used to measure steady-state semimembranosus muscle and/or hepatic levels of IGF-I, IGFBP-3, IGFBP-5, hepatocyte growth factor (HGF), and myostatin messenger RNA (mRNA) in steers implanted from 32 to 38 d with Revalor-S, a combined trenbolone acetate and estradiol implant. Insulin-like growth factor-ImRNA levels were 69% higher (P < 0.01, n = 7) in the livers of implanted steers than in the livers of nonimplanted steers. Similarly, IGF-I mRNA levels were 50% higher (P < 0.05, n = 7) in the semimembranosus muscles of implanted steers than in the same muscles from nonimplanted steers. Hepatic IGFBP-3 mRNA levels were 24% higher (P < 0.07, n = 7) in implanted steers than in nonimplanted steers. Hepatic HGF and IGFBP-5 mRNA levels did not differ between implanted and nonimplanted steers. Similarly, muscle IGFBP-3, IGFBP-5, HGF, and myostatin mRNA levels were not affected by treatment. Previous data from these same steers have shown that circulating IGF-I and IGFBP-3 concentrations were 30 to 40% higher (P < 0.01, n = 7) in implanted steers than in nonimplanted, control steers. Additionally, the number of actively proliferating satellite cells that could be isolated from the semimembranosus muscle was 45% higher (P < 0.01, n = 7) for implanted steers than for nonimplanted steers. Viewed together, these data suggest that increased muscle IGF-I levels stimulate increased satellite cell proliferation, resulting in the increased muscle growth observed in Revalor-S implanted steers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号