首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Barley (Hordeum vulgare L., cv. Stirling) was grown in pots of a sandy soil to which six levels of boron (B) were added presowing, during stem elongation, or during ear emergence. The pattern of B supply affected the development of leaf injury and other symptoms of B toxicity, the accumulation of B in the grain and in the whole shoots (WS) at maturity, and the relationships between the concentrations of B in the grain and in the WS at maturity and yield. Critical toxic concentrations (CTC) of B in plant tissues were found to vary from approximately 2 to 15 μg/g, and from approximately 50 to 420 μg/g, respectively. The findings of this experiment suggest that barley plants can accumulate relatively high levels of B and express severe levels of leaf injury and other symptoms of B toxicity in the latter stages of growth with relatively small effects on grain yield. They also suggest that the grain and the WS sampled at maturity are not suitable tissues for the diagnosis of yield depressions due to B toxicity in Stirling barley.  相似文献   

2.
系统研究增施生物肥对啤酒大麦"甘啤6号"的生长发育、产量性状、原麦品质、麦芽品质的影响。结果表明:从生长发育看,增施生物肥对啤酒大麦的出苗期、拔节期、孕穗期、抽穗期无明显影响,但成熟期较对照推迟2 d,同时增施生物肥促进啤酒大麦的株高、穗、茎、叶、鞘生长发育;从产量性状看,增施生物肥明显提高啤酒大麦的成穗数、穗粒数、千粒重,其中对成穗数影响最大,其次为穗粒数,最后为千粒重,增施生物肥的产量较对照增加3.4%,但经济系数较对照降低1.3个百分点,降幅为2.6%;从原麦品质看,增施生物肥使啤酒大麦的籽粒蛋白质含量、淀粉含量和饱满度升高,千粒重增大,瘦秕率降低;从麦芽品质看,增施生物肥的麦芽微粉浸出率、粗粉浸出率、a-氨基氮、可溶性氮含量有不同程度增高,麦芽糖化力、粘度、粗细粉差、β-葡聚糖含量、蛋白质含量有不同程度降低,但对糖化时间和色度无影响。  相似文献   

3.
冬大麦花后穗部氮素积累及转移的研究   总被引:1,自引:0,他引:1  
在大田条件下,以扬饲麦3、扬饲麦1、苏啤2号和扬农啤2号等4个品种为供试材料,在07、5、1502、25.kg/hm24个氮肥处理水平下,研究了大麦花后穗部氮积累及转移的规律。结果表明,在扬饲麦3、扬饲麦1、苏啤2号和扬农啤2号4个品种各氮肥处理的平均值中,开花期绿叶的含氮量依次为2.64%、2.76%、2.63%和2.45%,穗部含氮量依次为1.43%、1.83%、1.69%和1.51%。成熟期子粒含氮量分别为2.65%、2.63%、2.48%和2.14%。氮的花前积累量(NABF)依次为17.68、15.27、19.80和14.85.mg/plant,总积累量(NTA)分别为33.75、25.51、54.24和28.83mg/plant,花后积累量(NAAF)依次为16.061、0.25、34.45和13.98.mg/plant,转移量(NT)依次为12.60、10.551、3.48和9.54.mg/plant,转移效率(NTE)分别为71.49%、69.84%、68.42%和64.97%。收获指数(NHI)分别为84.91%、81.95%、88.47%和81.90%;随着施氮水平的提高,各品种的花前氮积累量、总积累量、花后积累量和氮转移量均呈上升趋势,而氮转移效率、氮转移对子粒的贡献(NCR)率则成下降趋势;大麦花后穗部氮积累过程可以用Richards方程W=A/(1+be-kt)m来描述,通径分析方程各特征参数与氮积累和转移的关系表明,影响大麦穗部氮积累和转移的主要因素是最大积累速率,其次是起始积累势,最大积累速率越高,起始积累势越小,越有利于氮的积累和转移。同时,积累中期和前期的积累速率和积累量对大麦穗部氮积累和转移的影响也较大。  相似文献   

4.
Abstract

The relative toxicity of cadmium (Cd), lead (Pb), and zinc (Zn) on the growth performance of barley (Hordeum vulgare L.) was measured. Lead and Zn resulted in an increase in dry matter production at the lower additions. All the Cd and the higher Pb and Zn additions resulted in significant decreases in growth over the controls, the roots showing a greater decrease in dry matter accumulation than did shoots. Roots accumulated higher amounts of Cd, Pb, and Zn in direct proportion to that soil‐applied. A significant inverse relationship between relative yield and tissue element concentration was observed. Toxicity occurred in the following order: Cd > Pb > Zn. Threshold concentration, critical tissue concentrations, and loading rates to produce a 10% yield reduction were also calculated. Our study indicates the possibility of estimating barley yield based on plant tissue Cd, Pb, and Zn concentrations.  相似文献   

5.
Arsenic (As) uptake by turnip, growing under soilless culture conditions, was studied. A 4 x 3 factorial experiment was conducted with four As species [arsenite, arsenate, methylarsonic acid (MMAA), dimethylarsinic acid (DMAA)] and three As concentrations (1.0, 2.0, and 5.0 mg L(-)(1)). Arsenic phytoavailability and phytotoxicity were primarily determined by As speciation. Organic arsenicals, especially MMAA, were clearly phytotoxic to this turnip cultivar. Plant As concentrations significantly increased with increasing As application rates. Both organic arsenicals showed a higher upward translocation than their inorganic counterparts, contributing to the greater phytotoxicity and lower dry matter productions of these organic treatments. Both inner root and outer root skin As concentrations were above the maximum limit set for As content in food crops (1.0 mg kg(-)(1)). If turnip plants are exposed to a large pulse of As, as growth on contaminated nutrient solutions, they will accumulate residues at levels that are unacceptable for animal and human consumption.  相似文献   

6.
硅对大麦铝毒的消除和缓解作用研究   总被引:17,自引:0,他引:17  
在温室和实验室进行了施硅对消除或缓解大麦酸害铝毒的土培和溶液培养试验。结果表明,施硅后大麦幼苗的地上部茎、叶和地下部根的生物量均比不施硅明显增加。施硅能有效地促使植株吸收的铝在根部积累,抑制铝向地上部分运转;施硅还能调节根吸收的磷向地上部分运移,以减轻因伴随铝毒而产生的缺磷症状。施硅消除或缓解酸害铝毒的可能机理是:铝与硅形成无毒的铝硅酸复合离子(HAS),降低活性铝的浓度,及硅能调节大麦幼苗地上部和根内铝和磷的再分配。  相似文献   

7.
The separate and combined effects of water and Al stress on concentrations of P, K, Ca, Mg, Fe, Mn, Zn, Cu, B, Al, Sr, and Ba were determined in tops of ‘Dayton’ (Al‐tolerant) and ‘Kearney’ (Al‐sensitive) barley (Hordeum vulgäre L.) grown in an acid, Al‐toxic, Tatum subsoil (clayey, mixed, thermic, Typic Hapludult). Plants were grown 4 weeks in a plant growth chamber at high (pH 4.7) or low (pH 6.6) Al stress. During the last 2 weeks they were also subjected to low (‐20 to ‐40 kPa), moderate (‐40 to ‐60 kPa), or high (‐60 to ‐80 kPa) water stress. In general, Al stress had a greater overall effect on mineral element concentration of tops than water stress. Aluminum stress significantly decreased concentrations of P, Ca, and Mg and increased concentrations of Zn, Sr, and Ba, irrespective of the cultivar or water stress treatment. Cultivar differences in Mn concentration were observed with Al stress under all water stress conditions. In each case, Mn concentration was lower in ‘Kearney’ than in ‘Dayton’. Potassium, Ca, and Mg were lower in ‘Kearney’ than in ‘Dayton’ only at low and moderate water stress, under low Al stress, ‘Kearney’ had significantly higher concentrations of K and Ca than did ‘Dayton’ under all water stress conditions. The effects of water stress on mineral element concentration varied greatly with cultivar, Al stress treatment, and severity of water stress. Under high Al stress, increasing drought conditions from low water stress (‐20 to ‐40 kPa) to high water stress (‐60 to ‐80 kPa) significantly increased the concentrations of Ca, K, Zn, Sr, and Ba in Al‐sensitive ‘Kearney’ and reduced the concentrations of Zn, Sr, and Ba in Al‐tolerant ‘Dayton'; P and Mg concentration were unaffected by water stress. In contrast, under low Al stress, a corresponding increase in water stress significantly increased the concentrations of Ca and reduced that of P in ‘Kearney’ and increased Ca and B concentration in ‘Dayton'; Mg concentrations were unaffected in either cultivar. Thus, it appears that Al stress and water stress had opposite effects on Ca accumulation in barley tissue.  相似文献   

8.
Effect of Si on alleviation of Mn toxicity of barley (Hordeum vulgare L.) seedlings was investigated with special reference to the effect on Mn microdistribution and peroxidase activity. Manganese treatment was conducted by growing the seedlings in nutrient solutions containing different concentrations of Mn. Silicon treatment was conducted by growing the seedlings in the solutions with or without Si supply. Silicon supply alleviated the necrotic browning in the leaves but did not affect the chlorosis caused by Mn toxicity. Silicon treatment did not appreciably alter the uptake of Mn by the plants. Electron probe X‐ray microanalysis revealed that Mn accumulated in high concentration around the necrotic brown spots and that Si supply prevented the uneven distribution of Mn in the tissues. Increase in the level of Mn supply caused an increase in peroxidase activity in the tissues, and Si supply prvented the increase in peroxidase activity.  相似文献   

9.
The natural content of ochratoxin A in grain samples of 6 barley, 2 bread wheat and 1 durum wheat cultivars varied from <0.1 to 0.4 ng/g grain. Samples of the analysed cultivars were surface sterilized and kept in humidity chambers at 20°C and water activity (aw) 0.75 or aw 0.85 for 8 days. For both environments, the resulting grain equilibrium water content varied between cultivars of both barley and wheat, attributable to agronomic traits. The samples were then inoculated with Penicillium verrucosum and incubated for up to 23 weeks. With time, all cultivars had increasing ochratoxin A content, with maximum content in different barley cultivars ranging from 34 to 630 ng/g grain for aw 0.75, and 39 to 260 000 ng/g for aw 0.85. Corresponding values for the wheat cultivars were 25 to 2 300 ng/g and 650 to 5 200 ng/g. Significant varietal differences in ochratoxin A accumulation were observed for barley (P < 0.0001), attributable to equilibrium water content, amylose content and natural ochratoxin A, and for wheat (P < 0.0001), attributable to protein content and natural ochratoxin A. Barley ‘SW 1306 95/1203’ and ‘SW 906129 Waxy’, and wheat ‘SW 39103’ accumulated significantly less ochratoxin A than the other cultivars.  相似文献   

10.
Barley plants were grown hydroponically at two levels of K (3.0 and 30 mm) and Fe (1.0 and 10 μm) in the presence of excess Mn (25 μm) for 14 d in a phytotron. Plants grown under adequate K level (3.0 mm) were characterized by brown spots on old leaves, desiccation of old leaves, interveinal chlorosis on young leaves, browning of roots, and release of phytosiderophores (PS) from roots. These symptoms were more pronounced in the plants grown under suboptimal Fe level (1.0 p,M) than in the plants grown under adequate Fe level (10 μm). Plants grown in 10 μm Fe with additional K (30 mm) produced a larger amount of dry matter and released less PS than the plants grown under adequate K level (3.0 mm), and did not show leaf injury symptoms and root browning. On the other hand, the additional K supply in the presence of 1.0 μM Fe decreased the severity of brown spots, prevented leaf desiccation, and increased the leaf chlorophyll content, which was not sufficient for the regreening of chlorotic leaves. These results suggested that the additional K alleviated the symptoms of Mn toxicity depending on the Fe concentration in the nutrient solution. The concentration (per g dry matter) and accumulation (per plant) of Mn in shoots and roots of plants grown in 10 μm Fe and 30 mm K were much lower than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that additional K repressed the absorption of Mn. The concentration and accumulation of Fe in the shoots and roots of the plants grown in 10 μm Fe and 30 mm K were higher than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that the additional K increased the absorption of Fe under excess Mn level in the nutrient solution. The release of PS, chlorophyll content, and shoot Fe concentration were closely correlated.  相似文献   

11.
The B toxicity resistance mechanism was investigated by examining the distribution of B amongst and within plant parts of four barley genotypes transferred from normal to excessive B. After transfer, the B concentrations increased in all plant parts. In corresponding parts (roots and leaves) however, the B concentrations always reflected the relative susceptibility of each genotype to B toxicity, with susceptible genotypes having higher B concentrations than less susceptible genotypes. Despite large differences amongst genotypes in the B concentrations of corresponding leaf segments, the relative B concentrations along the leaves were similar for all genotypes.

Similarly, the amount of B in all parts increased after transfer, with B accumulation by leaves closely reflecting leaf size. Roots contained up to 10 percent of the total B accumulated at each harvest. This pattern was essentially the same for each genotype at each harvest, despite the large differences in total B accumulated. These results show that the pattern of B distribution was remarkably similar in the four genotypes examined despite great differences in the total amounts of B absorbed and the actual B concentrations of individual parts. Differences amongst barley genotypes in susceptibility to B toxicity do not result from an ability to control the internal distribution of the element, but rather are governed by the amount of B each accumulates.  相似文献   

12.
Journal of Soils and Sediments - Arsenic (As) is one of the most widespread toxic elements, affecting human health through consumption of contaminated water or food. This work studied the effects...  相似文献   

13.
Hydroxycinnamic acid content and ferulic acid dehydrodimer content were determined in 11 barley varieties after alkaline hydrolysis. Ferulic acid (FA) was the most abundant hydroxycinnamate with concentrations ranging from 359 to 624 microg/g dry weight. p-Coumaric acid (PCA) levels ranged from 79 to 260 microg/g dry weight, and caffeic acid was present at concentrations of <19 microg/g dry weight. Among the ferulic acid dehydrodimers that were identified, 8-O-4'-diFA was the most abundant (73-118 microg/g dry weight), followed by 5,5'-diFA (26-47 microg/g dry weight), the 8,5'-diFA benzofuran form (22-45 microg/g dry weight), and the 8,5'-diFA open form (10-23 microg/g dry weight). Significant variations (p < 0.05) among the different barley varieties were observed for all the compounds that were quantified. Barley grains were mechanically fractionated into three fractions: F1, fraction consisting mainly of the husk and outer layers; F2, intermediate fraction; and F3, fraction consisting mainly of the endosperm. Fraction F1 contained the highest concentration for ferulic acid (from 77.7 to 82.3% of the total amount in barley grain), p-coumaric acid (from 78.0 to 86.3%), and ferulic acid dehydrodimers (from 79.2 to 86.8%). Lower contents were found in fraction F2, whereas fraction F3 exhibited the lowest percentages (from 1.2 to 1.9% for ferulic acid, from 0.9 to 1.7% for p-coumaric acid, and <0.02% for ferulic acid dehydrodimers). The solid barley residue from the brewing process (brewer's spent grain) was approximately 5-fold richer in ferulic acid, p-coumaric acid, and ferulic acid dehydrodimers than barley grains.  相似文献   

14.
The present study investigated the possible mediator role of salicylic acid (SA) in alleviating cadmium (Cd) toxicity during the germination stage of barley. The exposure of barley seedling to increasing Cd concentrations (25, 50 and 100 µM) during early stages of their establishment, caused a gradual decrease in vigour index, root length, α-amylase, acid phosphatase, alkaline phosphatase activities in endosperms and mitotic index of the root tip. Seed pretreatment with 600 µM SA partially alleviated the negative effects of Cd on germination parameters and increased the hydrolytic enzyme activities and mitotic index. Cadmium treatment increased Cd accumulation in roots. Furthermore, results showed that compared to the cadmium treatment applied alone, SA pretreatment of the seeds did not influenced the Cd concentration in the roots. These results suggest that SA plays a positive role in barley-seed germination and early seedling growth by protecting it against Cd toxicity by moderating its toxic effect on the mobilization of organic reserves.  相似文献   

15.
Cobalt (Co) is beneficial for legume plants and not an essential element for most plants. There is no sufficient information about the effect of Co stress on barley growth. The current experiment was carried out to investigate the effects of different Co levels (25, 50, 75, and 100 µM) on growth and physiological traits of three barley genotypes (B325, J36, and B340) differing in Co tolerance. The results showed that Co stress inhibited plant growth, decreased chlorophyll content and photosynthetic rate, and enhanced oxidative stress. However, the effects differed among genotypes, with B325 and B340 being the most and the least affected, respectively. Co stress caused decrease and increase of manganese (Mn) and phosphorus (P) concentrations in both roots and shoots, respectively; iron (Fe) concentration had little change in shoots and a significant decrease in roots. The current results showed a close association of Co tolerance and its accumulation in plant tissues.  相似文献   

16.
Summary This paper presents soil biological data from a study on the functioning of three soil-plant systems on a Gray Luvisol in Cryoboreal Subhumid central Alberta. The systems were (1) an agroecological 8-year rotation, (2) a continuous grain system, both established in 1981, and (3) a classical Breton 5-year rotation established in 1930. The objectives were to (1) determine whether changes in vesicular-arbuscular mycorrhizae (VAM) populations occurred in soil under these cropping systems, (2) discover whether these cropping systems and/or VAM infection influenced the incidence of common root rot (Bipolaris sorokiniana), and (3) use nutrient translocation indices to test the hypothesis that soil quality influences non-specific physiological conditions in barley (Hordeum vulgare L.). VAM fungal propagules in soil samples and VAM infection under controlled conditions were significantly affected by the cropping system. VAM infection accounted for more than 85% of the variability in grain yield, plant biomass yield, and plant uptake of K, S, Ca, Fe, and Zn under controlled conditions. Backward-elimination regression analyses showed that under these conditions of high available P, plant P uptake was governed by the quantity of extractable P in the soil (r 2=0.82); the VAM infection contributed practically nothing when combined with available P (R 2=0.84). Neither VAM infection nor the cropping system were related to the B. sorokiniana infection in the barley. The growth of B. sorokiniana was equal, and its sporulation superior, when grown on residues of the non-host fababean (Vicia faba L.), compared with growth on residues of barley. Higher translocation of plant nutrients to the grain in the agroecological compared with the continuous grain treatments suggested that VAM and/or the soil history affected plant physiology, possible through hormonal effects. Superior barley yields in the agroecological compared with the continuous grain treatments were partly due to increased VAM colonization, greater nutrient accumulation and translocation to the grain, but not to a reduced disease incidence. These results demonstrate the benefits of a holistic systems approach while studying biological interactions involving plants and groups of soil microorganisms.(ICRISAT journal article number 1161)  相似文献   

17.
灌溉对大麦/玉米带田土壤硝态氮累积和淋失的影响   总被引:7,自引:3,他引:7  
以甘肃省河西走廊灌区为试验地点,分别在0、150、300 kg/hm2氮水平和816、1632 m3/hm2灌水量下,对3次灌水前、后大麦/玉米带田0~200 cm土壤NO-3-N含量变化和灌水后135 cm处渗漏液NO-3-N浓度进行了测定。结果表明:灌水明显影响土壤硝态氮累积量,随灌水次数增加,土壤硝态氮累积量降低,而且在高灌水条件下土壤硝态氮累积量变化比低灌水量时大。从渗漏液硝态氮浓度来看,大麦带和玉米带都是以第1次灌水最高,浓度分别为8.04~17.21和3.30~14.57 mg/L。3次灌水土壤硝态氮淋失量,玉米带以N 150 kg/hm2和灌水量1632 m3/hm2最高,平均为4.31 kg/hm2;大麦带以N 150 kg/hm2及灌水量1632 m3/hm2和N 150 kg/hm2及灌水量816 m3/hm2比较高,平均为6.82 kg/hm2。  相似文献   

18.
Drought is a major factor limiting crop production worldwide. Barley is a well‐adapted cereal that is largely grown on dry marginal land where water and salinity are the most prevalent environmental stresses. This study was carried out to investigate the effects of drought stress and subsequent recovery on growth, photosynthetic activity, water relations, osmotic adjustment (OA), and solute accumulation of wild (Hordeum maritimum) and cultivated barley (H. vulgare L.). In a pot experiment, 60 d old seedlings were subjected to drought stress for 0, 7, 14, 21, or 28 d, and then re‐watered to recover for up to 21 d. Plants were harvested at the end of each of these drought/recovery treatments. Drought significantly reduced fresh and dry weights at the whole‐plant level, photosynthetic activities, and solute and water potentials, while increasing leaf Na+ and K+ concentrations. The adverse effects of drought on growth were more marked in cultivated barley than in wild barley and the reverse was true for photosynthetic activities. During recovery, all wild barley seedlings completely recovered. For cultivated barley seedlings, rehydration had a beneficial effect on growth and photosynthesis, independent of treatment duration, but complete recovery did not occur. The reduction in leaf solute potential at full turgor in drought‐stressed barley, relative to the control, suggests active OA which was more significant in wild barley than in cultivated barley. OA was mainly due to the accumulation of inorganic (K+ in cultivated barley and Na+ in wild barley) and organic (soluble sugars and proline) solutes. The results suggest that OA is an important component of the drought‐stress adaptation mechanism in wild barley, but is not sufficient to contribute to drought tolerance in cultivated barley. In the latter species, the results show that even short periods (as little as 7 d) of water deficit stress had considerable long‐term effects on plant growth.  相似文献   

19.
Osmotic stress as well as silicon (Si) improve the resistance of barley (Hordeum vulgare cv. Ingrid) against barley powdery mildew (Blumeria graminis f. sp. hordei Speer). Nothing is known about interactions, particularly whether Si is necessary for pathogen resistance induced by osmotic stress. In this paper, we show that Si nutrition was not necessary for osmotic‐stress‐induced pathogen resistance. Si‐mediated resistance could, however, be enhanced by osmotic stress and vice versa. Even at maximum Si‐mediated resistance, further enhancement of pathogen resistance by osmotic stress was possible. The fungus was controlled by the formation of effective papillae in both treatments. The combined effect of Si and osmotic stress was as strong as the calculated addition of the Si and the osmotic‐stress effect. Our data clearly show that the effect of osmotic stress and Si is not competitive but additive. A synergistic action of both treatments cannot be supported by our data. It is assumed that the basal pathogen resistance of barley is enhanced by Si due to strengthening of papillae in addition to the increased formation of effective papillae induced by osmotic stress. Therefore, the addition of Si increases pathogen resistance equally at all investigated NaCl concentrations. A function of Si in pathogen defense exceeding the strengthening of papillae is not supported by our data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号