首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Abstract

The primary nitrogen forms utilized by plants are ammonium and nitrate. Although the importance of nutrients other than nitrogen for proper turfgrass growth is well established, the amounts of these nutrients in the plant tissue in relation to the use of different N‐forms has not been clearly documented. This study was conducted under greenhouse conditions to determine the effect of N‐form and cutting regime on growth, macronutrient, and micronutrient content of creeping bentgrass (Agrostis palustris Huds. ‘Penncross'). Treatments consisted of 100% NO3? (calcium nitrate), 100% NH4 + (ammonium sulfate), and a 50:50 ratio of NH4 +:NO3 ?. Half the turfgrass plants were maintained at a height of 1 cm (cut), while the other half of the plants were not cut until the end of the study (uncut). The uncut 50:50 treatment yielded the highest shoot, verdure, and total plant dry matter, while the uncut NO3 ? treatment produced the highest root dry matter. The uncut NH4 + treatment yielded the least shoot, root, and total plant dry matter. Plants of the uncut NO3 ? treatment had greater accumulation of macronutrients in the shoot and root tissue compared to plants of the NH4 + treatment. The uncut NO3 ? and 50:50 treatments had higher total accumulation of micronutrients compared to the uncut NH4 +‐treated plants. The cut NO3 ? treatment resulted in the highest macronutrient and micronutrient contents in the root tissue in comparison to other cut treatments. The cut treatments had the highest percentage accumulation of nutrients in the verdure tissue, while the uncut treatments had the highest percentage accumulation of nutrients in the shoot tissue.  相似文献   

2.
Plant nitrogen (N) uptake, growth, and N use efficiency may be affected by N form (NO3 or NH4 +) available to the root. The objectives of this study were to determine the effect of mixed N form on dry matter production and partitioning, N uptake, and biomass N use efficiency defined as total dry matter produced per unit plant N (NUE1) in U.S. and tropical grain sorghums [Sorghum bicolor (L.) Moench]. The U.S. derived genotype CK 60 and three tropical genotypes, Malisor‐7, M 35–1, and S 34, were evaluated in a greenhouse trial using three nutrient solutions differing in their NO3 /NH4 + ratio (100/0, 75/25, 50/50). Shoot and root biomass, N accumulation, and NUE, were determined at 10‐leaf and boot stages. Averaged over all genotypes, shoot and root biomass decreased when NH4 + concentration was increased in the solution. Shoot biomass was reduced by 11% for 75/25 and 26% for 50/50 ratios, as compared to 100/0 NO3 /NH4 +. Similarly, root biomass reduction was about 34% and 45% for the same ratios, respectively. Increasing NH4 + concentration also altered biomass partitioning between shoot and root as indicated by decreasing root/shoot ratio. Total plant N content and NUE1 were also reduced by mixed N source. Marked genotypic variability was found for tolerance to higher rates of NH4 +. The tropical line M 35–1 was well adapted to either NO3 as a sole source, or to an N source containing high amounts of NH4 +. Such a characteristic may exist in some exotic lines and may be used to improve genotypes which do not do well in excessively wet soil conditions where N uptake can be reduced.  相似文献   

3.
After a 35 days growth on nutrient solutions with NO 3 NH4NO3 and NH+ 4 as nitrogen source (pH 4.2) dry matter yield of the sorghum genotype SC0283 was much less affected by Al (1.5 mg‐1) than that of the genotype NB9040. With NO 3 as the sole nitrogen source only growth of the NB9040 plants was significantly reduced. Since OH efflux, shoot Al content and concentrations of all major nutrients of both genotypes were almost equal, a higher sensitivity to Al may underlie the lower Al tolerance of the NB9040 genotype. In the presence of NH.‐N Al again lowered d.m. yield of the NB plants. With SCO283 significant Al effects on d.m. yield were observed only with NH4NO3. Aluminum drastically increased the amount of protons released per unit of root surface area, especially with the NB9040 line. This shift in proton flux density was partly the result of a decrease of the specific root surface area and partly due to enhanced excess of catlonic nutrients taken up. With NH4NO3‐fed plants the latter could almost completely be attributed to a changed N preference brought about by inhibited uptake of NO 3 and a simultaneous enhanced NH, absorption. Although both proton efflux and NH+ 4 preference of the NB plants were severely increased by Al, relative yields of this genotype were not lowered by NH+ 4. This can probably be explained by (1) the high NH, sensitivity of this cultivar through which Al effects can be masked and (2) the continuous adjustment of the solution pH through which rhizosphere conditions were prevented.  相似文献   

4.
Ryegrass has increasingly been used in constructed wetlands for treatment of eutrophic wastewater. To properly match plant species with the characteristics of wastewater being treated, it is important to know the performance of plant species under different nitrate/ammonium (NO3 ?/NH4 +) ratios. We investigated ryegrass (Lolium perenne L.) dry matter (DM) production and N accumulation under five NO3 ?/NH4 + ratios (100/0, 75/25, 50/50, 25/75, 0/100) in a hydroponic system. The results showed that ryegrass total DM, shoot DM, root DM and nitrogen (N) accumulation were greater under NO3 ?/NH4 + ratios of 50/50 and 75/25 than under other NO3 ?/NH4 + ratios, indicating that ryegrass can be best used in constructed wetlands for treating wastewater with such NO3 ?/NH4 + ratios to achieve high biomass production and efficient removal of N. On the other hand, for treating wastewater with either NO3 ? or NH4 + dominate the inorganic N, other plant species that are more adapted to such conditions should be explored.  相似文献   

5.
The growth of sesame (Sesamum indicum L.) was studied at three root temperature regimes (25/25, 20/10 and 15/15°C day/night) factorially combined with three NO3 : NH4 + ratios (mM ratios, 10:0, 8:2, or 6:4), as a source of nitrogen (N), in the irrigation solution. The air temperature was kept constant at 30°C. Transpiration, nutrient composition, and level of root‐born cytokinins and gibberellins in the xylem exudate were monitored. The two low root temperature regimes, 15/15 and 20/10°C, restricted the growth of sesame, reduced transpiration and increased the accumulation of soluble carbohydrates in the shoot and in the roots compared to the 25/25°C regime. The NO3:NH4 + ratios had no effect on growth. Nutrient contents in the shoot at low root temperatures, particularly K+, NO3 , and H2PO4 were decreased markedly, but Na+ increased relative to it's content in the 25/25°C regime. Increasing NH4 + proportion in the irrigation solution raised total N concentration in the plant tissues at all root temperatures. The amounts of cytokinins and gibberellins in the xylem exudate decreased at the low root temperature regimes relative to the 25/25°C regime. Low root temperature reduced xylem transport of nutrients and root born‐phytohormones, most probably because of reduced water flow through the plant relative to the 25/25°C regime.  相似文献   

6.
Abstract

Tobacco (Nicotiana tabacum L., cv. ‘Coker 319') plants were grown for 28 days in flowing nutrient culture containing either 1.0 mM NO3 or 1.0 mM NH4 + as the nitrogen source in a complete nutrient solution. Acidities of the solutions were controlled at pH 6.0 or 4.0 for each nitrogen source. Plants were sampled at intervals of 6 to 8 days for determination of dry matter and nitrogen accumulation. Specific rates of NO3 or NH4 + uptake (rate of uptake per unit root mass) were calculated from these data. Net photosynthetic rates per unit leaf area were measured on attached leaves by infrared gas analysis. When NO was the sole nitrogen source, root growth and nitrogen uptake rate were unaffected by pH of the solution, and photosynthetic activity of leaves and accumulation of dry matter and nitrogen in the whole plant were similar. When NH4 + was the nitrogen source, photosynthetic rate of leaves and accumulation of dry matter and nitrogen in the whole plant were not statistically different from NO3 ‐fed plants when acidity of the solution was controlled at pH 6.0. When acidity for NH4 + ‐fed plants was increased to pH 4.0, however, specific rate of NH4 + uptake decreased by about 50% within the first 6 days of treatment. The effect of acidity on root function was associated with a decreased rate of accumulation of nitrogen in shoots that was accompanied by a rapid cessation of leaf development between days 6 and 13. The decline in leaf growth rate of NH4 + ‐fed plants at pH 4.0 was followed by reductions in photosynthetic rate per unit leaf area. These responses of NH4 + ‐fed plants to increased root‐zone acidity are characteristic of the sequence of responses that occur during onset of nitrogen stress.  相似文献   

7.
Abstract

Seedlings of four maize hybrids were grown hydroponically to investigate the impact of different N sources (Ca(NO3)2, (NH4)2SO4 and a 1:1 mixture of both) on (i) production and partitioning of root and shoot dry matter, (ii) concentration of soluble carbohydrates in roots and shoots and their partitioning to these plant parts, (iii) concentration of starch in the shoot, and (iv) N uptake. During the main phase of the experiments (duration 14d), the plants were grown in a greenhouse at 25/22°C day/night temperatures and a photoperiod of 16h. Nitrogen was supplied at three concentrations (2.8, 28, and 280 ppm). The root‐zone pH was 6.5. Under the lowest N supply, the N sources produced similar root and shoot dry matters. At the highest N level (280 ppm), NO3‐fed plants were superior. In contrast, the mixture of NH4 and NO3 ? was optimum at 28 ppm. More or less pronounced N form by N concentration interactions were also found in the concentration and distribution of soluble carbohydrates and in all remaing traits. There were almost statistically significant cultivar by N form interactions in shoot dry matter (P = 0.07) and total dry matter (P = 0.06), indicating the existence of considerable genotypic variation in sensivity to NH4‐N.  相似文献   

8.
As a result of repeated applications, some fungicides may accumulate in the soil to levels high enough to have adverse effects on the activity of soil microorganisms and plant growth. Comparison of the effects of 10 mg kg‐1 soil of the benlate, captan, and lime‐sulfur fungicides with the nitrification inhibitors (NI) nitrapyrin and terrazole on oxidation of NH4 + in Tifton loamy sand (siliceous, thermic plinthic Typic Kandiudults) incubated at 30° C showed that benlate had no significant effects whereas captan inhibited nitrification 21% more than lime‐sulfur, but about 20% less than NI. Application of benlate enhanced NO3 reduction to N2O and N2 in liquid medium inoculated with soil whereas 50 and 100 mg L"1 medium of captan and lime‐sulfur compared favorably with the NI in suppressing NO3 and NO2 reductions, but were less effective than the inhibitors when applied at the low rate of 10 mg L‐1 medium. In a greenhouse study with tomato (Lycopersicon esculentum Mill. cv. ‘Better Boy'), weekly drench applications of 0.25 mg kg‐1 soil of the test biocides for four weeks with three NH4 +‐N: NO3 ‐N ratios showed that benlate applied with 1: 0 N ratio and lime‐sulfur applied with 0: 1 N ratio restricted significantly the plant growth and N uptake. The largest root: shoot ratios, total plant dry weight, and N uptake were obtained with plants fertilized with 1: 1 N ratio in combination with the biocides.  相似文献   

9.
Abstract

Nitrogen‐form effect on nutrient uptake and the subsequent concentration of nutrients in turfgrass plant tissue has not been thoroughly investigated. This study evaluated the effects of clipping regime and N‐form on the tissue concentration of macronutrients and micronutrients and macronutrient uptake in ‘Penncross’ creeping bentgrass (Agrostis palustris Huds.). Turfgrass plugs were grown under greenhouse conditions in a modified Hoagland's solution with a combination of three nutrient solutions (100% NO3 ?, 100% NH4 +, and 50:50 ratio of NH4 +:NO3 ?) and two cutting regimes (cut and uncut). Concentrations of macronutrients and micronutrients were determined for shoot, root and verdure. Nutrient uptake was determined weekly. Uncut NO3 ?‐treated plants accumulated higher concentrations of K, Ca, Mg, B and Cu in the shoot tissue; P, K, Ca, Mg, B, Cu, Mn and Zn in the root tissue; and P, Ca, Mg, B, Fe and Mn in the verdure compared to uncut NN4 +‐treated plants. Nitrate uptake was greater with uncut NO3 ?‐treated plants than was NH4 + absorption with uncut NH4 +‐treated plants. Plants grown with the uncut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with the uncut NO3 ? and 50:50 treatments adsorbed higher amounts of P, K, and Ca compared to the NH4 + treatment. The cut NO3 ?‐treated plants accumulated higher concentrations of K in the shoot tissue; P, Ca, Mg, B, Cu, Fe and Mn in the root tissue; and B in the verdure than did the cut NH4 +‐treated plants. Cut NO3 ?‐treated plants adsorbed less NO3 ? than did cut NH4 +‐treated plants adsorbed NH4 +. The cut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with NO3 ? and 50:50 treatments, under both cutting regimes, resulted in higher concentrations of most macro‐ and micronutrients and greater nutrient uptake compared to the NH4 +‐treated plants.  相似文献   

10.
ABSTRACT

Aspects of ammonium (NH4 +) toxicity in cucumber (Cucumis sativus L.) were investigated following growth with different N sources [nitrate (NO3 ?), NH4 +, or NH4NO3] supplied in concentrations of 1, 5, 10, or 15 mM. Plant dry weights and root: shoot ratios were lower with NH4 +-fed plants than with NO3 ?-fed plants. Ammonium accumulated strongly in leaves, stem, and roots when the concentration in the growth medium exceeded 1 mM. The increase in tissue NH4 + coincided with saturation of glutamine synthetase activity and accumulation of glutamine and arginine. Low tissue levels of calcium and magnesium in the NH4 +-fed plants constituted part of the NH4 +-toxicity syndrome. Additions of small amounts of NH4 + to NO3 ? -grown cucumber plants markedly increased the growth.  相似文献   

11.
Fertigation with KNO3 as a means of reducing salinity hazards was tested with peanut (Arachis hypogaea) plants grown on dune sand, resulting in a reduction of plant growth and yield. The objective of this work was to study the interactions between N, K+ and NaCl as well as the effects of the NH4 +/NO3 ratio on vegetative and reproductive growth. Wheat (Triticum aestivum L.) plants were grown in polyethylene pots with fine calcareous dune sand with different proportions of NH4 + and NO3 , under saline (60 mM NaCl) and non‐saline conditions. Three replicates were harvested at the beginning of flowering, and one was grown to grain maturity. NaCl reduced shoot dry weight in all the treatments. Increasing the NH4 + proportion in the total of 6 mM N in the nutrient solution, increased shoot dry weight, did not change nitrogen concentration in the dry mass but increased P percentage, either with or without 60 mM NaCl. The number of tillers produced in each treatment was correlated with dry matter yield. The effect of the NH4 +/NO3 ratio may be explained by alteration of the cation‐anion balance on the nutrient uptake by roots, which lowered pH of the nutrient solution with increasing NH4 + concentration, by alteration of the cation‐anion balance on the nutrient uptake by roots, which lowered pH of the nutrient solution with increasing NH4 + concentration.  相似文献   

12.
Evaluations of fruit quality and nitrogen, potassium, and calcium concentration of apple (Malus domestica Borkh. cvs. Gala and Golab) grown with five treatments of NO3?:NH4+ ratios were made in pot culture. The concentrations of NO3?:NH4+ ratios were 2.5:0.1, 6:1, 6:0.7, 6:0.5, 6:0.3 meq L?1. Fruit size, percent dry matter, total dissolved solids, total acidity, or juice pH was not affected by increased ammonium in the ratio. Firmness decreased as the proportion of NH4+ increased. Gala and Golab differed in some of these parameters. Concentrations of N and K increased as NH4+ increased, whereas Ca had no trend or decreased. Generally, the treatment of 2.5:0.1 produced fruits with lower N but higher K and Ca concentrations than the other treatments. This research showed that some parameters such as fruit weight, length, and diameter, juice pH, and dry matter were not affected significantly by NH4+ concentration whereas composition was affected.  相似文献   

13.
陈沂岭  赵学强  张玲玉  沈仁芳 《土壤》2019,51(2):243-250
NH_4~+和NO_3~–是对植物有效的两种主要无机氮源。水稻一般被认为是偏好NH_4~+的植物,但是在NO_3~–条件下,水稻也能良好地生长。大多数关于水稻铵硝营养的报道是在pH 6.0左右的水培条件下开展的,但是对于酸性条件下水稻铵硝营养研究很少。随着土壤酸化的加重及一些边际酸性土壤被用作水稻种植,研究酸性条件下水稻的铵硝营养具有重要意义。本文采用水培试验,在pH 5.0的条件下,通过添加和不添加pH缓冲剂MES(2-(N-吗啡啉)乙磺酸),研究了NH_4~+和NO_3~–对水稻生长、氮效率和矿质养分(N、P、K、Ca、Mg、Fe、Zn、Cu、Mn)吸收的影响。结果表明,在不添加MES的条件下,水稻地上部生长(株高、叶绿素含量、干重)在NH_4~+和NO_3~–之间没有显著差异,而添加MES后,NH_4~+处理的水稻地上部生长优于NO_3~–。不管是否添加MES,NO_3~–处理的水稻地下部生长(根长、根表面积和根物质量)优于NH_4~+。水稻含氮量和氮利用效率在不同NH_4~+和NO_3~–处理之间没有显著差异,但是NH_4~+处理的水稻氮吸收效率高于NO_3~–。与NO_3~–相比,NH_4~+增加了水稻地上部P和Fe含量,而降低了水稻地上部Ca、Mg、Zn、Cu和Mn含量,对K含量影响较小。上述结果表明,NH_4~+有利于改善水稻地上部生长,提高氮吸收效率、地上部P和Fe含量,而NO_3~–则有利于水稻发根,提高地上部Ca、Mg、Zn、Cu和Mn含量。  相似文献   

14.
Oilseed rape (Brassica napus L.) response to root temperature regimes (20/20, 16/8 and 12/12°C day/night) at constant 20°C air temperature was studied. At each regime, three NO3 :NH4 + ratios (10:0, 8:2, or 6:4), at constant 10 mM N, in the irrigation solution were tested. Plant growth, transpiration, ionic composition and level of cytokinins and gibberellins in the xylem exudate were monitored. The two low root temperature regimes, 12/12 and 16/8°C, reduced rape shoot growth by 28 and 22%, and increased the accumulation of soluble carbohydrates by 42 and 26% in the roots, respectively, as compared to the 20/20°C regime. Low root temperatures reduced plants transpiration. The NO3 :NH4 + ratios had no effect on rape growth. At low root temperatures NO3 contents increased in the shoot and decreased in the roots. The sum of cations and that of anions at 12/12 and 16/8°C root temperatures decreased significantly as compared to 20/20°C. The presence of NH4 + in the irrigation solution decreased the concentrations of Ca2+ and Mg2+ in the shoots and roots and increased that of Cl in the shoots and of H2PO4 in the roots at all root temperatures. Cytokinins and gibberellins contents in the xylem exúdate decreased at the low root temperature regimes. Low root temperature reduced total upward transport of the mineral nutrients and phytohormones, most probably because of reduced water flow through the plant.  相似文献   

15.
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a potentially high‐yielding grain crop for the Southern Coastal Plain region of the USA. Information on the growth and N nutrition of pearl millet is limited; therefore, this study was initiated with the objective of studying pearl millet growth, N content, N uptake patterns and N‐form preference. Plants were grown in solution culture using a modified Hoagland's solution. Solutions were changed weekly and transpirational losses replaced daily. The N‐form ratios were 1:0, 3:1, 1:1, 1:3 and 0:1 NH4 + to NO3 Uptake was determined by difference between the initial and final solutions. Nitrate and NH4 + uptake patterns were different from each other and were influenced by the ratio of NH4 + to NO3 . After the plants had been transferred to the solutions, ammonium was preferred for the first two weeks, with NO3 preferred thereafter. Nitrate uptake was highest during the grain filling period. Plant growth as measured by leaf, stem, root, and seed weight, plant height, average seed weight, and head length was generally reduced as NH4 + increased. The largest reduction was observed between the 3:1 and 1:0 ratios. Ammonium nutrition had an overall negative effect on pearl millet growth. Ammonium fertilization of pearl millet under conditions that increase absorption of NH4 + over NO3 may have a negative effect on pearl millet growth and development.  相似文献   

16.
Nitrogen is taken up by most plant species in the form of nitrate and ammonium. The objective of this study was to investigate the effect of different nitrogen forms on the growth of watermelon seedlings. Plants were grown in hydroponic culture with five nitrate (NO3?)/ammonium (NH4+) ratios (100/0, 75/25, 50/50, 25/75, 0/100). When the proportion of NH4+ was increased, the leaf number, leaf area, shoot height, net photosynthesis, biomass, and root growth were significantly decreased. Higher concentrations of nitrogen (N) and phosphorus (P) were observed when plants were supplied with mixed NO3? and NH4+ compared to NO3? or NH4+ alone, whereas the concentrations of potassium (K), calcium (Ca), and magnesium (Mg) were decreased with increasing NH4+. The microelements concentrations were generally increased with more NH4+ added. In addition, plants fed with higher NO3?/NH4+ ratios resulted in more minerals accumulation.  相似文献   

17.
ABSTRACT

A pot experiment was conducted to study the growth and pungency of Allium cepa L. grown in Perlite as affected by colonization by the arbuscular mycorrhizal (AM) fungi Glomus versiforme and Glomus intraradices BEG141 and by ammonium:nitrate (NH4 +:NO3 ?) ratios of 3:1, 1:1, and 1:3 in 4 mM solutions. Plants were harvested when bulb formation commenced. In general, mycorrhizal colonization resulted in increased shoot dry weight, shoot length, sheath diameter, root nitrogen (N) and phosphorus (P) content (except with G. intraradices and a NH4 +:NO3 ? ratio of 1:3), shoot N and P concentrations (except with G. versiforme and a NH4 +:NO3= ratio of 3:1) and content. Plants inoculated with G. versiforme had higher growth parameters and N and P content than those with G. intraradices, whereas N and P concentrations showed the opposite trends. Growth parameters and N and P content of non-mycorrhizal plants were highest at a NH4 +:NO3= ratio of 1:3, while those of plants inoculated with G. versiforme or G. intraradices were highest at a ratio of NH4 +:NO3 ? 3:1 or 1:1. Neither mycorrhizal colonization nor proportion of inorganic N species significantly affected bulb enzyme-produced pyruvate or total or organic sulfur (S) concentrations in plant shoots. Colonization by AM fungi made a substantial contribution to onion growth and may not have been directly related to bulb pungency at early stages of plant growth. However, the influence of AM fungi on plant N and P metabolism may have implications for onion flavor at later stages of plant growth.  相似文献   

18.
In the present study, we investigated effects of homogeneous or localized supply of different nitrogen (N) forms on shoot and root growth of tobacco. While homogeneous supply of NH4+ and N deprivation inhibited shoot growth compared with application of NO3, the N form had no significant effect on root growth. In contrast, in a split-root experiment, application of NH4+ or N deprivation in one half of the root system repressed root growth compared with the other part of the root, which was supplied with NO3. However, shoot growth was not affected by localized NH4+ application or local N deprivation. Inhibitory effects on shoot and root growth by variations of N supply could not be related to limitations in N or C status of the plants or to NH4+ toxicity. A possible involvement of NO3 as a signal compound including of phytohormones is discussed.  相似文献   

19.
Physiological responses of plants to ammonium (NH4) versus nitrate (NO3) nutrition can vary considerably. A greenhouse study was conducted to examine the effect of ammonium‐nitrogen/nitrate‐nitrogen (NH4‐N/NO3‐N) ratio on dry matter partitioning and radiation use efficiency in corn (Zea mays L.). The hybrid Funks G 4673A was supplied with nutrient solutions that contained 8:1, 1:1, or 1:8 ratios of NH4‐N/NO3‐N. At each of four harvests, plants were separated into leaf blades, stem + leaf sheaths, and roots. Radiation use efficiency was calculated from these dry matter harvests and measured photosynthetically active radiation. Generally, more dry matter was partitioned to the stem than to leaf tissue when supplied with the 1:8 NH4‐N/NO3‐N ratio than when supplied with the other N treatments. Corn supplied with 8:1 and 1:1 ratios of NH4‐N/NO3‐N resulted in radiation use efficiency values for total dry matter that were significantly higher by 39 and 25%, respectively, than that of corn supplied with the 1:8 ratio indicating that Funks G 4673A was more efficient in converting radiation into dry matter when supplied with high proportions of NH4 than when supplied primarily with NO3.  相似文献   

20.
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a potentially productive, high‐yielding grain crop in the southeastern USA. A lack of response in pearl millet grain yield to fertilizer N in field studies indicates pearl millet may be able to remobilize N from vegetative to reproductive tissue. The N remobilization capabilities of a plant can be affected by the form of N supplemented. The objectives of this study were to evaluate the effects of N‐form ratio (NH4 + : NO3 ) on the N remobilization capabilities of pearl millet when N is removed from the nutrient solution at the boot stage and to evaluate the effects of changing N‐form ratios at the boot stage on the seed yield and N content of pearl millet. Pearl millet was grown in solution culture under greenhouse conditions. There were 10 treatments: an initial NH4 + : NO3 ratio of 3:1 followed by a change at the boot stage to either all NO3 , no N, or a continuation of the initial ratio; an initial NH4 + : NO3 ratio of 1:1 followed by a change at the boot stage to either all NO3 , all NH4 + no N, or a continuation of the initial ratio; and an initial NH4 + : NO3 ratio of 1:3 followed by a change at the boot stage to either all NH4 + no N, or a continuation of the initial ratio. Pearl millet dry matter accumulation was insensitive to changes in N‐form ratio or N removal at the boot stage. The lack of seed yield response to removal of N was a result of pearl millet utilizing N present in culms and leaves for seed production. Applications of N after the boot stage did not increase seed yield, but led to luxury consumption of N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号