首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various container sizes were used to induce root restriction on ‘Jupiter’ bell pepper (Capsicum annuum L.). There was little or no effect of container size on plant growth up to 23 days after transplanting (DAT). By 45 DAT, leaf area and plant dry weight was diminished proportional to container volume. Root‐to‐shoot ratio was constant among the various root restricting conditions over the course of the experiment. Also, there was no disproportional allocation of dry matter to stem or leaves in response to root restriction. Whole‐plant and leaf photosynthetic rate during fruit expansion (44 DAT) was positively correlated with container volume; although, the effect of root restriction was less on leaf photosynthetic rate. Chlorophyll analysis 45 DAT indicated significant leaf senescence due to root restriction. Flower production and fruit expansion began and declined earlier with increased restriction of roots. Harvest index 58 DAT was inversely proportional to container size suggesting an increased allocation of dry matter to fruit under root restricted conditions.  相似文献   

2.
Two week‐old summer squash (Cucurbita pepo L.) were transplanted to container volumes of 0.35, 2.00, or 7.60 liters and were grown under full light or 47% shaded conditions to determine the growth and development responses of the crop relative to root and shoot stresses. Light regime had no apparent impact on plant leaf area production; however, leaf area of plants grown under both light regimes was reduced similarly by root restriction. Leaf area reductions were largely attributable to smaller individual leaf sizes. Specific leaf area did not respond to root restriction, but shading increased the amount of leaf area produced per unit of leaf dry weight for all soil volumes. Whole‐plant dry weight reductions due to root restriction were more pronounced in full light than in the shaded environment. There were no consistent differences in the percent of biomass allocated to roots, shoot, or leaves in response to either soil volume or light regime. Also, there were no effects of root restriction or light regime on timing, duration, and sex of flowers, or on timing of fruit set. Fruit dry weights at final harvest were reduced by increased root restriction under full light conditions; however, there were no differences in fruit dry weight among different container volumes under shaded conditions. The results from this study indicate that root restriction does reduce squash growth and yield; however, the effects of shading may be more important.  相似文献   

3.
Abstract

The distribution patterns of dry matter and P in field‐grown tomato ‘Campbell‐37’, ‘Knox’, and ‘Tipton’, (Lvcopersicon esculentum mill), were determined from 25 days after emergence to harvest. Dry weight accumulation was about the same for the 3 cultivars up to 55 days after plant emergence. From 55 to 75 days, ‘Knox’ accumulated more total plant dry weight than either ‘Tipton’ or ‘Campbell‐37’, largely due to an accelerated fruit accumulation rate during this period. In the 75 to 105 day interval, dry weight accumulation by ‘Knox’ was less than ‘Campbell‐37’ or ‘Tipton’. Fruit accumulation, as indicated by fruit number increase, was during the 45 to 75 day period for ‘Knox’, the 55 to 75 day period for ‘Tipton’, and the 55 to 85 day period for ‘Campbell‐37’. ‘Knox’ and ‘Tipton’ had a faster fruit ripening rate than ‘Campbell‐37’. The total ripe fruit yields, for single and multiple harvests, were 36.7% and 28.6% respectively, higher in ‘Campbell‐37’ than in ‘Knox’. Phosphorus concentration of stem, leaf, and cluster tissues decreased over the season for the 3 cultivars. Phosphorus concentrations of leaves decreased from 0.49% to 0.16% as plant development progressed from seedling stage to ripe fruit harvest. Phosphorus in the vegetative portion of the tomato plant at final harvest represented only about 10% of the total P accumulated. The plant efficiency with respect to P accumulation decreased from an early stage of plant development as the relative growth rate of the plant declined.  相似文献   

4.
Previous studies showed that wide genotype differences in nitrogen (N) efficiency exists among cultivars of rapeseed (Brassica napus L.), but the mechanisms behind those differences are still unknown. In the present study, our aim was to analyze the adaptability mechanism of N-efficient rapeseed to low-N stress by employing two genotypes of natural variation in N efficiency. Nitrogen-efficient genotype, ‘BG51’, and N-inefficient genotype, ‘BG88’, were grown in a solution culture experiment under conditions of high-N (6.0 mM N) and low-N (0.6 mM N) supply. After growing 30 d, roots and shoots were sampled for the analysis of dry weight, N concentration and accumulation, N use efficiency (NUE), N transport efficiency (NTE), root system vigor parameters, nitrate redutase (NR) activity, and glutamine synthetase (GS) activity. Nitrogen deficiency decreased shoot and root dry weight significantly, but ‘BG51’ exhibited a significantly lower decrease in shoot dry weight and had significantly higher biomass production than ‘BG88’. Under low N supply ‘BG51’ accumulated more N in shoot, root and whole plant than ‘BG88’, and presented higher NUE in both shoot and root. Low-N stress induced an increase in maximum root length by 28.3% for ‘BG88’ and 55.1% for ‘BG51’ compared with the high-N treatment. And ‘BG51’ presented larger root volume, higher root vigor, larger root total absorbing area and root active absorbing area than ‘BG88’ in low-N treatment. Furthermore, ‘BG51’ had significantly higher NR and GS activity in both leaf and root in low N treatment than ‘BG88’, while there was no evident difference between them in high N treatment. These results suggested that N-efficient rapeseed germplasm of natural variation involves an integrated adaptability mechanism responding to low-N stress. Namely, N-efficient genotype could form more developed root system to accumulate more N, and presented efficient N assimilation by higher NR activity and GS activity than N-inefficient genotype. These ultimately resulted in high tolerance of N-efficient genotype to low-N stress and high biomass production.  相似文献   

5.
《Journal of plant nutrition》2013,36(8):1311-1323
Tomato (Lycopersicon esculentum Mill.) yields are known to decrease for plants grown in saline soils. This study was conducted to determine the effects of arbuscular mycorrhizal fungi (AMF) inoculation on fruit yield and mineral content of salt-tolerant and salt-sensitive tomato cultivars grown with varied levels of salt. NaCl and CaCl2were added to soil in the irrigation water in equal molar ratios to give ECe values of 1.4 (nonstressed) and 4.9 dS m?1 (salt stressed). Plants were grown in a greenhouse using unsterilized, low phosphorus (P) (silty clay) soil-sand mix. Mycorrhizal root colonization occurred whether cultivars were salt stressed or nonstressed, but the extent of AMF root colonization was higher in AMF inoculated than uninoculated plants. The salt tolerant cultivar ‘Pello’ generally had higher AMF root colonization than the salt sensitive cultivar ‘Marriha’. Shoot dry matter (DM) yield, fruit fresh yield, and AMF colonization were higher for plants grown under nonstressed than for plants grown under salt stressed conditions. Shoot DM and fruit fresh yields were higher in AMF inoculated than uninoculated plants grown with or without salt stress. Pello generally had higher fruit fresh yield per plant and fruit weight than Marriha, but these differences were only significant for fruit weight in unioculated plants grown under salt stressed conditions. The enhancement in fruit fresh yield due to AMF inoculation was 26 and 23% under nonstressed and 28 and 46% under salt stressed treatments for Pello and Marriha, respectively. For both cultivars, fruit contents of P, potassium (K), zinc (Zn), copper (Cu), and iron (Fe) were higher in AMF inoculated compared with uninoculated plants grown under nonstressed and salt stressed conditions. Fruit Na concentrations were lower in AMF inoculated than uninoculated plants grown under salt stressed conditions. The enhancement in P, K, Zn, Cu, and Fe acquisition due to AMF inoculation was more pronounced in Marriha than in Pello cultivar under salt stressed conditions. The results of this study indicated that AMF inoculated plants had greater tolerance to salt stress than unioculated plants.  相似文献   

6.
During 1994–1995, field experiments were conducted in six apple orchards located in the southwest of Finland (the mainland and the Åland Islands). The cultivars were ‘Melba’, ‘Raike’, ‘Red Atlas’, ‘Lobo’, ‘Aroma’, and ‘Åkero’. Fruit samples were picked at about one week before commercial maturity and stored for three to six months at 2 to 4°C and 85–95% relative humidity. During storage the percentage of physiological disorders was visually recorded. Fruit nitrogen (N) and calcium (Ca), firmness, diameter, juice titratable acidity (TA), and soluble solids concentrations (SSC) were determined at harvest. Nitrogen and Ca in the soil and leaves collected during fruit development were determined. The ranges in fruit N were 296–624 and Ca 27–68 mg kg‐1 fresh weight, and in the leaves N 15–23 and Ca 9–19 g kg‐1 dry matter. The N/Ca ratio was 5 and 16 and 0.9 and 2.3 in fruit and leaves, respectively. There was more variation between years in N and Ca contents of leaves than that of fruit. Other fruit quality characteristics varied between seasons and cultivars. Leaf N correlated positively with fruit diameter and negatively with fruit dry matter. The incidence of physiological disorders on apples after three month storage was 2 to 13% and after six months 10 to 95%. Fruit with Ca content below 45 mg kg‐1 fresh weight were susceptible to bitter pit ('Aroma’ and ‘Åkero') and Jonathan spot ('Red Atlas'). The cultivar ‘Melba’ was susceptible to bruising damages and ‘Raike’ and ‘Red Atlas’ were affected more with internal breakdown and core browning.  相似文献   

7.
A study was undertaken to evaluate the yield, fruit size, and vegetative growth of three strawberry cultivars inoculated with three vesicular‐arbuscular mycorrhizal (VAM) species at three phosphorus (P) fertility levels. Vesicular‐arbuscular mycorrhiza inoculation and P fertility had no effect on inflorescence or flower number, total yield, fruit weight, or crown number. Higher levels of P did not increased total dry shoot weight, total fresh shoot, weight leaf area, total dry root weight, and leaf number in the present of VAM. However, the cultivars responded differently to VAM inoculation. Vesicular‐ arbuscular mycorrhiza inoculation in combination with P at all levels increased total dry and fresh shoot weight, leaf area, and leaf number compared to application of P alone. The results indicated that it may be possible to increase strawberry stolon production by inoculating the strawberry plants with VAM, a technique which might be useful in nurseries to produce certified strawberry plants.  相似文献   

8.
Abstract

The efficacy of using various levels of potassium (K) (4, 8, and 16 mM) under saline conditions to alleviate the detrimental effects of salt‐stress were studied using five tomato (Lycopersicon esculentum Mill) cultivars, ‘Strain 19’, ‘Pearson’, ‘Montecarlo’, ‘Maruthuam’, and ‘Pusa Rub’. Results of the study revealed that 50 mM sodium chloride (NaCl) in a Hoagland nutrient solution significantly reduced stem height, fruit weight, and whole plant dry weights, but increased number of fruits/plant and improved fruit quality by increasing total soluble solids. It did not significantly affect leaf count, percent fruit set, or dry weight. The addition of 4, 8 and 16 mM potassium nitrate (KNO3) to the nutrient solution containing 50 mM NaCl resulted in sodium/potassium (Na/K) ratios of 12.5, 6.3, and 3.1, respectively. The Na/K ratios of 12.5 and 6.3 produced significant improvement in stem height, percent fruit set, number of fruits/plant, fruit weight, and whole plant dry weight. The Na/K ratio of 3.1 was found to be detrimental as it resulted in sharp reduction of plant dry weight compared to the control. Percent total soluble solids was not significantly affected by the addition of any level of K to the saline nutrient solution. The performance of the tomatoplant grown under saline conditions supplemented with K in the nutrient solution indicated a higher response at the lowest K concentration used in this study.  相似文献   

9.
Field experiments were conducted during 1994–1995 in seven apple (Malus spp.) orchards located in the southwest of Finland (the mainland and the Åland Islands). The cultivars were ‘Transparente Blanche’, ‘Samo’, ‘Melba’, ‘Raike’, ‘Red Atlas’, ‘Åkerö’, ‘Aroma’, and ‘Lobo’. Leaf samples from branches bearing fruits (BF) and not‐bearing fruits (BNF) were collected two times during the growing seasons. Fruit samples were picked about one week before commercial maturity. Macronutrient concentrations in fruits and leaves, fruit diameter and juice pH, titratable acidity (TA) and soluble solids concentrations (SSC) were determined. Leaf nitrogen (N), phosphorus (P), and potassium (K) were higher, but calcium (Ca) and magnesium (Mg) were lower in BNF. Branch types (BF and BNF) were closely related in leaf N, P, and Ca, but not in leaf K and Mg at the first sampling time. Fruit N, P, K, and Mg were closely related to each other but not to fruit Ca. Mean fruit N and Ca and leaf P and Mg were low compared with the recommended levels. Relationships between fruit and leaf nutrient concentrations were found only in P and Mg. Fruit diameter increased and juice SSC decreased with increasing leaf N concentration. Fruit P declined with increasing fruit diameter and juice TA increased and SSC/TA decreased with increasing leaf P and Ca concentrations.  相似文献   

10.
Genotypic differences in potassium (K) uptake and utilization were compared for eight cotton cultivars in growth chamber and field experiments. Four of the cultivars (‘SGK3’, ‘SCRC18’, ‘SCRC21’ and ‘SCRC22’) typically produce lower dry mass and the other four (‘Nannong8’, ‘Xiangza2’, ‘Xinluzao12’ and ‘Xiangza3’) produce greater dry mass in K-deficient solution (0.02 mM). The mean dry weight of seedlings (five-leaf stage) of cultivars with greater biomass was 155% higher than that of cultivars with lower biomass yield under K deficiency. However, all the genotypes had similar dry matter yields in K-sufficient solution (2.5 mM). Thus, the four cultivars with superior biomass yield under low K medium may be described as K efficient cultivars while the inferior cultivars may be described as K inefficient. Although seeds of the studied cultivars originated from different research institutes or seed companies, there were little differences in seed K content among them, irrespective of their K efficiency. Consequently, there were no significant differences in K accumulation in seedlings (4 d after germination in a K-free sand medium) just before transferring to nutrient solutions. However, the K efficient genotypes, on average, accumulated twice as much K at 21 d after transferring to K-deficient solution (0.02 mM). A much larger root system as well as a slightly higher uptake rate (K uptake per unit of root dry weight) may have contributed to the higher net K uptake by the K efficient cultivars. In addition, the K efficiency ratio (dry mass produced per unit of K accumulated) and K utilization efficiency (dry mass produced per unit of K concentration) of the K efficient cultivars exceeded those of the K inefficient genotypes by 29% and 234%, respectively, under K deficiency. On average, the K efficient cultivars produced 59% more potential economic yield (dry weight of all reproductive organs) under field conditions even with available soil K at obviously deficient level (60 mg kg?1). We noted especially that the four K inefficient cultivars studied were all transgenic insect-resistant cotton, suggesting that the introduction of foreign genes (Bt and CpTI) may affect the K use efficiency of cotton.  相似文献   

11.
为明确不同耐低氮性玉米品种花后物质生产及叶片功能特性,采用大田试验,以玉米耐低氮品种‘正红311’和低氮敏感品种‘先玉508’为试验材料,在6个氮水平下研究花后物质生产及叶片功能特性。结果表明:施氮可显著提高玉米干物质积累、叶面积指数和叶片光合速率,延缓花后叶片叶绿素含量和全氮含量的下降,抑制生育后期叶片C/N值的增加,从而提高玉米的最终产量。耐低氮品种‘正红311’花后干物质积累、叶片光合速率、叶面积指数和产量均显著高于低氮敏感品种‘先玉508’,‘正红311’较‘先玉508’平均提高30.5%、9.2%、35.0%和8.8%。两品种吐丝后叶片叶绿素含量差异显著,耐低氮品种‘正红311’平均较低氮敏感品种‘先玉508’提高4.85%。两品种吐丝后叶片氮含量差异不大,但‘正红311’和‘先玉508’吐丝?成熟期叶片全氮含量分别下降31.5%和34.9%,‘正红311’降幅低于‘先玉508’。两品种花后叶片C/N值差异显著,‘先玉508’较‘正红311’平均提高5.95%。与低氮敏感品种‘先玉508’相比,耐低氮品种‘正红311’花后叶片光合速率更高、叶面积指数更大,而叶片叶绿素含量和全氮含量降幅与C/N值增幅更低,延缓了生育后期叶片的衰老,延长了叶片的功能期,增加干物质积累和产量。施用氮肥可有效提高‘正红311’干物质积累、叶面积指数和产量,延缓其生育后期叶片C/N值升高,而‘先玉508’需要较高的施氮水平才能维持其花后叶片光合速率和全氮含量。  相似文献   

12.
Greenhouse experiments under winter conditions were conducted to examine the effects of soil type, mineral nutrition and salinity on vegetative growth and. fruit yield of ‘Galia’ muskmelon (Cucumis melo L.). Growth in a calcareous soil or in sand, under low nutrition level or with 200 mM NaCl added during fruit maturation, imposed significant stresses on the plants expressed by (a) a decrease in dry matter accumulation in vegetative organs, in fruit number and size, and (b) an increase in dry matter percentage in leaf blades and stems. Despite the significant differences in vegetative growth of plants grown in heavy soil vs sandy soil, and in high nutrition vs low nutrition levels, the distribution of dry matter among vegetative organs (leaves, stems and roots) was affected only slightly. Sandy soil, low nutrition and high salinity decreased branching, and thus the distribution of dry matter between the main shoot and the branches. Dry matter percentage in leaf blades and stems was a sensitive parameter which increased under soil, nutrition or salinity stresses. Fruit netting and total soluble solids (TSS) content were significantly decreased by sandy soil and low nutrition level. Application of salinity during fruit growth increased both netting and TSS.  相似文献   

13.
ABSTRACT

The response of ‘Kurdistan’ and ‘Paros’ strawberry cultivars to potassium silicate (K2O3Si) under sodium chloride (NaCl) salinity stress was studied in terms of vegetative parameters, sodium (Na) and potassium (K) content and fruit quality. K2O3Si could recover dry mass distribution of NaCl-stressed strawberry organs. Kurdistan cultivar tended to keep higher dry weight of leaves to maintain its photosynthetic apparatus activity. Inhibitory impact of K2O3Si on Na uptake of leaf was more obvious than root. Implementation of K2O3Si in some cases increased Total Soluble Solid (TSS) and Titratable Acidity (TA), which are the main factors determining taste of strawberry fruit. Furthermore, phenols and flavonoids were increased in Paros cultivar by effect K2O3Si under saline and non-saline conditions, respectively. Overall, our data suggest that silicon supply in strawberry plants not only could be used as a routine strategy to maintain growth and yield under salinity but also it could be beneficial for improvement of fruit quality attributes and health-related constituents.

Abbreviations: ANOVA: Analysis of Variance; CRD: Completely Randomized Design; DPPH: 1,1-Diphenyl-2-picryl-hydrazyl; FF: Fruit Firmness; LSD: Least Significant Difference; PAL: Phenyl Alanine Ammonia Lyase; ROS: Reactive Oxygen Species; TSS: Total Soluble Solid; TAA: Total Antioxidant Activity; TA: Titratable Acidity; TAC: Total Anthocyanin; TF: Total Flavonoids; TP: Total Phenolics;  相似文献   

14.
小麦苗期氮素吸收利用效率差异及聚类分析   总被引:3,自引:0,他引:3  
【目的】氮肥过量施用,不仅造成氮素大量流失,还增加了农业生产成本,对生态环境带来了巨大的威胁。筛选和培育氮高效小麦品种是提高氮肥利用率、 降低环境污染风险的有效途径。本文通过对44个小麦品种苗期性状的考察,初步筛选出具有氮高效潜力的小麦品种。【方法】利用循环营养液培养方法,研究了安徽省44个小麦品种(系)在正常氮(5 mmol/L)和高氮(45 mmol/L)条件下苗期氮素吸收利用效率的差异。采用隶属函数法将评价指标数据进行标准化,区间为[0,1];而后采用客观赋权法将标准化后的数据整合成一个无量纲的综合值,最后基于综合值运用最短距离法、 欧氏距离平方聚类分析方法,将44个小麦品种划分成不同的氮效率类型。【结果】在两种供氮水平下,不同小麦品种的茎叶干重、 根干重、 叶面积、 茎叶氮累积量和根氮累积量存在显著性差异,其变异系数分别在27.9%~33.7%和21.5%~32.8%之间,可作为小麦苗期氮效率的评价指标。小麦苗期氮效率综合值在正常氮和高氮水平下分别在0.053~0.920和0.001~0.853之间,其中鉴76在正常氮和高氮条件下的氮效率综合值均大于80%。通过隶属函数氮效率综合值及其聚类分析,将44个供试小麦品种分为氮高效型、 氮中效型和氮低效型三类;其中扬麦16和鉴76在正常氮和高氮条件下均表现为高效型,皖麦68、 F60501-4、 鉴62和安农1026只在高氮条件下表现为高效型。氮高效型、 氮中效型、 氮低效型小麦品种在正常供氮和高氮条件下分别占供试品种总数的4.54%、 54.55%、 40.91%和13.63%、 38.64、 47.73%。【结论】在正常供氮和高氮条件下,44个供试小麦品种的茎叶氮累积量、 茎叶干重、 根部氮累积量、 根部干重和叶面积存在显著性差异,可以作为小麦苗期氮效率评价指标;初步确定扬麦16和鉴76为正常供氮和高氮条件下的氮高效型品种,皖麦68、 F60501-4、 鉴62和安农1026 为高氮条件下的氮高效型品种。  相似文献   

15.
不同基因型水稻苗期氮营养特性差异及综合评价   总被引:7,自引:0,他引:7  
氮肥过量施用,不仅造成氮肥大量流失,还增加了农业生产成本,对生态环境带来了巨大的威胁。筛选氮高效基因型水稻品种是提高氮素利用效率、降低环境污染的有效途径。本文利用营养液培养方法,研究了55个水稻品种(系)在相同供氮水平(40 mg·L~(-1))、不同供氮形态(NH_4~+-N和NO_3~–-N)条件下苗期吸收与积累氮素的差异。并采用隶属函数法将评价指标进行标准化,基于氮效率综合值,运用分层聚类热图分析,进行55个水稻品种氮效率类型的划分,为氮高效水稻品种的筛选提供依据。在NH_4~+-N和NO_3~–-N培养下,不同水稻品种的整株生物量、茎叶生物量、根系生物量、根系氮含量、茎叶氮累积量差异性显著,变异系数分别在0.69~0.80和0.57~0.74之间。通过因子分析发现,在NH_4~+-N和NO_3~–-N培养条件下的主成分情况相同,第1主成分由整株生物量、茎叶生物量、根系生物量、整株氮累积量、茎叶氮累积量、根系氮累积量决定,主要为反映植株的生物量及氮素累积量指标;第2主成分由不同器官的氮含量决定。综合水稻苗期氮素吸收累积变异特征及因子分析,将整株生物量、茎叶生物量、根系生物量、茎叶氮累积量作为水稻苗期氮高效综合评价指标。根据隶属函数法计算出的氮效率综合值和采用欧氏距离平方拟合的分层聚类热图,55个供试水稻品种可分为氮高效型、氮中效型、氮低效型3大类,分别占供试品种总数的10.91%、27.27%、61.82%。在NH_4~+-N和NO_3~–-N供应条件下,初步确定‘广两优3905’、‘甬优9号’、‘中籼2503’、‘Ⅱ优602’、‘两优766’和‘深两优1813’为氮高效型品种。  相似文献   

16.
>Quality and mineral content of fruit from internal tree canopies were compared with those from external canopy positions in 4 citrus varities: ‘Kinnow’ mandarin; ‘Redblush’ grapefruit; ‘Valencia’ orange; and ‘Lisbon’ lemon. Fruit weight, total juice per fruit, peel fresh and dry weight, and rind thickness of fruit from internal canopies of all 4 varieties were significantly higher compared with external fruit. Mandarin, grapefruit, and orange fruit from external canopies had higher soluble solids and specific gravity. Fruit from internal canopies of all varieties had generally higher peel concentrations (% dry weight) of N, P and K due to a dilution effect, while the opposite condition existed in mandarin when these elements were expressed on a percent fresh weight basis. Peel Mg and S from external fruit were higher in all varieties, expressed as percentages of either dry weight or fresh weight. Nitrogen content of mandarin and orange juice and Ca content of grapefruit and lemon juice from external fruit were significantly higher compared to those from internal canopy fruit. Elimination of fruit quality and mineral variations as a result of canopy positions is recommended by the means of cultural practices.  相似文献   

17.
Quality and elemental content of fruit from internal tree canopies were compared with those from external canopy positions in 4 citrus varieties: ‘Kinnow’ mandarin; ‘Redblush’ grapefruit; ‘Valencia’ orange; and ‘Lisbon’ lemon. Fruit weight, total juice per fruit, peel fresh and dry weight, and rind thickness of fruit from internal canopies of all 4 varieties were significantly higher compared with external fruit. Mandarin, grapefruit, and orange fruit from external canopies had higher soluble solids and specific gravity. Fruit from internal canopies of all varieties had generally higher peel concentrations (% dry weight) of N, P and K due to a dilution effect, while the opposite condition existed in mandarin when these elements were expressed on a percent fresh weight basis. Peel Mg and S from external fruit were higher in all varieties, expressed as percentages of either dry weight or fresh weight. Nitrogen content of mandarin and orange juice and Ca content of grapefruit and lemon juice from external fruit were significantly higher compared to those from internal canopy fruit. Elimination of fruit quality and mineral variations as a result of canopy positions is recommended by the means of cultural practices.  相似文献   

18.
Abstract

One of the characteristics that can help wheat (Triticum aestivum L.) plants escape late season drought in the semiarid areas of Morocco is early stand establishment and adequate vigor. Little is known about the effect of nitrogen (N) on early seedling vigor in wheat. The objective of this study was to determine how N supply affects early root and shoot growth, N partitioning between the two parts and N use efficiency of seedlings. To reach this objective, three spring wheat cultivars were grown in pots in a growth chamber under N conditions which were low, adequate and high. Data showed that optimum N rates increased shoot and root growth but high N concentrations reduced their dry matter accumulation and inhibited root elongation. The cultivars tested behaved differently. ‘Nesma’, an older cultivar, produced 60% more dry matter and accumulated 93% more N in the shoot and root than the newer cultivars ‘Merchouch 8’ and ‘Saada’. Because of its high N uptake, ‘Nesma’ probably reduced soil N concentration at the root zone and avoided the negative effect of high N concentration on root growth. Although, ‘Nesma’ performed better and produced more dry matter, it used N less efficiently than the other two cultivars.

From this study, we can conclude that use of optimum N rates at time of seeing will result in quicker establishment and higher vigor of wheat seedlings. However, excessive N supply may retard seedling growth. The cultivars that produce more seedling dry matter with greater N accumulation are not necessarily the ones that use N more efficiently.  相似文献   

19.
Abstract

‘Dodd’ pecan seedlings were exposed to 3 levels of soil aeration for 30 days; 100%, 5%, and 0% of the container surface exposed to the atmosphere. These treatments resulted in about 21%, 13.5%, and 3% soil O2and 0.3%, 5%, and 13% soil CO2for 100%, 5%, and 0% of the container surface exposed, respectively. Restricting soil aeration induced partial stomatal closure, and decreased leaf number, leaf area, and leaf, trunk and root dry weights. The decrease in root dry weight associated with reduced soil aeration exceeded the decrease in top dry weight by about 50%. Translocation of N and P to the leaves was reduced when soil aeration was restricted, but root N and P concentrations were increased compared to trees grown in well aerated soil. Leaf elemental concentrations of Ca, Mg, and Mn were lower when trees were exposed to reduced soil aeration. Zinc and Fe concentrations were greater in the roots of trees with low aeration, but leaf and trunk concentrations of Zn and Fe were not affected  相似文献   

20.
Maize (Zea mays L.) plants in the early stage of development were treated with 80 mM sodium chloride (NaCl) with or without supplemental calcium (Ca2+) (8.75 mM) for a seven day period. The effects of salinity on dry matter production and shoot and root concentrations of sodium (Na+), Ca2+, and potassium (K+) were measured for seven Pioneer maize cultivars. Salinity significantly reduced total dry weight, leaf area, and shoot and root dry weight below control levels. For all seven cultivars, Na+concentrations were reduced and leaf area was significantly increased by supplementing salinized nutrient solutions with 8.75 mM calcium chloride (CaCl2). The two cultivars with the lowest shoot and root Na+ concentrations under NaCl‐salinity showed the greatest increases in total, shoot and root dry weights with the addition of supplemental Ca. Shoot fresh weight/dry weight ratios for all cultivars were decreased significantly by both salinity treatments, but supplemental Ca2+ increased the ratio relative to salinity treatments without supplemental Ca. Root fresh weight/dry weight ratios were decreased only by salinity treatments with supplemental Ca. With NaCl‐salinity, cultivars which had lower shoot and root Na+ concentrations were found to be more salt sensitive and had significantly lower amounts of dry matter production than those cultivars which had higher shoot and root Na+ concentrations. It was concluded that Na+ exclusion from the shoot was not correlated with and was an unreliable indicator of salt tolerance for maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号