首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foliar concentrations of starch and major elements, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg), along with specific leaf weight (SLW) were determined in the potato (Solanum tuberosum L.) cvs 'Denali', 'Norland', and 'Russet Burbank' grown for 35 days under CO2 concentrations of 500, 1,000, 1,500 and 2,000 micromoles mol-1 at both 16 degrees C and 20 degrees C air temperature. The starch concentration, pooled from the three cultivars, increased with increasing CO2 concentration at both 16 degrees C and 20 degrees C and was consistently higher at 16 degrees C than at 20 degrees C. The SLW (g m-2) was positively related to the foliar starch concentration on the basis of leaf area or dry weight. The concentrations of N, P, Ca, and Mg in leaves were negatively related to starch concentration under approximately 14% starch on a dry weight basis. Above 14% starch, there was no significant relationship between element and starch concentrations. Similar patterns were seen when the SLW and element concentrations were expressed on a starch-free basis. In contrast, the leaf concentration of K was not closely related to the starch concentration because the K concentration was similar at varied CO2 levels. The results of this study indicate that the changes in SLW and concentrations of N, P, Ca, and Mg in potato leaves only partially resulted from the changed starch concentration.  相似文献   

2.
Spur leaf macroelement profile of walnut (Juglans regia, cvs. ‘Hartley’ and ‘Serr') was characterized by a modified diagnostic and recommendation integrated system (DRIS), using canopy photosynthetic photon flux (PPF) density exposure as a primary external determinant (5) of leaf mineral content. Spur N, P, Ca and Mg content was linearly correlated with PPF and SLW when expressed on the basis of leaf area (A) while that of K was linearly correlated with SLW on % DW basis (W). Mineral ratios, relevant for the DRIS analysis, were calculated using all four possible combinations of Area and Weight expressions (A/A, A/W, W/A, W/W) and correlated with spur leaf SLW. The particular expressions chosen for the DRIS analysis were based on their highest correlation to spur SLW and included N/K and P/K, based on A/W expression of the respective nutrients, and the reciprocal (W/A) expression for all other ratios. The dimensionless mineral ratios based on Weight per Weight (W/W) or Area per Area (A/A), which eliminated the DW contribution, were not related to light exposure and SLW.

Derivation of DRIS norms were based on the mineral profile of highly exposed spurs (10.8±3.1 and 8.8±3.9 mol m‐2d‐1 PPF in ‘Hartley’ and ‘Serr’, respectively), characterized previously to be highly productive. Calculated DRIS indices of gradually less exposed and less productive spurs revealed a strong exponential imbalance of K or K and N (increasingly positive) in ‘Hartley’ and ‘Serr’, respectively, vs Ca and Mg (increasingly negative). DRIS indices of P became slightly negative in ‘Hartley’ and positive in ‘Serr’, as spur light exposure decreased. The calculated Nutritional Imbalance Index (Nil) value of walnut spurs exposed to decreasing light intensities increased exponentially. The modification of the existing procedures of DRIS analysis that reflects the light exposure of the leaf and takes into account its DW component, is proposed.  相似文献   

3.
Field experiments were conducted during 1994–1995 in seven apple (Malus spp.) orchards located in the southwest of Finland (the mainland and the Åland Islands). The cultivars were ‘Transparente Blanche’, ‘Samo’, ‘Melba’, ‘Raike’, ‘Red Atlas’, ‘Åkerö’, ‘Aroma’, and ‘Lobo’. Leaf samples from branches bearing fruits (BF) and not‐bearing fruits (BNF) were collected two times during the growing seasons. Fruit samples were picked about one week before commercial maturity. Macronutrient concentrations in fruits and leaves, fruit diameter and juice pH, titratable acidity (TA) and soluble solids concentrations (SSC) were determined. Leaf nitrogen (N), phosphorus (P), and potassium (K) were higher, but calcium (Ca) and magnesium (Mg) were lower in BNF. Branch types (BF and BNF) were closely related in leaf N, P, and Ca, but not in leaf K and Mg at the first sampling time. Fruit N, P, K, and Mg were closely related to each other but not to fruit Ca. Mean fruit N and Ca and leaf P and Mg were low compared with the recommended levels. Relationships between fruit and leaf nutrient concentrations were found only in P and Mg. Fruit diameter increased and juice SSC decreased with increasing leaf N concentration. Fruit P declined with increasing fruit diameter and juice TA increased and SSC/TA decreased with increasing leaf P and Ca concentrations.  相似文献   

4.
Poor quality of irrigation water (high salinity) has reduced the yields of pistachio over recent years, especially in Kerman. The effects of four salinity levels [0, 30, 60, and 90 mM sodium chloride (NaCl)] and three calcium (Ca) levels [0, 0.5, and 1 mM Ca as calcium nitrate (Ca(NO3)2.4H2O)] on growth and chemical composition of pistachio seedlings cv. ‘Badami’ were studied in sand culture under greenhouse conditions in completely randomized design (CRD) with four replications. After 170 days, leaf area, leaf number, shoot and root dry weights were determined. Also shoot and root sodium (Na), potassium (K), Ca, and magnesium (Mg) concentrations were measured. Results showed salinity decreased all growth parameters. Ca application increased shoot and root Ca concentrations and root K concentration, while Ca application decreased shoot K concentration and shoot and root Mg concentrations. Salinity decreased shoot Ca, root K, and root Mg concentrations, while salinity increased shoot and root total sodium uptake, and shoot and root Cl concentrations.  相似文献   

5.
The effects of different levels of arsenic (As) and salinity on bean plant (Phaseolus vulgaris L., cv. Buenos Aires) nutrition were investigated. We studied the processes of absorption and accumulation of macronutrient elements: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg). The experiment was performed in soilless culture at two levels of As: 2 and 5 mg AsL‐1 (added as sodium arsenite, NaAsO2), and three saline levels [only sodium chloride (NaCl) was added]: 1, 2, and 4 dS‐m‐1. Sodium arsenite and NaCl significantly affected macronutrients allocation within bean plant at concentration levels used in this study. Arsenite depressed K, Na, and Mg concentrations in root, whereas root N, and Ca levels were increased. Nitrogen, P, K, and Na concentrations were significantly higher in As‐stressed plants compared with controls. The addition of NaCl increased Ca concentration in roots and decreased that of K. Salinity tended to increase leaf concentrations of K, Na, Ca, and Mg; whereas leaf N and P levels decreased with increasing salinity.  相似文献   

6.
Abstract

The aim of this work was to assess how potassium (K) and nitrogen (N) fertilization might affect the variation of leaf and fruit nutrient concentrations in carob tree (Ceratonia siliqua L.) under low precipitation. A field study was conducted in 1997, 1998, and 1999 in a calcareous soil. Four fertilization treatments were tested: no fertilizer (C), 0.8 kg N tree?1 (N treatment), 0.83 kg K tree?1 (K treatment), and 0.80 kg N tree?1 plus 0.83 kg K tree?1 (NK treatment). During the hydrological cycle 1998/1999, only 250 mm of rain were recorded. Because of this, from 1998 to 1999 a decrease in the concentrations of mobile nutrients N, phosphorus (P), and K and an increase in calcium (Ca), iron (Fe), and manganese (Mn) were observed in leaves. The application of N led to higher leaf N concentration compared with other treatments. This response allowed the establishment of a linear model that relates soil plant analysis development (SPAD) readings with leaf N concentrations (r2=0.55; P<0.05). Compared with leaves, fruits showed similar amounts of N and P; less Ca, Mg, Fe, and Mn; and high concentrations of K. Fertilization did not change considerably the mineral composition of fruits, and because of large variation among trees, yield was similar for all treatments.  相似文献   

7.
A nutrient solution experiment was done to evaluate effects of different concentrations of nitrogen (N), phosphorus (P) and potassium (K) on leaf mineral concentrations and some enzymes activity of melon seedlings (Cucumismelo var. inodorus subvar. Khatouni). Different levels of these nutrients including 0, 53, 105, 158 and 210?mg L?1 N; 0, 8, 16, 23 and 31?mg L?1 P; 0, 59, 118, 176 and 235?mg L?1 K, all corresponding to 0, 25, 50, 75 and 100% of their concentrations in Hoagland nutrient solution, were applied to plants. The results showed that the highest leaf nitrate reductase (NR) activity was observed at highest N and P levels, whereas the three highest K levels showed the highest NR activity. The highest leaf peroxidase activity was observed at 8?mg L?1 P, 59?mg L?1 K and 158?mg L?1 N. The leaf catalase activity was highest at zero concentration of P, 158?mg L?1 N and 176?mg L?1 K; however, catalase activity was decreased by increasing P levels. Leaf protein content showed an increasing trend with increasing N, P and K levels of nutrient solution, while there was no significant difference between 158 and 210?mg L?1 N. The highest leaf concentrations of N, P, K and Mg were observed at highest nitrogen, potassium and phosphorus levels of nutrient solution, whereas the highest leaf concentration of Ca were obtained at 53 or 105?mg L?1 N, 176?mg L?1 K and 23–31?mg L?1 P. The highest iron concentration of leaves was obtained from 23 to 31?mg L?1 P, 176?mg L?1 K and 210?mg L?1 N.  相似文献   

8.
两种氮水平下CO2浓度升高对冬小麦生长和氮磷浓度的影响   总被引:16,自引:0,他引:16  
李伏生  康绍忠 《土壤学报》2003,40(4):599-605
预计到 2 1世纪末期大气CO2 浓度将会比目前水平增加 1倍 ,约 70 0 μmolmol- 1 左右。因此CO2 浓度升高对作物的影响研究十分重要。本文探讨在两种氮 (N)水平下 ,CO2 浓度升高对冬小麦 (TriticumaestivumL cv Xinong 872 7)生长和地上部N、磷 (P)浓度的影响及原因。试验设 3 5 0 μmolmol- 1 和 70 0 μmolmol- 1 两种CO2 浓度水平和 45kghm- 2 和 90kghm- 2 两种N肥施用水平。结果表明 ,CO2 浓度升高 ,冬小麦株高和叶面积指数 (LAI)均增加 ,净同化率 (NAR)值增加 ,叶面积比率 (LAR)下降 ,比叶重 (SLW )不增加。高CO2 浓度对相对生长率 (RGR)的影响因施N水平而异 ,低N时RGR不增加 ,高N时明显增加。CO2 浓度增加 ,小麦抽穗提早 7~ 8d ,叶鞘、茎杆和地上部干物重提高 ,叶片、叶鞘和茎杆N、P浓度降低 ,但叶片、叶鞘和茎杆N、P吸收量增加均不明显。CO2 浓度升高 ,氮磷利用效率 (NUE和PUE)提高 ,而对相对氮磷累积速率 (RNAR和RPAR)影响不大。高CO2 浓度冬小麦体内N、P浓度下降是由于稀释效应以及NUE和PUE提高之故。  相似文献   

9.
‘Helleri’ holly (Ilex crenata Thunb. ‘Helleri') plants were grown in solution culture at aluminum (Al) concentrations of 0, 6, 12, 24, and 48 mg.L‐1 for 116 days. Aluminum did not affect root or crown index, stem length growth, plant dry weight, or leaf area. Aluminum treatments significantly increased Al uptake and reduced nutrient uptake of magnesium (Mg), calcium (Ca), zinc (Zn), and copper (Cu) on some sampling dates. Iron (Fe) and manganese (Mn) uptake decreased on most sampling dates but increased on some with Al treatments. Potassium (K), phosphorus (P), and boron (B) uptake were significantly affected by Al, decreasing and increasing at different sampling dates. Although plants preferentially took up ammonium‐nitrogen (NH4 +‐N) in all treatments (including 0 Al controls), neither NH4 +‐N nor nitrate‐nitrogen (NO3 ‐N) uptake were affected by Al. Tissue concentrations of P, K, B, Zn, and Al increased with Al treatment; whereas tissue Ca, Mg, and Cu concentrations decreased with increasing Al. Iron and Mn tissue concentrations exhibited increases and decreases in different tissues. Results indicated that ‘Helleri’ holly was tolerant of high concentrations of Al.  相似文献   

10.
Abstract

Chinese cabbage (Brassica rapa L. Chinensis group) production is expanding in the U. S., and guidelines regarding its production under Western cultural practices are needed. The objectives of this study were to investigate the effects of N source and rate on Chinese cabbage yield, marketability, and wrapper leaf nutrient concentrations, and to estimate the critical wrapper leaf‐N concentration associated with maximum yield and marketability. Chinese cabbage was grown in five sequential plantings using raised‐bed, polyethylene mulch culture with subsurface irrigation on a sandy soil. Nitrogen fertilizer was applied at rates of 0, 67,112, and 157 kg/ha using the following sources: 1) ammonium nitrate. 2) calcium nitrate, 3) urea‐ammonium nitrate solution (Uram, 32% N), 4) urea, and 5) a urea‐calcium solution (18% N). Mature Chinese cabbage wrapper leaf concentrations of P, Ca, and Mg increased with increasing N rate, while leaf‐K concentration decreased. Leaf‐N concentration increased in response to N rate, but was not affected by N source or harvest date. Leaf‐P, K, Mg, and B concentrations were sufficient or high according to established standards, but leaf‐Ca was low. Leaf‐Ca and Mg concentrations were lowest with N sources containing only urea, and highest where at least part of the N was applied as NO3 . Chinese cabbage head weight and percentage marketable heads increased as N rate increased. Yield and quality were highest with N sources which contained NO3 , and were smallest where N was applied entirely as urea, which may have been due to plant sensitivity to NH4 +. The critical value of mature cabbage wrapper leaf‐N concentration above which yield or marketability was not limited was estimated to be 36 to 41 mg/g, which agrees well with established standards.  相似文献   

11.
The rise in atmospheric carbon dioxide (CO2) concentration is predicted to have positive effects on agro‐ecosystem productivity. However, an area which requires further study centers on nutrient dynamics of crops grown under elevated CO2 in the field. In 1989 and 1990, cotton [Gossypium hirsutum (L.) ‘Deltapine 77'] was grown under two CO2 levels [370 umol mol‐1=ambient and 550 μmol mor‐1=free‐air CO2 enrichment (FACE)]. At physiological maturity, nutrient concentration and content of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) were determined for whole plant and individual plant organs. While the effects of added CO2 on whole plant nutrient concentrations and contents were consistent, some differences among plant organs were observed between years. FACE often decreased tissue nutrient concentration, but increased total nutrient accumulation. Results indicate that under elevated CO2, field grown cotton was more nutrient efficient in terms of nutrient retrieval from the soil and nutrient utilization in the plant. This implies more efficient fertilizer utilization, better economic return for fertilizer expenditures, and reduced environmental impact from agricultural fertilization practices in the future.  相似文献   

12.
Nutrient uptake by snapdragon (Antirrhinum majus L. ‘Peoria') was compared at five root‐zone temperatures: 8, 15, 22, 29, and 36°C. Uptake of nitrate (NO3 ‐N), ammonium (NH4 +‐N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), boron (B), iron (Fe), manganese (Mn), and zinc (Zn) responded quadratically to increasing root‐zone temperature. Greatest nutrient uptake temperature varied with nutrient but ranged from 15 to 29°C. Uptake of copper (Cu) and molybdenum (Mo) were unaffected by root‐zone temperature. Dry weight gain and stem length also responded quadratically to increasing root‐zone temperature. Optimal temperatures for nutrient uptake and growth were similar, averaging 22°C. These results indicate increasing or maintaining root‐zone temperatures near 22°C maximizes growth and nutrient uptake of snapdragons.  相似文献   

13.
Leaf concentrations of nitrogen (N), phosphorus (P), potassium (K), iron (Fe), and manganese (Mn) in ‘Sterling’ muscadine grapes (Vitis rotundifolia Michaux) grown for two years in sand culture were not influenced by different N‐fertilizer sources. Leaf zinc (Zn) and copper (Cu) were higher with ammonium nitrate (NH4NO3)than ammonium sulfate [(NH4)2SO4]. Shoot growth was greatest with NH4NO3. Leaf Ca, Mg, Mn, and Cu content decreased and leaf N increased as N‐fertilizer rates were raised. Plant growth was positively correlated with leaf N, but was negatively correlated with leaf Ca, Mg, Fe, Cu, and Mn content. Percent Mg in the leaves was reduced when N levels, regardless of N source, were raised from the low (1.8 mM) to the middle (5.4 mM) rate. High leaf‐N levels were correlated with lower Ca and Mg in the leaves, indicating a relationship between N fertilization and the late‐season Mg deficiency often observed in muscadine grapes.  相似文献   

14.
Evaluations of vegetative growth and leaf concentrations of nitrogen (N), potassium (K), calcium (Ca), magnesium (Mg), and iron (Fe) were made of apple (Malus domestica Borkh. cvs. Granny Smith, Gala, and Golab) grown with five treatments of NO3?:NH4+ ratios in pot culture. The concentrations of NO3?:NH4+ ratios were 2.5:0.1, 6:0.3, 6:0.5, 6:0.7, and 6: 1 meq L?1. Regression analysis showed that growth parameters of main stems and branches were not affected by increases of NH4+ in the ratios. Granny Smith, Gala, and Golab differed in some of these parameters. Concentrations of N and Fe increased as NH4+ increased, whereas K and Ca decreased and Mg was not affected significantly. Generally, the treatment of 2.5:0.1 produced leaves with lower N but higher K, Ca, and Mg concentrations than the other treatments. This research showed that vegetative growth was not affected by NH4+ concentration whereas elemental composition was affected.  相似文献   

15.
Leaf and soil samples were taken and analyzed from two mature biological olive groves (Olea europaea L., cv. ‘Chondrolia Chalkidikis’), in Thessaloniki, Macedonia, Northern Greece, in order to determine the correlations between soil exchangeable cations and foliar calcium (Ca), magnesium (Mg) and potassium (K) concentrations, and the interrelations among leaf nutrients. Τhe nutritional requirements of trees for both biological groves were exclusively based on patent kali supply and nutrient recycling (via pruning material and weed cut recycling). Foliar K, Ca and Mg were positively correlated with soil exchangeable K, Ca and Mg, in the 40–60 cm layer, then in the 20–40 cm layer. Synergistic uptake mechanisms among Ca2+, Mg2+ and K+ probably exist. Leaf N was negatively correlated with foliar K, and positively with leaf Ca, Mg and manganese (Mn). Foliar P was negatively correlated with leaf Ca, Mg and Mn, while foliar Ca was positively correlated with leaf Mg and Mn. Foliar Mg was positively related with leaf Mn. High phosphorus (P) may decrease leaf Ca, Mg and Mn. Enhanced Ca may increase leaf Mg and Mn, while high Mg may also enhance foliar Mn. Finally, based on the determination of foliar nutrient concentrations, the nutritional requirements of olive trees in Ca, Mg, K, P, Fe, Zn were sufficiently (or over-sufficiently) satisfied. However, additional organic fertilization is needed, in order to achieve optimum levels of N, B and Mn (since their foliar concentrations were slightly insufficient). The correlations between leaf and soil exchangeable Ca, Mg and K, as well as among foliar nutrients should be taken into consideration, in order to achieve successful organic fertilization for mature biological olive groves, and to avoid nutritional imbalances and disorders.  相似文献   

16.
The aim of the current study was to identify major soil and leaf factors accounting for low natural rubber (NR, Hevea brasiliensis) productivity on tropical acid Acrisols in Vietnam. Twenty NR plots were measured with NR productivity, leaf factors (N, P, K, Ca, Mg, Mn, Cu, Fe, and Zn), soil factors (pH, particle size distribution, total C, N, P, K, exchangeable K, Ca, Mg, Al, Mn, Fe, Zn, available P). Cluster analysis showed that NR productivity could be separated into three clusters with low (23.2), medium (38.2), and high (61.3 g tree?1 harvest?1) yield. High-yield cluster had higher leaf P concentration and soil pH, while low-yield cluster had higher leaf Mn, soil exchangeable Al, and Mn concentration. Simple and multiple linear regression analysis applied with backward elimination procedure suggested that leaf and soil toxic concentration may be responsible for low NR productivity in the study soil.  相似文献   

17.
A survey was conducted for assessment of soil fertility status, leaf nutrient concentration and finding yield-limiting nutrients of oil palm (Elaeis guineensis Jacq.) plantations in Mizoram state situated in the northeastern part of India. Soil pH, electrical conductivity (EC), organic carbon (OC), available potassium (K), available phosphorus (P) (Bray's-P), exchangeable calcium (Ca) (Exch. Ca) and magnesium (Mg) (Exch. Mg), available sulfur (S) (CaCl2-S), and hot-water-soluble boron (B) (HWB) content in surface (0–20 cm depth) and subsurface (20–40 cm depth) soil layers varied widely. Diagnosis and Recommendation Integrated System (DRIS) norms were established for different nutrient expressions, and DRIS indices were computed. As per DRIS indices, the order of requirement of nutrients was found to be B > K > Mg > P > nitrogen (N). Optimum leaf nutrient ranges as per DRIS norms varied from 1.91% to 2.95%, 0.46% to 0.65%, 0.63% to 1.00%, 0.48% to 0.88%, and 9.41 to 31.0 mg kg?1 for N, P, K, Mg, and B, respectively. On the basis of DRIS-derived optimum ranges, 32%, 9%, 27%, 12%, and 12% leaf samples had less than optimum concentration of N, P, K, Mg, and B, respectively. The optimum ranges developed could be used as a guide for routine diagnostic and advisory purpose for efficient fertilizer application.  相似文献   

18.
《Journal of plant nutrition》2013,36(10):2161-2171
ABSTRACT

Boston Fern (Nephrolepis exaltata Schott. “Rooseveltii”) is often propagated in vitro. Microcuttings grow slowly after transfer from in vitro to ex vitro conditions. The aim of this study was to accelerate growth and to improve quality of plantlets by optimization of mineral nutrition, irradiance and CO2 concentration. Two irradiance levels (50 and 150 μmol m?2 s?1), two concentrations of CO2 (350 and 1200 μmol mol?1), and five concentrations of nutrient solution (electrical conductivity: EC 0.3, 0.7, 1.4, 2.1, and 2.8 mS cm?1) were tested. Microcuttings grown at higher irradiance accumulated more leaf fresh and dry weights than microcuttings grown at low irradiance. The higher irradiance level enhanced leaf nitrogen (N), phosphorus (P), and potassium (K) content. Carbon dioxide enrichment enhanced dry weight accumulation and plant height, decreased N and increased K content of leaves. The highest fresh and dry weight of leaves was measured at EC 2.1–2.8 mS cm?1. Leaf N, P, and K content increased with increasing concentration of nutrient solution, leaf calcium (Ca) and magnesium (Mg) concentrations decreased with increasing concentration of nutrient solution. Microcuttings grown under high level of irradiance and high EC had higher chlorophyll fluorescence (F m , F v /F m , S c ) values than those grown under low light and low EC. Quality of propagation material of Boston fern can be significantly enhanced with the best combination of PPFD, mineral nutrition and CO2 enrichment.  相似文献   

19.
Crop production in many parts of the world is increasingly affected by soil salinization, especially in the irrigated fields of arid and semi-arid regions. The effects of four magnesium levels [0, 0.5, 1, and 22 millliMolar (mM) magnesium as magnesium sulfate (MgSO4.5H2O)], and three salinity levels [0, 45 and 90 mM sodium chloride (NaCl)] on growth and the chemical composition of pistachio seedlings (Pistacia vera L.) cv. ‘Badami-e-Zarand’ was studied in sand culture under greenhouse conditions. The experiment was set up as a completely randomized design (CRD) with four replications. After 28 weeks the growth parameters of biomass, leaf number, leaf area and stem height were measured. The results demonstrated that salinity decreased biomass, leaf area and stem height; the application of 2 mM magnesium (Mg) significantly reduced biomass, leaf number, leaf area and stem height; salinity stress increased concentrations of sodium (Na) and potassium (K) in shoot as well as Na concentration in root; however, it decreased Mg and calcium (Ca) concentrations in shoot, as well as Mg, Ca, and K concentrations in root. The application of 2 mM Mg reduced K and Ca concentrations in shoot and Na and K concentrations in root.  相似文献   

20.
Oil palm (Elaeis guineensis Jacq.) is a heavy feeder of nutrients and requires balanced and adequate supply of nutrients for optimum growth and yield. Information regarding soil nutrient status and leaf nutrient concentration is very much required for proper fertilizer application. Therefore, a survey was conducted for assessment of soil nutrient status and leaf nutrient concentration in 64 oil palm plantations in the state of Goa lying in the west coastal region of India. Soil pH, electrical conductivity (EC), organic carbon (OC), available potassium (K) (ammonium acetate-extractable K) (NH4OAc-K), available phosphorus (P) (Bray’s-P), exchangeable calcium (Ca) (Exch. Ca) and magnesium (Mg) (Exch. Mg), available sulphur (S) (calcium chloride-extractable S) (CaCl2-S), and hot water soluble boron (B) (HWB) in surface (0–20 cm depth) soil layers ranged from 4.25 to 6.77, 0.05 to 1.06 dS m–1, 5.07 to 48.4 g kg–1, 58.1 to 1167 mg kg–1, 1.80 to 415 mg kg–1, 200 to 2997 mg kg–1, 36.0 to 744 mg kg–1, 3.00 to 87.7 mg kg–1 and 0.09 to 2.10 mg kg–1, respectively. Diagnosis and Recommendation Integrated System (DRIS) norms were established for different nutrient expressions and were used to compute DRIS indices. As per DRIS indices, the order of requirement of nutrients in the region was found to be P > Mg > K > nitrogen (N) > B. Optimum leaf nutrient ranges as per DRIS norms varied from 1.64 to 2.79%, 0.36 to 0.52%, 0.37 to 0.75%, 0.89 to 1.97%, 0.35 to 0.63%, 0.89 to 1.50%, 3.10 to 13.9 mg kg?1, 7.50 to 32.2 mg kg?1, 35.0 to 91.1 mg kg?1, 206 to 948 mg kg?1, and 895 to 2075 mg kg?1 for N, P, K, Ca, Mg, S, B, copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) respectively. On the basis of DRIS-derived sufficiency ranges, 14, 5, 11, 6, 6, 6, 8, 2, 3, 6, and 16% of leaf samples had less than optimum concentrations of N, P, K, Ca, Mg, S, B, Cu, Zn, Mn, and Fe respectively. The optimum ranges developed can be used as a guide for routine diagnostic and advisory purpose for balanced utilization of fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号