首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
  【目的】  合理施用氮肥不仅可提高大豆结瘤固氮能力,还可减少农业污染,实现大豆生产的高产优质高效。研究施氮时期和施氮量对大豆结瘤固氮、产量及蛋白质含量的影响,为大豆高产优质提供理论基础及科学依据。  【方法】  采用盆栽试验,供试大豆品种为‘东生35’,试验设2个氮肥施用时期(V2期和R1期)和3个氮肥施用量[N 0、5、100 mg/(kg, 土)],表示为N0、N5和N100。在大豆R2期(盛花期)和R5期(鼓粒期)取样分析了地上部干物质积累量、根瘤数量、根瘤干重和固氮酶活性。在R8期(成熟期)调查了大豆籽粒产量和蛋白质含量。  【结果】  施氮时期和施氮量对大豆地上干物质积累、结瘤和固氮能力均有显著影响。不论是V2期还是R1期施氮,大豆地上部干物质积累量均随着施氮量的增加而增加,而根瘤干重、数量则呈降低的趋势。R1期施氮条件下,N100处理的大豆盛花期根瘤数量和根瘤干重比N0分别下降了42.3%和32.8%,而固氮酶活性则均以N5处理最高;V2期施氮条件下,N5处理的大豆固氮酶活性在R2期和R5期较N0处理分别增加15.3%和27.1%。大豆籽粒产量和蛋白质含量均以N5处理最高,籽粒蛋白质含量较N0处理增加了6.3%~9.4%。结构方程结果表明,施氮量正向调控固氮酶活性,间接影响大豆产量;负向调控根瘤数量,间接影响大豆籽粒蛋白质含量。施氮时期直接负向调控大豆籽粒产量,正向调控籽粒蛋白质含量。  【结论】  合理施氮有利于大豆高产优质,早期(V2期)施用氮肥有利于大豆产量提升,而推迟到始花期(R1期)施用氮肥更有利于大豆固氮和籽粒蛋白质含量的增加。盆栽条件下,施氮量对大豆产量和蛋白质含量的影响大于施肥时期,施氮量均以控制在N 5 mg/(kg, 土)为宜。  相似文献   

2.
The effects of defoliation on soybean [Glycine max (L.) Merr.] growth and yield have been well studied, but relatively little is known about its nitrogen (N) accumulation after defoliation. An experiment was conducted to examine soybean recovery and N accumulation following defoliation. The indeterminate cultivar (‘Tousan 69’) was planted in a greenhouse, and two defoliation treatments (no defoliation and 67% defoliation) were imposed at the R2 stage when plants had at least one flower in the two uppermost nodes. At 0, 15, 30 and 45 days after defoliation (DAD), plants were destructively sampled to measure dry mass production, nitrogen accumulation and nitrogen fixation. Seed yield and N concentration also were measured at maturity. Neither the seed yield nor its N concentration was affected by defoliation. Although defoliation temporarily reduced soybean dry weight and N accumulation during 15 DAD, defoliated plants completely recovered their dry weight and N accumulation 30 DAD. There was little difference in N concentration between defoliated and non defoliated plants, indicating that N acquisition was restored during the recovery process. Recovery of N accumulation in defoliated plant was due to complete recovery of N2-fixing ability and maybe related to improvement in N absorption after defoliation.  相似文献   

3.
A pot experiment was conducted under growth chamber conditions to determine the lower and upper critical levels of boron (B) for plant growth, nodule development, and nodule acetylene reduction activity (ARA) in young soybean plants. Plants of a soybean cultivar, Tachinagaha, were grown in pots containing river sand to which a nutrient solution with different B levels was added and were inoculated with Bradyrhizobium japonicum A1017. At 8, 12, and 16 d after sowing (DAS), among the plants supplied with the solution at 0, 1.0, and 2.0 mg B L-1 , plants with 1.0 mg B L-1 showed the highest values for dry shoot and fresh root weight, root length, total number of developing nodules and meristematic nodules (DMN), and ARA. At 20 DAS plants grown with 11 B levels (0-2.0 mg L-1) were compared. The B critical deficiency levels for soybean dry shoot weight, fresh root weight, root length, DMN, number of complete nodules, and ARA were approximately 46, 35, 34, 57, 60, and 50 mg B kg-1 dry matter, and the critical toxicity levels were approximately 114, 137, 134, 97, 104, and 89 mg B kg-1 dry matter, respectively. The optimum B levels for the growth characters were approximately 34 to 137 mg B kg-1 dry matter. The optimum range of B levels for nodule formation and function was more restricted than that for the growth characters. Based on the results of treatments with various B concentrations, 0.4 mg B L-1 was found to be the concentration most beneficial for all the growth characters including nodule formation at the early stage (20 DAS) of development of soybean plants.  相似文献   

4.
An experiment was conducted to identify the main nitrogenous compound transported in the xylem sap of soybean plants nodulated with Rhizobium fredii. Soybean (Glycine max L. Merr.) cultivars, wild type Bragg (nod+, fix+) and its nitrate tolerant, hypernodulating mutant ntsll16 (nod++, fix+) were used for this experiment. These soybean plants were inoculated with a slowgrowing rhizobium, Bradyrhizobium japonicum USDAllO or fast-growing rhizobia consisting of a mixture of R. fredii USDA191, USDA193, and USDA-194 and grown in a phytotron under natural light and controlled temperature conditions. Xylem sap was collected from Bragg and ntsll16 plants at the flowering and pod elongation stages. Acetylene reduction activity per plant or per nodule weight was not different between soybean lines and inoculums. The composition of the nitrogenous compounds in the xylem sap was compared between the symbionts, with B. japonicum and R. fredii. At the flowering stage, ureide-N and amide-N accounted for 53 to 70% and 20 to 27% respectively of the total N in the sap collected from the plants inoculated either with B. japonicum or R. fredii. At the pod elongation stage, ureide-N and amide-N accounted for 74 to 85%, and 7 to 19% of total sap N. With the growth of the soybean plants, the ratio of ureide-N in the xylem sap increased. These results suggest that in the case of wild soybean and the hypernodulating mutant line nodulated by R. fredii, ureide is transported as the main nitrogenous compound of fixed nitrogen in the xylem sap in the same way as in plants nodulated with B. japonicum.  相似文献   

5.
Summary Damage caused by Rivellia angulata larvae to pigeonpea root nodules at the ICRISAT center in India was greater in the crop grown on Vertisols (up to 86%) compared to that on Alfisols (20%). Attempts to quantify the field effects of nodule damage on growth and yield of pigeonpea in a Vertisol, involving many heavy applications of soil insecticides (aldrin and hexachlorocyclohexane) failed because the insecticides did not control the pest and adversely affected the growth of the pigeonpea and the subsequent crop of sorghum (Sorgorum bicolor L. Moench). The impact of nodule damage on pigeonpea growth, yield and nutrient uptake was successfully studied in greenhouse-grown plants at three N levels. In this pot study, artificial inoculation with Rivellia sp. led to substantial nodule damage (70%). The results of this damage were a significant overall reduction in nodule dry weight (46%), acetylene reduction activity (31%), total leaf area (36%), chlorophyll content of leaves (39%) and shoot dry weight (23%) 68 days after sowing. At maturity, Rivellia sp. infestation caused significant reductions in top dry weight (22%), root and nodule dry weight (27%), seed dry weight (14%), and total N (29%) and P uptake (19%). The problems and prospects of manipulating nodule damage so as to reduce N losses in pigeonpea are discussed.Submitted as JA No. 756 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

6.
ABSTRACT

Co-inoculation of nitrogen-fixing bacteria with plant growth-promoting bacteria has become more popular than single inoculation of rhizobia or plant-growth-promoting bacteria because of the synergy of these bacteria in increasing soybean yield and nitrogen fixation. This study was conducted to investigate the effects of Bradyrhizobium japonicum SAY3-7 and Streptomyces griseoflavus P4 co-inoculation on plant growth, nodulation, nitrogen fixation, nutrient uptake, and seed yield of the ‘Yezin-6’ soybean cultivar. Nitrogen fixation was measured using the acetylene reduction assay and ureide methods. Uptake of major nutrients [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] was also measured. This study showed that single inoculation of SAY3-7 significantly increased shoot biomass; nodulation; Relative Ureide Index (RUI %), percent nitrogen derived from N fixation (% Ndfa); N, P, K, Ca, and Mg uptakes; during the later growth stages (R3.5 and R5.5), compared with control. These observations indicate that SAY3-7 is an effective N-fixing bacterium for the plant growth, nodulation, and nitrogen fixation with an ability to compete with native bradyrhizobia. Co-inoculation of SAY3-7 and P4 significantly improved nodule number; nodule dry weight; shoot and root biomass; N fixation; N, P, K, Ca, and Mg uptake; at various growth stages and seed yield in ‘Yezin-6’ soybean cultivar compared with the control, but not the single inoculation treatments. Significant differences in plant growth, nodulation, N fixation, nutrient uptake, and yield between co-inoculation and control, not between single inoculation and control, suggest that there is a synergetic effect due to co-inoculation of SAY3-7 and P4. Therefore, we conclude that Myanmar Bradyrhizobium strain SAY3-7 and P4 will be useful as effective inoculants in biofertilizer production in the future.  相似文献   

7.
Sulfur (S) and Nitrogen (N) metabolisms in plants are interacted and it is known that S deficiency decrease N absorption and metabolism. In leguminous plants S deficiency also decreases N2 fixation by rhizobia in the nodules. Deep placement of a controlled-release N fertilizer is a good method to provide nitrogen to soybean without inhibiting N2 fixation; thus, it was hypothesized that this method is able to provide nitrogen effectively to sulfur-deficient soybean plants. In this study effects of deep placement of coated urea on S-N physicological interaction, growth and productivity in soybean plants were examined using pot experiments. Soybean plants were grown with sulfate concentrations of 30, 100, or 1000 μM, with or without deep placement of coated urea. Shoot weights at the developing stage were not affected by S deficiency. SPAD values of leaves during the flowering stage decreased with S deficiency and increased with the deep placement of coated urea. S deficiency decreased seed weight per plant at the harvesting stage, but this decrease was attenuated by the deep placement of coated urea. N and S content in shoots at the developing stage increased with the deep placement of coated urea, whereas in seeds, only the N content increased. N2 fixation activity based on the relative ureide-N content in xylem sap indicated that the deep placement of coated urea did not inhibit N2 fixation activity at the early flowering stage. Without deep placement of coated urea, the relative ureide-N content decreased under S deficiency at the seed filling stage. These results suggest that the deep placement of coated urea is an efficient method to supply N to support soybean yield under S deficiency.

Abbreviations: Deep+: with deep placement of coated urea; Deep–: without deep placement of coated urea  相似文献   

8.
Cereal aphid infestations have considerable impact upon productivity and profitability of United States agriculture. A comparison study of the influence of different aphid species (Russian wheat aphid, Duraphis noxia Mordvilko; greenbug, Schizaphis graminum Rondani; and bird cherry oat aphid, Rhopalosiphum padi L.) upon shoot characteristics and root growth of hard red spring wheat (Triticum aestivum L.) was conducted in an attempt to better understand the mechanisms of yield loss in aphid damaged plants. Plants infested with aphids showed similar reductions in shoot growth regardless of aphid species. Shoot chlorophyll concentrations were lowest in greenbug‐infested plants. Root length and dry weight were also equally reduced by feeding damage by the three aphid species. Upon removal of the aphids, shoot dry weights of plants damaged by each aphid species remained unchanged for 10 days. Shoot dry weights for aphid‐damaged plants were about half the magnitude seen in the control plants after 15 days. Chlorophyll concentrations seen in greenbug and Russian wheat aphid‐infested plants initially were lower than the concentrations seen in bird cherry oat aphid‐infested and control plants. Within 10 days after aphid removal, however, chlorophyll concentrations across all treatments were essentially equal. Root lengths in plants previously infested with greenbugs or Russian wheat aphids were lower than control plants four days after aphid removal. Within 10 days after aphid removal, root lengths in plants previously infested with greenbugs or Russian wheat aphids did not differ from control plants. Root lengths in plants previously damaged by bird cherry oat aphids did not reach the same magnitude as that of the other treatments until 27 days after aphid removal. These results indicate that aphid feeding damage to wheat plants can have significant effects on root growth, suggesting that crop management practices that promote root growth could play important roles in improving plant tolerance to aphid damage.  相似文献   

9.
The application of manure compost is an effective way to increase soybean [Glycine max (L.) Merr.] yield and nitrogen (N) fertility in drained paddy fields. We investigated changes in soil N mineralization during soybean cultivation using reaction kinetics analysis to determine the contribution of increased N mineralization after manure compost application (at a rate of 0 to 6?kg?m?2) on N accumulation and seed yield of soybean under drained paddy field conditions. The seed yield and N accumulation decreased markedly in the second and third year of the experiment, but soil N mineralization increased in both years. No decrease in soil N mineralization occurred even after two soybean crops. Soil N availability was not the main cause of decreased soybean yield in the second and third years. The differences in plant aboveground N content between plots with and without manure compost was similar to the increase in N mineralization caused by manure compost application in the second and third years. The application of 6?kg?m?2 of manure compost increased the amount of ureide-N and nitrate-N in soybean in the third year. Our results suggest that manure compost application increases soil N mineralization and soybean N2 fixation, resulting in increased N accumulation and seed yield. However, the soybean yield remained less than 300?g?m?2 in the second and third years (i.e., below the yield in the first year) at all levels of manure compost application due to the remarkable decrease of N accumulation in the second and the third crops.  相似文献   

10.
The influence of nitrogen nutrition and greenbug (Schizaphis graminum Rondani) infestation on growth, chlorophyll content, soluble amino acids, and soluble protein of barley plants (Hordeum vulgare L.) was studied in growth chamber experiments. Plants were grown for 21 days using complete or minus nitrogen nutrient solution. First leaves were then fitted with cages containing eight apterous adult greenbugs. After 7 days, the greenbugs were removed and the plants harvested. The plants given complete nutrient solution grew more rapidly than those given minus nitrogen. Plants grown with minus nitrogen had fewer greenbugs per plant but had much higher numbers of greenbugs per square centimeter of total plant leaf area than plants given complete nutrient solution. All leaves of infested plants grown with minus nitrogen had decreased dry weight, decreased chlorophyll, and increased soluble amino acids when compared with minus nitrogen uninfested plants. Infestation of first leaves of plants grown on complete nutrient solution increased soluble amino acids in all leaves. However, there was little change in the dry weight or chlorophyll level in leaves other than the first leaf. It is concluded that adequate nitrogen nutrition produces plants that can better withstand localized greenbug feeding damage than plants deficient in nitrogen.  相似文献   

11.
The influence of nitrogen nutrition and Russian wheat aphid (Diuraphis noxia Mordvilko) infestation on morphology and grain yield of wheat (Triticum aestivum L.) was studied in growth chamber experiments. Plants were grown with nutrient solution containing 100, 50, 10, or 0 percent of the normal complement of nitrogen. Plants were infested with eight apterous adult Russian wheat aphids at the flag leaf stage (approximately 53 days after planting). The aphids remained on the plant for a period of 25 days. Aphid infestation reduced mature plant height across all nutrient solution nitrogen concentrations tested. Grain yield was reduced by aphid infestation under all nutrient solution nitrogen concentrations except 0 percent. However, the percentage of yield loss caused by aphid infestation was reduced by increased levels of nitrogen in the nutrient solution. These results suggest that nitrogen fertilization might be a useful strategy for limiting yield loss caused by Russian wheat aphid in plants that are deficient in nitrogen.  相似文献   

12.
Phosphorus (P) is a major nutrient factor influencing nitrogen (N) accumulation and partitioning of photosynthates in plants, especially the symbiotic N2‐fixation in legumes. This study was conducted to investigate how P application (0, 20, 40, and 60 kg P2O5/ha) affects symbiotic N2‐fixation of three cultivars (C 235, Pusa 408, and Pusa 417) of chickpea (Cicer arietinum L.). Application of P in general significantly increased leaf area, shoot dry weight, and the rate of acetylene (C2H2) reduction. Phosphorus concentration of shoots and roots, soluble sugar content of nodules, and shoot N accumulation were also significantly increased, especially by P at the 40 kg P2O5/ha rate. The P concentration in nodules was, however, not affected by different levels of P. The Pusa 417 cultivar responded better than the others to the P treatments. Phosphorus‐deficient plants accumulated sugar in their leaves. The interaction effect was found significant on leaf area, shoot dry weight, nodule number, and shoot N accumulation. Pusa 417 gave greatest response to 40 kg P2O5/ha but Pusa 408 and C 235 interacted best with the 20 kg P2O5/ha rate only. The increased nodulation and symbiotic N2‐fixation on P application seem to be the result of morphologically advanced shoots which are making more photosynthates for transport to nodules and not the direct effect of P on the nodules.  相似文献   

13.
Abstract

Magnesium (Mg) deficiency is one of the major nutritional problems in tropic and subtropic areas, where the most soils are acidic. In this study, the effects of Mg application and Bradyrhizobium inoculation on growth, nodulation, symbiotic nitrogen (N) fixation as well as N nutrition status in soybean (Glycine max L.) were investigated in hydroponics under greenhouse conditions. With the increase of Mg up to 0.75?mM at low N and up to 0.5?mM at high N solutions, the dry weights of shoots, roots, and pod grain yield in soybean were increased, while further increase in Mg supply inhibited soybean growth. The availability of Mg was found to entail an improved uptake of N by plants and nodulation process in the root by Bradyrhizobium. Inoculation with rhizobial inoculants not only formed many nodules, but also increased soybean shoot, root biomass and yield, as well as plant N nutrient status.  相似文献   

14.
The long-term effect of the concentration and duration of application of nitrate from the lower part of soybean roots on the nodulation and nitrogen fixation in the upper part of roots was investigated using a two-layered pot system separating the upper roots growing in a vermiculite medium and the lower roots growing in a nutrient solution. Continuous absence of nitrate (hereafter referred to as “0–0 treatment”), and continuous 1 mM (1–1 treatment) and 5 mM (5–5 treatment) nitrate treatments were imposed in the lower pot from transplanting to the beginning of the maturity stage. In addition, 5 mM nitrate was supplied partially from the beginning of the pod stage till the beginning of the maturity stage (0–5 treatment) or from transplanting till the beginning of the pod stage (5–0 treatment). The values of the total plant dry weight and seed dry weight were highest in the 5–5 treatment, intermediate in the 1–1, 5–0, 0–5 treatments, and lowest in the 0–0 treatment. The values of the nodule dry weight and nitrogen fixation activity (acetylene reduction activity) were lowest in the 5–5 treatment. The value of the nodule dry weight in the upper roots was highest in the plants subjected to the 1–1 treatment and exceeded that in the 0–0 treatment. Total nitrogen fixation activity of the upper nodules per plant at the beginning of the pod stage was also highest in the 1–1 treatment. These results indicated that long-term supply of a low level of nitrate from the lower roots could promote nodulation and nitrogen fixation in the upper part of roots. Withdrawal of 5 mM nitrate after the beginning of the pod stage (5–0 treatment) markedly enhanced nodule growth and ARA per plant in the upper roots at the beginning of the maturity stage when the values of both parameters decreased in the other treatments. The nitrate concentration in the nodules attached to the upper roots was low, including the 5–5 treatment regardless of the stages of growth. This indicated that the inhibitory effect of 5 mM nitrate or promotive effect of 1 mM nitrate supplied from the lower roots was not directly controlled by nitrate itself, but was mediated by some systemic regulation, possibly by the C or/and N requirement of the whole plant.  相似文献   

15.
Summary A greenhouse study was conducted to examine the residual effects of sewage sludge on soybean Glycine max (L.) Merr., nodulation, and N fixation. Nodulating and nonnodulating isolines of Clark soybean were grown to the R2 stage in soils (Typic Paleudults) obtained from plots where heat-treated sludge had been applied in 1976 at rates equal to 0, 56,112, and 224 Mg ha–1 high (7.0) and low (6.2) soil pH regimes were established by CaCO3 additions. Sludge and soil pH treatments resulted in clearly defined differences in metal uptake by soybean shoots. Plant Zn, Cd, and Ni concentrations were greater on pH 6.2, sludge-amended soil than on the pH 7.0, amended soil. At low soil pH, soybean Zn and Cd concentrations, respectively, increased from 41 and 0.19 mg kg–1 (control) to 120 and 0.58 mg kg–1 at the 224 Mg hat sludge rate. At the high soil pH and 224 hg hat sludge rate, Zn and Cd concentrations were 45 and 0.15 mg kg–1, respectively.Symbiotic N fixation provided 90% of the total N accumulation. Total N accumulation, shoot N concentration, dry matter, and N fixation by nodulating soybeans exhibited a significant linear increase with sludge rate. Total N accumulation, dry matter, and N fixation were significantly greater at high soil pH. For high and low soil pH, respectively, N fixation increased from 422 and 382 mg N per plant (control) to 614 and 518 mg N per plant at the 224 Mg ha–1 sludge rate. While soybean nodulation also increased linearly on sludge-amended soil, a significant rate times pH interaction for nodule number indicated that nodulation was less strongly enhanced by sludge at low soil pH.  相似文献   

16.
It is unknown if nitrogen (N) fertilizer application will ameliorate the yield loss associated with severe defoliation of soybean [Glycine max (L.) Merr.] at the R5 stage of growth. The objective of this field study was to investigate the interaction of N fertilization rate and extent of defoliation on soybean yield, seed weight, seed N concentration, and nodule activity. Field experiments were conducted in 1988 and 1989 on a Drummer silty clay loam (Typic Haplaquolls). Treatment variables were three cultivars: BSR 101, Chamberlain, and Elgin 87; three N fertilizer rates applied one day after defoliation: 0, 84, and 168 kg N ha‐1 as urea; and three levels of defoliation: 0, 50, and 75%. Grain yield was not significantly affected by N rate but did decrease with defoliation. Fertilizer N did not ameliorate the yield reduction associated with defoliation. Seed weight decreased linearly with increasing defoliation. Plants exposed to the most severe defoliation produced seed which weighed 1 g 100‐1 seed less than seed from nondefoliated plants. In 1989 seed weight of only the nondefoliated plants increased slightly with N rate, seed weight was not affected by N rate for any other year by defoliation treatment combination. Seed N concentration was not affected by N rate. Seed N concentration increased with defoliation in 1988 but not in 1989. Seed N concentration was not affected by defoliation in 1989. N fertilizer application and defoliation decreased nodule activity. Defoliated plants utilized nitrates in preference to dinitrogen fixation. Fertilizer N increased the concentration of nitrates in the plant, but the increase did not ameliorate the yield loss. Developing pods and seed are the predominate sink. The additional energy presumably required for dinitrogen fixation did not exacerbate the yield loss.  相似文献   

17.
A pot experiment was carried out, with 30 spinach cultivars to determine nitrate accumulation in leaf blade and petiole, and its relationship to biomass and water in plants. Results showed that the fresh weight proportion of blade to shoot was higher than that of petiole. Furthermore, a higher positive correlation was found between fresh weights of blades and shoots than that of petioles and shoots. Unlike biomass, nitrate-nitrogen (N) concentration and total amount of nitrate-N accumulated in petiole were significantly higher than those in blade, and petiole was obviously the main organ for nitrate accumulation. Differences of nitrate-N concentration in petiole and the observed positive correlation between nitrate-N concentrations in petioles and shoots were more significant than that in blades and shoots. Nitrate-N concentration in petiole was also significantly correlated with fresh and dry shoot weight and total amount of water in shoots. However, this relationship was not found for blade.  相似文献   

18.
禾本科与豆科作物间作具有显著的增氮作用。为探明玉米/大豆、玉米/花生间作模式的氮素吸收、氮营养竞争能力及豆科结瘤特性的变化,解释玉米与豆科间作体系的增氮效应,通过田间试验,设置玉米单作(MM)、大豆单作(SS)、玉米/大豆间作(MS)、花生单作(PP)、玉米/花生间作(MP)等5种种植模式,研究不同种植模式对作物氮素积累、氮营养竞争强弱及豆科结瘤固氮特性的调控作用。结果表明,与单作相比,间作显著降低玉米和大豆的氮素积累量,对花生的氮素积累量影响不显著。5种模式系统氮素积累总量表现为MS > SS > MP,PP和MM处理最低且差异不显著,MS处理比MP处理显著高21.8%。与MM处理相比,MS和MP处理的玉米氮素积累量分别降低20.5%和11.7%,其中MP处理籽粒、叶片和茎秆氮素积累量比MS处理高8.9%、21.2%和14.3%。与SS处理相比,MS处理的大豆氮素积累量降低28.5%,其中,中行、边行分别降低10.1%、15.4%。玉米相对大豆氮营养竞争比率表现为强(CRms>1),相对花生则表现为弱(CRmp<1)。与SS处理相比,五叶期MS处理的大豆根瘤数量显著增加,根瘤鲜重无显著差异,盛花期后根瘤数量和鲜重均显著降低;MS处理的大豆根瘤固氮酶活性均降低,且中行降低幅度更大。与PP处理相比,开花期MP处理的花生根瘤数量和鲜重均显著增加,下针期后均显著降低;MP处理的花生根瘤固氮酶活性均降低,且边行降低幅度更大。各间作模式作物的氮素积累量虽然降低,但间作模式的系统氮素积累量却显著高于各单作模式,两种间作模式中MS处理的氮素积累总量最高。  相似文献   

19.
Effects of phosphorus (P) deficiency on nodulation were examined in soybean grown in nutrient solution for 7 weeks. Increasing P supply increased shoot growth of nitrogen (N2)-fixing plants from week 5 and that of nitrate-fed plant from week 4 after treatment. Nitrogen (N2)-fixing plants had a greater P requirement for maximum growth at week 5. Increasing P supply from 1 to 16 μ M increased N concentration in N2-fixing plants at week 4 but did not affect it from week 5. By contrast, P deficiency increased N concentration in nitrate-fed plants. Increasing P supply improved nodule formation from week 3. Nodule mass was affected more by P supply than nodule number, which, in turn, was affected more than plant growth. However, P supply did not decrease nodule specific N2 fixation from week 5. The results suggest that P deficiency impaired symbiotic N2 fixation through delaying onset of nodule function and decreasing nodule development.  相似文献   

20.
To characterize the regulation site and manner of the abundant nodulation in the soybean (Glycine max (L.) Merr.) cv. Kitamusume, three grafting eperiments were carried out as follows: reciprocal wedge grafting and inter-cultivar approach grafting between Kitamusume and a normal nodulating cultivar, Toyosuzu, as well as wedge grafting of scions of the supernodulating mutant En6500 onto either Kitamusume or Toyosuzu rootstock. In the reciprocal wedge grafting, the number of nodules per shoot dry weight and average weight per nodule in the grafted plants were consistent with those exhibited by the genotype of their rootstocks. Approach grafting did not affect the number of nodules per shoot dry weight on either side of the inter-cultivar approachgrafted plant. Although grafting of the mutant scion resulted in the loss of the autoregulatory response from the roots of both cultivars, difference in the number of nodules per g shoot dry weight still remained between the two cultivars. These results suggested that the abundant nodulation in Kitamusume is controlled by the root in a non-systemic manner and is independent of the autoregulation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号